Superconducting Half Wave Resonator Design and Research

Jeremiah P. Holzbauer
USPAS – Grand Rapids ‘12
Outline

- Design Motivation
 - Facility for Rare Isotope Beams (FRIB)

- Cavity Theory
 - Low Beta Superconducting Cavities
 - Resonator Figures of Merit

- Existing Knowledge Base
 - Ongoing prototyping and testing of Half Wave Resonators at Michigan State University

- Detailed Design of a Half Wave Resonator
 - Electromagnetic Design/Optimization
 - Coupled Electromagnetic & Mechanical Simulations
The Facility for Rare Isotope Beams

A Brief Overview
National Superconducting Cyclotron Laboratory (NSCL)

- **World-Leading Nuclear Physics**
 - 10% of US Nuclear Ph.D.s
 - #1 US Physics Graduate Program for Nuclear Physics (US News and World Report, 2010)
 - ~400 employees on the campus of Michigan State University operated by the National Science Foundation
 - International User community of over 700
 - Capable of producing up to 170 MeV/u rare isotope beams through thin target nuclear fragmentation
NSCL Facilities
FRIB as the Future

- FRIB is a superconducting driver linear accelerator that will replace the Coupled Cyclotron Facility (CCF)
 - Primary beam power upgrade from 1-2 [kW] to 400 [kW]
 - Maximum Energy upgrade from 160 to 200 (400) [MeV/u] for Uranium

- Integrates into the existing CCF experimental program
 - Secondary beams injected directly into reconfigured A1900 fragment separator for use by existing and expanding scientific program
FRIB Driver Linac

- ECR Ion Sources
- Room Temperature RFQ Accelerator
- $\beta=0.041$ Quarter Wave Resonators
- $\beta=0.085$ Quarter Wave Resonators
- Target Beam Delivery System
- Energy Upgrade
- Superconducting Bend
- $\beta=0.53$ Half Wave Resonators
- $\beta=0.29$ Half Wave Resonators
- Cryogenic Distribution Line
- Charge Stripper

National Science Foundation
Michigan State University

J. P. Holzbauer
Low Beta Superconducting Resonators

A Introduction to Quarter Wave and Half Wave Resonators and their Figures of Merit
Quarter Wave Resonators

- **Coaxial Resonator**
 - Effective open and short termination

- **Low Frequency Structure**
 - Allows for efficient acceleration of low beta beams

- **Accelerating Field**
 - Two gap structure (Pi-Mode like)

- **Steering**
 - Asymmetric design leads to slight beam steering

- **Open end for access/processing**
 - Open end for cavity processing and inspection

\[\lambda \beta_{opt} = A + B \]
\[\vec{E}(\rho, \phi, z) = E_0 A \cos \left(\frac{\pi z}{2L} \right) e^{i \omega t} \hat{\rho} \]
\[\vec{B}(\rho, \phi, z) = \frac{E_0 A}{cp} \sin \left(\frac{\pi z}{2L} \right) e^{i \omega t + \frac{i \pi}{2}} \hat{\phi} \]
Half Wave Resonators

- **Coaxial Resonator**
 - Two effective short terminations

- **Higher Frequency Structure than QWR**

- **Accelerating Field**
 - Two gap structure (Pi-Mode like)

- **HWR v. QWR**
 - Higher optimum beta
 - No beam steering
 - Double the losses
 - No easy access
QWR and HWR usage for FRIB

- **Transit Time Factor** is a measure of the loss of acceleration from the fields varying with time
 - More synchronized gaps reduces the velocity range of particles you can efficiently accelerate

- **Flexible Primary Beam**
 - FRIB is designed to accelerate anything from Oxygen to Uranium
 - 2-gap structures offer this flexibility

\[TTF = \frac{V_{acc}}{V_0} = \frac{\int_{-\infty}^{+\infty} E_{acc} \sin \left(\frac{\omega z}{\beta c} + \phi \right) dz}{\int_{-\infty}^{+\infty} |E_{acc}| dz} \]
How are cavity designs judged?

- **Efficiency Figures of Merit**
 - R/Q (Effective Shunt Impedance)
 - Measure of how effectively the cavity can transfer its stored energy to the beam
 \[
 \frac{R}{Q} = \frac{V_{acc, \beta_{opt}}^2}{\omega U}
 \]
 - Geometry Factor (Quality Factor)
 - Measure of how efficiently the cavity stores energy
 \[
 G = r_s Q = \frac{\omega U r_s}{P_d}
 \]
 - Transit Time Factor
 - Measure of possible acceleration lost by time-varying fields (not as critical for SRF cavities)

- **Electromagnetic Figures of Merit**
 \[
 \frac{V_{acc}}{\sqrt{U}}, \quad \frac{E_{pk}}{\sqrt{U}}, \quad \frac{B_{pk}}{\sqrt{U}}
 \]
 - These simulated quantities are required to interpret cavity test data
 - These values may not accurately represent the reality of a cavity

- **Performance Limits**
 - High surface electric fields give more risk of field emission, tighter processing tolerances (~30 [MV/m])
 - High surface magnetic fields limit ultimate cavity performance at quench field (~120 [mT] for low beta)
Judging Mechanical Behavior

- The cavity is not static and unchanging in operation
 - The cavity will have a variety of pressures exerted on it, and the resulting deformation may shift the cavity frequency
 - These shifts in cavity frequency must be understood and optimized to give the best performance in operation

- Relationship between applied pressures and deformation depends strongly on mechanical design and fabrication
Cavity Tuning

- **Tuning Parameters**
 - Our HWR designs are tuned through beam port deformation
 - Force is applied symmetrically on the beam ports
 - Force required, resulting deformation, and frequency shift are simulated
 - These numbers are used to drive tuner design
Pressure Sensitivity

- Helium bath pressure sensitivity
 - Cavity will be cooled by liquid helium at ~28 torr, but this will vary
 - Varying pressure will deform the cavity
 - This deformation cannot affect the cavity frequency more than the LLRF can control it
 - Desired shift is $|df/dP| < 2 \text{ Hz/torr}$

- Mitigation Techniques
 - Overall stiffening can be used to improve performance (expensive)
 - Deformation in magnetic and electric regions contribute opposite shifts
 - Careful choice of stiffening can be used to tune these shifts, giving very small $|df/dP|$
Lorentz Force Detuning

- **Cavity/Field Interaction**
 - The fields in the cavity interact with the surface currents and charges they induce, inducing force on the cavity.

 \[
 \frac{\Delta f}{f_0} = \frac{1}{4U} \int_{\Delta V} (\varepsilon_0 E^2 - \mu_0 H^2) dV = \frac{1}{U} \int_{\Delta V} (P) dV
 \]

 \[
 K_L = \frac{\Delta f}{(\Delta E_{acc})^2};
 E_{acc} = \frac{V_{acc,\beta_{opt}}}{\beta_{opt} \lambda}
 \]

 - Note: PdV is always positive, meaning \(\Delta f \) is always negative.

- **Mitigation Techniques**
 - Compensation cannot be used, as with \(df/dP \).
 - Overall design philosophy of a very stiff cavity design.
 - CW operation allows larger tolerance.
 - \(K_L > -3 \text{ [Hz/(MV/m)^2]} \) is desired.
Historical Use of Low Beta SRF Resonators

- **QWR Operational Experience:**
- **PIAVE-ALPI at INFN-Legnaro**
 - ∼80 SRF cavities booster for a tandem
- **ATLAS @ Argonne National Lab**
 - Countless contributions to the technology
- **ISAC – II @ TRIUMF**
 - RIB Post Accelerator
- **SPIRAL2 – Light Ions for RIB Production**
- **RεA3(6) – Under construction @ MSU**
- **Very Little for HWRs**
- **SARAF – Progress accelerating light beams**
Experience with HWRs at Michigan State University

Prototyping and Testing
322 \text{ [MHz]}, \beta = 0.29 \text{ HWR for RIA}

- Prototyped and Tested in Cryomodule
 - Extremely simple construction
 - Little electromagnetic optimization
 - Achieved electromagnetic goals at 2K
 - Poor mechanical performance
322 [MHz], $\beta = 0.53$ HWR for FRIB

- Five HWR53s have been fabricated
 - 1 was made in-house at NSCL
 - 4 were ordered as subassemblies from industry (Roark & AES) and finished in-house

- Four cavities have been tested
 - Three have achieved FRIB field and quality factor
 - Quench limit is between 90 mT and 110 mT (design Bpk \sim75 mT)

- Testing has successfully demonstrated cleaning and processing equipment
Fabrication

- **Subassemblies**
 - Outer Conductor
 - Inner Conductor (w/drift tube)
 - Beam Port Cups
 - Short Plates
 - Rinse Ports
 - Coupler Ports
Cavity Design Cycle

- Cavity design is very complex
 - Electromagnetic performance
 - Electromechanical performance
 - Mechanical performance
 - Complexity/Repeatability of fabrication
 » Forming/Trimming
 » Welding
 » Processing/Handling
 - COST

- Simulated cavity is the GOAL
 - Simulations have no imperfections
 - Simulated results are used to interpret cavity test data
 - The goal of cavity design is to have fabricated cavities converge toward simulated performance
Cavity Test Setup and Goals

- Verify Cavity Performance
- Verify Effectiveness of Cavity Baking
 - The cavity was baked for 10 hours at ~600°C in vacuum to drive off hydrogen in the bulk material.
 - This hydrogen, introduced mostly during etching, forms lossy Niobium-hydrides if the cavity is cooled too slowly.
 - After first day of testing, cavity was warmed to ~100K and “soaked” at that temperature overnight.
 - The cavity was cooled and retested the second day of testing.
Cavity Testing Results

- Good electromagnetic performance
- Strong high field Q-slope
 - Weld Quality?
- Repeatable quench limit
 - \(~93 \text{ [mT]}\)
Advanced Manufacturing Design

- **Design Modifications**
 - Several modifications based on cavity testing and vendor experience

- **Subassembly Tolerances**
 - Welding presented a significant challenge depending on subassemblies tolerances
 - Instead of tightening tolerances ($$$), a short straight section was added on the inner conductor
 - This allowed a stacking/trimming step before welding for increased repeatability and quality of the weld

- **Other changes**
 - Plungers removed, Drift tube simplified
Half Wave Resonator Design: Simulation and Optimization

A Worked Half Wave Resonator Design
Electromagnetic Simulation

- Geometry Creation
 - SolidWorks CAD software
 - Appropriate choice of parameters for optimization
 - Take advantage of symmetry

- Boundary Conditions
 - Perfect Electric Conductor
 » Normal electric fields, tangential magnetic fields
 » RF surfaces
 - Perfect Magnetic Conductors
 » Normal magnetic fields, tangential electric fields
 » Generally symmetry planes (with exceptions, depending on the mode)
 - RF losses
 » Surface resistivity for dissipated power
Finite Element Solvers

- Cavity volume is broken into interlocking tetrahedral “elements”
- Fields inside of an element are assumed to have a simple form
- Matrix describing mesh is inverted to get eigenvalues/eigenvectors

\[\nabla^2 + k^2 \mathbf{E} = 0 \]
Coupled EM & Mechanical Simulations

- Accurate frequency shifts can be achieved from small mechanical deformations
 - Mesh and solve eigenmode
 - Mesh material space
 - KEEP vacuum space mesh as extremely weak material
 - Apply desired pressure and solve for deformation
 - Change back to vacuum and resolve eigenmode to get frequency shift

- By perturbing the existing mesh, extremely high accuracy can be achieved, down to the Hz level
Starting Geometry

- This geometry has the appropriate features for optimization
 - Cylindrical magnetic field region (with straight section!)
 - Shaped electric field region
 - Cylindrical outer conductor (stiff!)
 - Beam port cup to give proper β_{opt}

<table>
<thead>
<tr>
<th>Figure of Merit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>322.5 [MHz]</td>
</tr>
<tr>
<td>β_{opt}</td>
<td>0.293</td>
</tr>
<tr>
<td>G</td>
<td>66.5 [Ω]</td>
</tr>
<tr>
<td>R/Q</td>
<td>219 [Ω]</td>
</tr>
<tr>
<td>V_{acc}</td>
<td>1.90 [MV]</td>
</tr>
<tr>
<td>E_{pk}</td>
<td>34.7 [MV/m]</td>
</tr>
<tr>
<td>B_{pk}</td>
<td>69.7 [mT]</td>
</tr>
<tr>
<td>U</td>
<td>8.15 [J]</td>
</tr>
</tbody>
</table>
Geometrical Optimization

- Two Stages of Variable Optimization:
 - “Large” Variables (e.g. IC/OC Radius)
 - “Local” Variables (e.g. Drift tube fillet)

- All Design Is Compromise

- Frequency and β_{opt} must be consistent to compare different designs
 - Cavity length will be used to correct frequency
 - Beam port cup will be used to correct beta

- 322 [MHz], 1.9 [MV], $\beta = 0.29$
Variable 1: Outer Conductor Radius

- Larger Outer Conductor Improves Efficiency
 - Voltage for given stored energy driven by this distance
 - 145 [mm] maximum set by FRIB lattice

<table>
<thead>
<tr>
<th>CavLength [mm]</th>
<th>R_OC [mm]</th>
<th>L_cup,2 [mm]</th>
<th>G [Ω]</th>
<th>R/Q [Ω]</th>
<th>E_{pk} [MV/m]</th>
<th>B_{pk} [mT]</th>
<th>U [J]</th>
</tr>
</thead>
<tbody>
<tr>
<td>241</td>
<td>122.5</td>
<td>37</td>
<td>66.5</td>
<td>219</td>
<td>34.7</td>
<td>69.7</td>
<td>8.15</td>
</tr>
<tr>
<td>239</td>
<td>131.0</td>
<td>48</td>
<td>71.7</td>
<td>236</td>
<td>38.2</td>
<td>64.4</td>
<td>7.56</td>
</tr>
<tr>
<td>236</td>
<td>138.0</td>
<td>55</td>
<td>75.2</td>
<td>247</td>
<td>39.7</td>
<td>61.2</td>
<td>7.19</td>
</tr>
<tr>
<td>233</td>
<td>145.0</td>
<td>62</td>
<td>78.4</td>
<td>264</td>
<td>39.7</td>
<td>57.9</td>
<td>6.75</td>
</tr>
</tbody>
</table>
Short Plate Geometry

- **Flat Short Plate Implications**
 - Increased rounding improves peak magnetic field and Geometry Factor

- **Fully Rounded Short Plate**
 - Improved magnetic field distribution
 - Easier to manufacture
 - Most robust geometry that can be made with formed sheet Niobium
 - Improved draining during cavity processing
Variable 2: Magnetic Field Region IC Radius

- Reducing the Peak Surface Magnetic Field
 - Increasing the inner conductor radius decreases B_{pk}/\sqrt{U}
 - Almost no change in electric field region

- Significant Decrease in Efficiency
 - Both Geometry Factor and R/Q drop dramatically with increased inner conductor radius
 - Radius of 65 [mm] was chosen as a compromise between these two effects

<table>
<thead>
<tr>
<th>CavLength [mm]</th>
<th>R_top [mm]</th>
<th>R_cup,2 [mm]</th>
<th>G [Ω]</th>
<th>R/Q [Ω]</th>
<th>E_{pk} [MV/m]</th>
<th>B_{pk} [mT]</th>
<th>U [J]</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>55</td>
<td>62</td>
<td>80.1</td>
<td>263</td>
<td>40.2</td>
<td>56.9</td>
<td>6.78</td>
</tr>
<tr>
<td>250</td>
<td>65</td>
<td>62</td>
<td>77.4</td>
<td>243</td>
<td>41.1</td>
<td>54.2</td>
<td>7.34</td>
</tr>
<tr>
<td>260</td>
<td>75</td>
<td>62</td>
<td>73.1</td>
<td>223</td>
<td>41.3</td>
<td>53.7</td>
<td>8.00</td>
</tr>
<tr>
<td>270</td>
<td>85</td>
<td>62</td>
<td>69.1</td>
<td>205</td>
<td>41.6</td>
<td>54.6</td>
<td>8.71</td>
</tr>
</tbody>
</table>
Variable 3: Electric Field Region IC Width

- **IC Width is Relatively Insensitive**
 - Choice of large, flat region on IC makes cavity figure of merit relatively insensitive to its width
 - This design is also quite straightforward to manufacture (easy coining for drift tube)
 - This also means Epk should be insensitive to fabrication errors
 - Compromise of R/Q and Epk at a half-width of 30 [mm]

<table>
<thead>
<tr>
<th>CavLength [mm]</th>
<th>R_bottom [mm]</th>
<th>R_cup,2 [mm]</th>
<th>G [Ω]</th>
<th>R/Q [Ω]</th>
<th>E_{pk} [MV/m]</th>
<th>B_{pk} [mT]</th>
<th>U [J]</th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
<td>26</td>
<td>59</td>
<td>78.8</td>
<td>231</td>
<td>36.9</td>
<td>55.1</td>
<td>7.75</td>
</tr>
<tr>
<td>255</td>
<td>30</td>
<td>60</td>
<td>78.2</td>
<td>238</td>
<td>38.5</td>
<td>54.6</td>
<td>7.50</td>
</tr>
<tr>
<td>250</td>
<td>32</td>
<td>62</td>
<td>77.4</td>
<td>243</td>
<td>41.1</td>
<td>54.2</td>
<td>7.34</td>
</tr>
<tr>
<td>250</td>
<td>34</td>
<td>64</td>
<td>77.8</td>
<td>242</td>
<td>42.3</td>
<td>54.3</td>
<td>7.38</td>
</tr>
</tbody>
</table>
Final Optimization – Beam Port Cup

- Beam Port Cup Shape Dominates Peak Surface Electric Field
 - The cup was optimized to give fields that are as uniform as possible, minimizing peak surface electric fields
 - Also helps shape accelerating electric field, improving R/Q

<table>
<thead>
<tr>
<th>Figure of Merit</th>
<th>Initial Value</th>
<th>Final Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>322.5</td>
<td>321.8</td>
<td>[MHz]</td>
</tr>
<tr>
<td>β_{opt}</td>
<td>0.293</td>
<td>0.287</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>66.5</td>
<td>77.7</td>
<td>[\Omega]</td>
</tr>
<tr>
<td>R/Q</td>
<td>219</td>
<td>231</td>
<td>[\Omega]</td>
</tr>
<tr>
<td>V_{acc}</td>
<td>1.90</td>
<td>1.90</td>
<td>[MV]</td>
</tr>
<tr>
<td>E_{pk}</td>
<td>34.7</td>
<td>30.4</td>
<td>[MV/m]</td>
</tr>
<tr>
<td>B_{pk}</td>
<td>69.7</td>
<td>55.8</td>
<td>[mT]</td>
</tr>
<tr>
<td>U</td>
<td>8.15</td>
<td>7.71</td>
<td>[J]</td>
</tr>
</tbody>
</table>
Cavity Processing

- Cavity Etching and High Pressure Rinsing
 - While the beam ports and RF ports are available, the access they provide is unsatisfying for providing reliable cavity surfaces

- Minimizing Perturbation
 - These ports perturb the magnetic field of the cavity
Comparing the design presented, the improvement is obvious

- Peak surface magnetic field is significantly decreased by more sophisticated construction methods
- Efficiency improved with increased outer conductor diameter and beam port cups
- Aperture increased by 1/3 because of evolving beam dynamics requirements
- Designed specifically to be mechanically robust

<table>
<thead>
<tr>
<th></th>
<th>0.29 for RIA</th>
<th>New 0.29 Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{opt}</td>
<td>0.285</td>
<td>0.290</td>
</tr>
<tr>
<td>f (MHz)</td>
<td>322.0</td>
<td>322.0</td>
</tr>
<tr>
<td>V_a (MV)</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>E_p (MV/m)</td>
<td>30.0</td>
<td>30.5</td>
</tr>
<tr>
<td>B_p (mT)</td>
<td>83</td>
<td>56</td>
</tr>
<tr>
<td>R/Q (Ω)</td>
<td>199</td>
<td>231</td>
</tr>
<tr>
<td>G (Ω)</td>
<td>61</td>
<td>78</td>
</tr>
<tr>
<td>Design Q_0</td>
<td>6.1×10^9</td>
<td>7.8×10^9</td>
</tr>
<tr>
<td>Aperture (mm)</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>U (joules)</td>
<td>8.9</td>
<td>7.7</td>
</tr>
</tbody>
</table>
Achieving 322.000000 [MHz] ± 30[Hz]

- 322 MHz = In Operation
 - 300K -> 2K (df/dT)
 - 1 atm -> 28 torr (df/dP)
 - Air -> Vacuum (df/dε)
 - Installation of FPC/Tuner (Assembly & Preloading)
 - Etching
 - Welding of Helium Vessel

- Positioning the Beam Port Cups
 - This welding step allows adjustment of the cavity frequency and field flatness (~100s [kHz])
 - Plastic deformation of beam ports for final tuning (~100 [kHz])
 - Tuner range = ± 75 [kHz]
 - Tuner resolution ~1 [Hz]
 - Mostly based on experience (prototyping!)
 - Process must be repeatable
Cavity Stiffening

- It is desirable to make the cavity entirely from 2 [mm] sheet Niobium
 - However, electromechanical performance isn’t satisfactory
 - The most obvious first stiffening is to use thicker material for the beam port cup

<table>
<thead>
<tr>
<th>Thickness [mm]</th>
<th>df/dF [kHz/kN]</th>
<th>df/dx [kHz/mm]</th>
<th>K_L [Hz/(MV/m)2]</th>
<th>df/dP [Hz/torr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-126</td>
<td>-599</td>
<td>-3.1</td>
<td>-4.1</td>
</tr>
<tr>
<td>3</td>
<td>-96.2</td>
<td>-637</td>
<td>-2.2</td>
<td>-3.1</td>
</tr>
<tr>
<td>4</td>
<td>-83.6</td>
<td>-656</td>
<td>-1.9</td>
<td>-3.8</td>
</tr>
</tbody>
</table>

- With 3 [mm] beam port cups, additional stiffening was required
 - A simple stiffening ring (2 [mm] thick) was added to the inner conductor, and its position was optimized

<table>
<thead>
<tr>
<th>df/dF [kHz/kN]</th>
<th>df/dx [kHz/mm]</th>
<th>K_L [Hz/(MV/m)2]</th>
<th>df/dP [Hz/torr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-96.6</td>
<td>-637</td>
<td>-1.73</td>
<td>-0.98</td>
</tr>
</tbody>
</table>
Further Design Considerations

- Electromagnetic performance is close to optimal
 - The peak surface magnetic field was intentionally raised slightly to improve efficiency (could be reversed)
 - With demonstrated repeatability and quality of cavity processing, a more ambitious accelerating voltage may be possible

- Electromechanical performance is acceptable
 - Beam port tuning sensitivity is very high
 - If tuners can be designed such that minimum step size is in applied force, the beam port cups can be stiffened to achieve the required coefficient
 - Alternative tuning methods should be investigated

- Mechanical design is quite robust
 - Both high magnetic and high electric field regions have been designed to be insensitive to most manufacturing errors
 - Overall cavity is quite stiff, requiring little additional stiffening
 - Stiffening suggested should be straight-forward to include in cavity fabrications
 - Changes to cavity design and addition of helium vessel should not required drastic changes in stiffening
Conclusions

- Resonator design is a coupled process
 - Simulation, mechanical design, and prototyping are essential components for a successful final design

- Half Wave Resonators are a very new technology
 - Much has been learned at MSU about HWR design
 - A mature beta = 0.29 HWR design has been presented, but some questions need to be answered during mechanical design and prototyping
 » Tuning
 » Helium Vessel design
 » Goal Bench Frequency
 - The same procedure presented here can be repeated as the design changes
Differential Etching

- If desired, differential etching can be used to increase HWR frequency
 - HWR frequency shift from etching is more dominantly negative than QWRs
 - With careful choice of acid fill level, a positive frequency shift can be achieved
 - While this study was done on an older geometry, it is likely similar to current designs
 - This shift has yet to be demonstrated experimentally (at MSU)
- $-1383 \ [\text{Hz/µm}]$ is the etch rate for an ideal HWR at 322 MHz
- $0 \ [\text{Hz/µm}]$ is the rate for the ideal QWR
Multi-Harmonic Buncher

- Three Harmonics in Two Resonators
 - First three harmonics of a sawtooth wave
 - Efficient bunching of a DC beam from ion source

Transferred wave structure of three harmonics is evident (4th Harmonic only +2-3% capture)