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A Brief History of the 
Superconductivity 
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Heike Kamerlingh Onne 

1908 – Successfully liquified helium (4.2 K) 
1911 – Discovered the superconductivity 
while measuring the conductivity of Mercury 
as function of temperature 
1913 – Nobel prize 
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1933 – Walther Meissner and Robert 
Ochsenfeld discover perfect diamagnetic 
property of supeconductors. 
1935 – First theoretical works on SC by Heinz 
and Fritz London 
1950 – Ginzburg and Landau proposed a 
macroscopic theory for SC. 

Meissner effect 

A Brief History of the 
Superconductivity 



Why using SC magnets? 
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𝐵𝑟 =
𝑃

𝑞
=

𝐾2 + 2𝐾𝐸𝑜

𝑞𝑐
 

Example: Lets calculate the magnetic rigidity for a 1 TeV proton: 

𝐵𝑟 ≈
1 𝑇𝑒𝑉

𝑐
≈ 3333 𝑇. 𝑚 

Let us assume a maximum field of 1.5 T; the circumference of such machine will be: 

𝑟 = 2222 𝑚 
𝐶 = 2𝜋𝑟 ≈ 14 𝑘𝑚 

The Tevatron was the first machine to use large scale superconductor magnets 
with a 4.2 T in a 6.3 km circumference! 



Critical surface 
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Critical surface for different SC 
materials 
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YBCO: Tape, || Tape-plane, SuperPower (Used
in NHMFL tested Insert Coil 2007)

YBCO: Tape, |_ Tape Plane, SuperPower (Used
in NHMFL tested Insert Coil 2007)

Bi-2212: non-Ag Jc, 427 fil. round wire, Ag/SC=3
(Hasegawa ASC-2000/MT17-2001)

Nb-Ti: Max @1.9 K for whole LHC NbTi strand
production (CERN, Boutboul '07)

Nb-Ti: Nb-47wt%Ti, 1.8 K, Lee, Naus and
Larbalestier UW-ASC'96

Nb3Sn: Non-Cu Jc Internal Sn OI-ST RRP 1.3
mm, ASC'02/ICMC'03

Nb3Sn: Bronze route int. stab. -VAC-HP, non-
(Cu+Ta) Jc, Thoener et al., Erice '96.

Nb3Sn: 1.8 K Non-Cu Jc Internal Sn OI-ST RRP
1.3 mm, ASC'02/ICMC'03

Nb3Al: RQHT+2 At.% Cu, 0.4m/s (Iijima et al
2002)

Bi 2223: Rolled 85 Fil. Tape (AmSC) B||, UW'6/96

Bi 2223: Rolled 85 Fil. Tape (AmSC) B|_, UW'6/96

MgB2: 4.2 K "high oxygen" film 2, Eom et al.
(UW) Nature 31 May '02

MgB2: Tape - Columbus (Grasso) MEM'06

2212 
round wire 

2223 
tape B|_ 

At 4.2 K Unless 
Otherwise Stated 

Nb3Sn 
Internal Sn 

               
               

Nb3Sn 
1.8 K 

2223 
tape B|| 

Nb3Sn 
ITER 

MgB2 
film 

MgB2 

tape 

Nb3Al: 
RQHT 

1.9 K LHC 

Nb-Ti 

YBCO B||c 

YBCO B||ab 



NbTi Parameterization 
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where JC_ref  is the critical current density at 4.2 K and 5 T (JC_ref ~ 3000 A/mm2); 
C, ,  and  are fitting parameters: 

C ~ 31.4 T 
 ~ 0.63 
 ~ 1.0 
 ~ 2.3 

 

(Lubell’s formula) 

(Bottura’s formula) 



Nb3Sn Parameterization 
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  2/17.1

_0 1)(   mCC

 7.1

_0 1),(   mcc BTB

  3/17.1

_00 1)(   mcc TT

and: 

 = 900 
 = -0.003 
Tc0_m = 18K 
C0_m = 48500 AT1/2/mm2 
(for Jc = 3000 A/mm2 @ 4.2 K and 12 T) 

(Summer’s formula) 



Strand Fabrication 
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Superconducting cables 

• Most of the superconducting coils for particle accelerators are wound 
from a multi-strand cable. 

• The advantages of a multi-strand cable are:  
– reduction of the strand piece length; 
– reduction of number of turns 

• easy winding; 
• smaller coil inductance 

– less voltage required for power supply during ramp-up; 
– after a quench, faster current discharge and less coil voltage. 

– current redistribution in case of a defect or a quench in one strand. 

• The strands are twisted to 
– reduce interstrand coupling currents (see interfilament coupling currents) 

• Losses and field distortions 

– provide more mechanical stability 

• The most commonly used multi-strand cables are the Rutherford cable 
and the cable-in-conduit. 
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Superconducting cables 
• Rutherford cables are fabricated by a cabling machine. 

– Strands are wound on spools mounted on a rotating 
drum. 

– Strands are twisted around a conical mandrel into an 
assembly of rolls (Turk’s head). The rolls compact the 
cable and provide the final shape. 

 

US Particle Accelerator School – Grand Rapids, MI – June 2012 11 



Superconducting cables 

• The final shape of a Rutherford cable can be rectangular or trapezoidal. 
• The cable design parameters are: 

– Number of wires Nwire 

– Wire diameter dwire 

– Cable mid-thickness tcable 

– Cable width wcable 

– Pitch length pcable 

– Pitch angle cable  (tan cable = 2 wcable / pcable) 
– Cable compaction (or packing factor) kcable  

 
 
 
– i.e the ratio of the sum of the cross-sectional area of the strands (in the 

direction parallel to the cable axis) to the cross-sectional area of the cable. 

• Typical cable compaction: from 88% (Tevatron) to 92.3% (HERA). 
 

cablecablecable

wirewire
cable

tw

dN
k





cos4

2


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Cable insulation 

• The cable insulation must feature 
– Good electrical properties to withstand 

high turn-to-turn voltage after a 
quench. 

– Good mechanical properties to 
withstand high pressure conditions 

– Porosity to allow penetration of helium 
(or epoxy) 

– Radiation hardness 

• In NbTi magnets the most common 
insulation is a series of overlapped 
layers of polyimide (kapton). 

• In the LHC case: 
– two polyimide layers 50.8 µm thick 

wrapped around the cable with a 50% 
overlap, with another adhesive 
polyimide tape 68.6 µm thick wrapped 
with a spacing of 2 mm. 
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Superconducting Magnets Design 
Perfect dipole 
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A wall-dipole, cross-section A practical winding with flat cables 

1 - Wall dipole (similar to the window frame magnet) 
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Superconducting Magnets Design 
Perfect dipole 

2 - Intersecting ellipsis 
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Intersecting ellipses A practical (?) winding with flat cables 
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Intersecting Cylinders 
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within a cylinder carrying uniform current j0, the field is perpendicular to the radial 
direction and proportional to the distance to the center r: 
 
 
 
 
  
Combining the effect of the two cylinders 
 
 
 
 
 
 
Similar proof for intersecting ellipses 
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Superconducting Magnets Design 
Perfect dipole 
3 – Cos() current distribution 
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Superconducting Magnets Design 
Perfect quadrupole 
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Dipole design using sector coils 
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Multipoles of a dipole sector coil 
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Multi-sector dipole coil 
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Multi-sector dipole coil 
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 0)3sin()3sin()3sin()3sin()3sin( 12345  

0)5sin()5sin()5sin()5sin()5sin( 12345  
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0)11sin()11sin()11sin()11sin()11sin( 12345  
(B3, B5 and B7) = 0 

[0°-33.3°, 37.1°- 53.1°, 63.4°- 71.8°]  sets (B3, B5, B7 , B9 and B11) = 0! 



Examples 
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Two layer design 
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Quadrupole design using sector coils 
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Multipoles of a quadrupole sector coil 
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for =/6 (30°) one has B6 = 0 

for =/10 (18°) or =/5 (36°) one sets B10 = 0 

It follows the same philosophy of the Dipole design! 



Examples 
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Tevatron main quadrupole 
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Peak field and bore field ratio (l) 
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Peak field and bore field ratio (l) 
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Examples 
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Operational Margin 
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24 % 



Lorentz Forces 
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•  A superconducting accelerator magnet has a large magnetic stored 
energy 

• A quench produces a resistive zone 

• Current is flowing through the magnet  

 

• The challenge of the protection is to provide a safe conversion of the 
magnetic energy to heat in order to minimize 
– Peak temperature (“hot spot”) and temperature gradients in the magnet 

– Peak voltages 

 

• The final goal being to avoid any magnet degradation 
– High temperature => damage to the insulation or stabilizer 

– Large temperature gradient => damage to the conductor due to differential thermal 
expansion of materials 

Joule Heating 
Voltages (R and L) 

Quench protection 
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Quench 

Normal zone 
growth 

Detection 

Power 
supply 

switched off 
Protection 
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Trigger protection options 

Current decay in the magnet 

I
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Magnetic energy 

 

Converted to heat 
by Joule heating 

 

General quench protection diagram 

The faster this chain happens the safer is the magnet 



Training 
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Magnetization 
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Magnetization 
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Magnetization 
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Summary 
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• Design and Fabrication of Superconducting Magnets belong to a different 
Universe 
 

• Although the mathematical formulation for the field generation is shared, the 
design of superconducting magnets involves many other aspects: 

o Thermal considerations 
o Mechanical Analysis 
o Fabrication techniques 
o Quench Protection 
o Material Science 

 
• If one is interested to learn more about superconducting magnet, one should 

attend to the Superconducting Accelerator Magnets USPAS course. The material 
for that course can be found at: 

http://etodesco.web.cern.ch/etodesco/uspas/uspas.html 



Next… 
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Unusual design examples 


