
1 Accelerating structures

A charged particle gains energy when it moves through a potential difference,

∆Energy = e∆V

An electron or proton with magnitude of charge e that moves through a one volt potential
difference gains an energy of one electron-volt [eV]. An accelerator will be more compact
if the potential difference it provides is across a smaller distance. It is preferable for the
particle to gain 3 MeV in 1/10 meter than in 1 meter. So, accelerating structures are
typically characterized by their accelerating gradient in units of [MV/m] rather than the
total potential difference [MV] they offer.

Acceleration of particles with static electric fields becomes difficult at voltages on the
order of tens of megavolts due to electrostatic breakdown. Also, electrostatic accelerators
are not suited to multiple passes of the beam, and cannot be used to accelerate a beam
in a circular accelerator. So, most accelerating structures are either standing-wave (reso-
nant cavity) or traveling-wave (wave guide) accelerating structures. These are often called
’RF’ structures because early accelerating structures operated at Radio Frequencies, since
this reduced the cost of implementation. Typically, accelerating structures are driven by a
sinusoidal voltage source with a frequency matched to the resonant frequency of the struc-
ture. A glance at a sinusoidal voltage such as shown in Fig. 1, shows that half the time
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Figure 1: Scaled plot of sinusoidal accelerating voltage, V = Vpeak sin (ωRF t)

the polarity of the voltage is such as to decelerate particles rather than accelerate them.
Once an alternating RF voltage is used, the particle flow can no longer be continuous, or
many of the particles would not be properly accelerated. So, the particles are grouped in
’bunches’, and their frequency of arrival at an accelerating gap must match the frequency
of the accelerating voltage waveform, fRF The time between the peak of voltage on one
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cycle to the peak of voltage on the next cycle is the period, T . Just a reminder,

T =
1

f

ω = 2πf

fλ = v

Simulation results showing particle density in the Fermilab Booster is shown in Fig. 2. Five
separate bunches can be seen in the figure. General requirements for an accelerating struc-

Figure 2: Simulation of the particle density of beam in the FNAL Booster. Courtesy FNAL
Computational Accelerator Physics group, done using Synergia, carried out under SciDAC.

ture are that the electric field must be oriented and timed so that it accelerates particles,
and the structure must be reasonably power efficient.

An example of a standing wave structure is the Alvarez drift-tube linac. (See Fig. 1.
The pill-box cavity is a good simple model, but there are drift tubes inside the cavity
shielding the particles during the deceleration portion of the cycle, so there are as many
accelerating kicks as there are gaps between drift tubes. The spacing between drift tubes
must change as the particle velocity increases. These accelerators are used for protons and
ions in the range of .04c to .4c. An inside view of one of the tanks of the Fermilab Alvarez
linac is shown in Fig. 3(a). The suspended cylindrical tubes are the drift tubes; when
particles are inside these tubes they are shielded from the electromagnetic fields filling the
rest of the space inside the tank. Since the particles do not see any field inside the tubes,
they are not accelerated or decelerated, and drift along at a constant velocity. In the space
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(a) Inside of FNAL Alvarez linac tank (b) FNAL Alvarez linac tanks

Figure 3: Inside and outside views of the FNAL Alvarez 200 MHz drift tube linac. The
accelerating gradient is less than 3 MV/m. Courtesy Fermilab visual media services.

between any two drift tubes, which is called an accelerating gap, the particles do see the
electromagnetic field in the tank, and are kicked(accelerated) by the electric field.

There are non-drift tube resonant cavity structures which are used for high velocity
particles (including electrons). Power can be fed into the accelerating cells of these cavities
in different ways. A side-coupled cavity such as the FNAL high energy linac cavities shown
in Fig.4 is a typical example. Beam travels between individual accelerating cells through
nose cones that shield the bunches from the electric field while it is switching polarity.
Power is coupled from one accelerating cell to the next. In the case of the FNAL high
energy linac, this is done with bridge couplers that straddle adjacent accelerating cells.

Superconducting cavities may be found most typically where the machine has long pulse
or CW operation. Superconducting accelerating structures (SRF) are typically elliptical
standing wave cavities made of niobium, see Fig. 5. Extra care must be taken in assembling
superconducting cavities, they must be kept very clean in order to avoid break down.
Also, they must be kept cold during operation, so there is more infrastructure required.
The superconducting cavities cannot tolerate surface fields as high as may be achieved in
conventional cavities. At present, the superconducting cavities can achieve field gradients
of around 35 MV/m. Power efficiency and pulse length of operation factor into the choice
between technologies.

An example of a traveling wave structure is the disk-loaded traveling wave accelerator
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Figure 4: Fermilab 800 MHz side coupled cavities, used in the high energy end of the Linac.
Accelerating gradient ∼ 7.5 MV/m. Courtesy Fermilab visual media services.

Figure 5: Superconducting cavity structure. Courtesy Fermilab visual media services.

used to accelerate electrons at SLAC. Since the electron velocity so rapidly reaches c,
electrons can be launched into the wave guide along with the electromagnetic wave. The
relative phase (after a tiny initial slip) will be maintained, as long as the phase velocity of
the electromagnetic wave matches that of the electrons. An unloaded, smooth metal guide
will have phase velocity greater than c. To reduce the phase velocity of the wave through
the guide, it is loaded with disks (with a central hole for beam passage).

Another possible way to match the phase velocity of the accelerating wave to the beam
velocity is to load a wave guide with a dielectric material. The properties of the dielectric
change the phase velocity of the electromagnetic wave. At the Argonne Wakefield Accel-
erator, a gradient of 100 MV/m has been achieved with a dielectric loaded waveguide. An
example of this type of waveguide is shown in Fig. 6.

Exploring non-traditional accelerating structure designs with the goal of getting higher
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Figure 6: Dielectric-loaded waveguide (11 GHz). Courtesy Sergey Antipov and Chunguang
Jing, http: //www.hep.anl.gov/awa/links/dla.htm. The figure includes sections of waveg-
uide and RF couplers that convert between the TE10 mode in the rectangular waveguide to
the TM01 mode in the dielectric loaded accelerating structure. The accelerating gradient
is estimated to be greater than 60 MV/m.

field gradients or better beam control is an active area of accelerator research.

2 Resonant modes

Traveling waves such as the electromagnetic radiation coming from the sun, or waves trav-
eling down an infinitely long string, can be excited over a broad spectrum of frequencies.
However, if waves are excited in a bounded region, only certain frequencies of excitation
will result in a large amplitude response. This is a consequence of having boundaries, along
with the requirement of meeting specific conditions at those boundaries.

2.1 String fixed at both ends: example of bounded waves

For example, if a string is tied down at each end, there cannot be any net displacement of
the string where it is tied. If the length of the string is L, only oscillations with wavelengths
that have nodes a distance L apart can be resonantly excited. Only those oscillations have
constructive interference of the forward and backward traveling waves that result in large
displacements of the string. The resonant frequencies, fn, and wavelengths, λn, for a string
of length L are given by

fn =
v

λn

= n
v

2L
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λn =
2L

n
(1)

where v is the wave speed, and n = 1, 2, 3, . . .. The mode with n = 1 is called the
fundamental mode or first harmonic. The first harmonic has nodes only at the boundaries,
giving a half cycle variation in the displacement on the string. The second harmonic is the
n = 2 mode, with one additional node at the center of the string, giving one full cycle of
variation in the displacement on the string, and so on.

The resonant frequencies can be found formally as follows. A wave on a string only has
oscillations in one dimension, and so is described by the one dimensional wave equation.

∂2f

∂z2
− 1

v2
∂2f

∂t2
= 0

where v is the wave velocity, and f is the function being described (for example, the
displacement of the string). The general solution for this equation can be found using the
separation of variables method. Let f = Z(z)τ(t), the product of a function depending
only on z and a function depending only on t, then,

1

Z

∂2Z

∂z2
− 1

v2
1

τ

∂2τ

∂t2
= 0 (2)

Each term must be equal to a constant, otherwise the equation would not always be
true. Let this separation constant be −k2. Then, there are two separate equations, one for
Z, and one for τ , both harmonic oscillator equations.

1

Z

∂2Z

∂z2
= −k2

∂2Z

∂z2
+ k2Z = 0

Similarly,
∂2τ

∂t2
+ (kv)2τ = 0

Solutions to the equations are harmonic, Z = A cos (kz)+B sin (kz) and τ = C cos (ωt)+
D sin (ωt), where ω = kv. The total solution Zτ is also sinusoidal. The wave number k
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and angular frequency ω are related according to ω/k = v as a result of each term of Eq. 2
necessarily being equal to the same constant, −k2. The relationship between the frequency
ω and wave number k is called a dispersion relation. So far there are no restrictions on ω
or k other than their relationship through the dispersion relation. Tying the string down
at each end provides further constraints on what wavelengths can be resonantly excited;
this will be examined next. The general solution is the superposition of oscillations with
many different values of k;

f =
∑

n

(An cos (knz) + Bn sin (knz))(Cn cos (ωnt) +Dn sin (ωnt)) (3)

Boundaries result in restrictions on what terms contribution to the summation of Eq. 3. If
the string is tied down at both ends at locations z = 0 and z = L, then the displacement f
must be zero at these locations. Substituting z = 0 into Eq.3, we see that unless all of the
coefficients An = 0, the condition f = 0 at z = 0 cannot be satisfied. Substituting z = L
into the remaining expression for f , and requiring that f = 0,

0 =
∑

n

(Bn sin (knL))(Cn cos (ωnt) +Dn sin (ωnt)) (4)

We can see that to satisfy f = 0 at z = L, it is required that kn = nπ
L
, n = 1, 2, 3, . . .. Since

kn = 2π
λn

, this is the same as λn = 2L
n
, n = 1, 2, 3, . . . as given in Eq.1.

2.2 Modes in waveguides and cavities

Electromagnetic waves are used to accelerate particle beams, filling resonant cavities or
waveguides. The electric and magnetic fields are also described by the wave equation, but
it is no longer one dimensional.

∇2 ~E − µε
∂2 ~E

∂t2
= 0

∇2 ~B − µε
∂2 ~B

∂t2
= 0

Here the product of the permittivity ε, and permeability µ is εµ = 1

v2
, where v is the

wave speed. The walls of a cavity or waveguide are boundaries in the space containing an
electromagnetic wave, and the wave must satisfy boundary conditions at these walls. Let
the region on one side of a boundary be called region 1, and the region on the other side
be region 2. Then, the boundary conditions are:

ε1E
⊥
1
= ε2E

⊥
2

E
‖
1 = E

‖
2
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B⊥
1
= B⊥

2

1

µ1

B
‖
1 =

1

µ2

B
‖
2

where ε1 is the permittivity of the material (or lack thereof) in region 1, and µ1 is the
permeability of the material in region 1, and similarly for region 2. Naming the modes is
more complicated, because the system is no longer one-dimensional, as in the case of the
string. There are either two dimensions (waveguide) or three dimensions (cavity).

2.2.1 Rectangular waveguide

In a waveguide, there is either a longitudinal magnetic field or longitudinal electric field.
If the magnetic field is longitudinal, the electric field is transverse to the direction of
propagation, and the modes are called TEmn modes (Transverse Electric). If the electric
field is longitudinal then the magnetic field is transverse to the direction of propagation, and
the modes are called TMmn modes. Transversely, the space is bounded in two dimensions,
so two indices are needed to indicate the number of half-cycle variations in each of the
orthogonal transverse directions. For example, for a rectangular waveguide directed along
the z-axis, the TE10 mode has one half cycle of variation in electric field amplitude Ey in
the x-direction (m=1), and the electric field amplitude Ey is constant in the y-direction
(n=0). There is no Ex component of the field for this simple mode.

Suppose an evacuated rectangular waveguide with perfectly conducting walls has height
a in the x direction, and width b in the y direction. The dimensions of the guide constrain
the wave numbers kx and ky.

kx =
mπ

a
m = (0), 1, 2, . . .

ky =
nπ

b
n = (0), 1, 2, . . .

The indices m and n can be zero only for TE modes, for TM modes both indices start
at one. (If m = 0 or n = 0 for the TM modes, there is no field at all in the guide.) The
dispersion relation for the waveguide is the following:

kz =

√

√

√

√

(

ω

c

)2

−
[

(

πm

a

)2

+
(

πn

b

)2
]

(5)

where kz is the wavenumber in the waveguide in the direction of propagation. Note
that the drive frequency in free space is the same as the frequency in the wave guide.
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So, the frequency, f = ω
2π
, will be the same whether measured inside or outside the guide.

However, if a wave of frequency f were propagating freely through space, the corresponding
wavelength of the oscillation would be λ0 = 2π

k0
= c

f
. Inside the guide, the wavelength

changes, λguide = 2π
kz
, where kz is given by equation Eq. 5. Also notice that if the term

in square brackets in Eq. 5 is greater than
(

ω
c

)2

, then kz is imaginary. This means that
the wave amplitude decays exponentially instead of varying sinusoidally, and does not
propagate through the waveguide. Every mode has a cut-off frequency, ωmn, such that if
the waveguide is excited at a frequency below the cut-off frequency, ωdrive < ωmn, that
mode cannot propagate through the waveguide.

ωmn = c

√

(

πm

a

)2

+
(

πn

b

)2

A strategy commonly used is to excite a waveguide at a frequency above the cut-off
frequency of the lowest frequency mode (typically TE10), but below the cut-off frequencies
of the other modes. This way only one mode is propagating through the waveguide.

2.2.2 Resonant cavities

Rectangular waveguides and cavities support fields that vary sinusoidally. The separation
of variables technique for solving the wave equation results in harmonic equations in all
dimensions. Suppose a rectangular cavity with the same cross-sectional dimensions as a
rectangular waveguide is closed on the ends at z = 0 and z = d. In order to have an integer
number of half wavelength variations longitudinally,

kz =
lπ

d
l = 1, 2, . . . (6)

Since now there are two conditions for kz to satisfy (Eq. 5 and Eq. 6) only certain frequencies
are resonant;

ωnml = c





(

lπ

d

)2

+
(

mπ

a

)2

+
(

nπ

b

)2





Solving the wave equation in cylindrical coordinates results in Bessel’s equation for the
radial direction, with Bessel functions, Jn, for physical solutions. Figure 9 shows the J0
Bessel function, with three zeros (locations where the function intersects the x-axis on the
plot). Solutions for the azimuthal and z directions are still sinusoidal. The total solution for
the longitudinal electric field Ez = R(r)Θ(θ)Z(z) exp i(ωt) (TM modes) is the following[1],

Ez = E0Jn(kc,nmr) exp i(ωt− nθ) sin (kz)
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where Jn is an nth order Bessel function, k2 = k2

0
− k2

c,nm, and Jn(kc,nma) = 0, with a the
radius of the cavity. In other words, kc,nm = ρnm

a
where ρnm is the mth zero of the Bessel

function of order n. Fig. 9 has zeros ρ01, ρ02, and ρ03 shown. In order to have Ez = 0 at
the cavity walls (r = a), the Bessel function must be zero there. The following table gives
some values of ρnm.

ρ01 2.405
ρ02 5.520
ρ03 8.654
ρ11 3.832
ρ21 5.135

The resonant frequencies for TM modes of cylindrical cavities are the following:

ωnml = c

√

√

√

√

√





(

ρnm
a

)2

+

(

lπ

d

)2




where d is the length of the cavity, and the other variables are as previously defined.

In a resonant cavity, the naming of modes becomes even more complicated than it was
for waveguides. Since there are now boundaries in all three directions, three mode indices
are required. The transverse magnetic modes are called TMnml. For a cylindrical cavity n
is the number of azimuthal nodes; m is the number of radial nodes as determined by the
mth root of the Bessel function of order n, (root of Jn(kcr) = 0); and l is the number of
half wavelengths of field variation in the longitudinal direction. The most commonly used
accelerating mode is TM010. For this mode, the electric field is directed longitudinally and
has constant magnitude along (̂z) (since l = 0). It has no azimuthal dependence (since
n = 0). Since n = 0 and m = 1, there is one radial node at the cavity walls at the first zero
of the zeroth order Bessel function. The field Ez is a maximum at on the axis of the cavity,
decreasing in the radial direction until it is zero at the cavity walls. An intuitive derivation
(from The Feynman Lectures) of the Bessel function form of the radial component of this
mode follows in the next section.

3 Feynman derivation of electric field in resonant cylin-

drical cavities

The discussion in this section was taken from a derivation in the ’Feynman Lectures on
Physics’ by Feynman, Leighton and Sands, ISBN 0-201-02117-X, volume two, chapter 23.

10



The pillbox cavity behaves like an LRC resonant circuit. Energy is exchanged between
the magnetic field and the electric field. The resonant frequency of the cavity depends on
its geometry, in particular, the radius of the circular end plates. Although the electric field
of the accelerating mode is uniform along the axis of the cavity, it is not uniform radially,
but decreases as the radial position increases. This decrease in the field with radial position
occurs also for the cylindrical capacitor at high frequency. The Feynman derivation builds
an intuitive understanding of why electric fields in cylindrical cavities have the form of a
Bessel function. The following discussion follows the Feynman derivation.

Begin by driving the capacitor or cavity with a sinusoidal field, Eapplied = E0 exp (iωt),
pointing along the axis of the cylinder. The expression exp (iωt) = cos (ωt) + i sin (ωt)
(where i ≡

√
−1) is a convenient representation for a sinusoidal excitation. It is understood

that the actual excitation cannot be complex, and that for any actual situation it is the
the real part of the expression that represents the signal.

The changing electric field (it is varying sinusoidally) induces a B field, call it B1. The
induced B1 field is also changing with time, and so it induces an E field, call it E1. This
goes on and on:

Eapplied → B1

B1 → E1

E1 → B2

B2 → E2

E2 → B3

B3 → E3

E3 → B4

...

The total E field at any given moment must be a sum of all E fields, applied and induced
(and similarly for B).

Etotal = Eapplied + E1 + E2 + E3 + · · ·

Btotal = B1 + B2 + B3 + · · ·

It is possible to find expressions for each of the induced fields in terms of the applied
field. Use the Ampere-Maxwell law to get the induced magnetic fields, and Faraday’s law
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to get the induced electric fields. The first few terms will be calculated. First, calculate
B1. Symmetry and the right-hand-rule indicate that B must be azimuthal and constant at
a given radius, r, as shown in Fig. 7.

E

r

x

y

z

B

Figure 7: Cylindrical capacitor with varying electric field along ẑ, with an azimuthally
induced magnetic field.

Pick an Amperian loop of constant radius with respect to the axis of symmetry and then
find B using the Ampere-Maxwell law. Since the magnitude of B is the same anywhere on
the loop, it may be taken outside of the loop integral. Similarly, E is constant through the
area of the loop, and may be taken outside of the flux integral. Also, µ0ε0 =

1

c2
, where c is

the speed of light. (Plug the numbers in, and you’ll see.)

∮

~B1 · ~ds = µ0ε0
dΦE

dt

∮

φ̂B1 · φ̂ds =
1

c2
d

dt

(
∫

~Eapplied · ~dA
)

B1

∫

2π

0

rdφ =
1

c2
d

dt

(
∫

ẑEapplied · ẑdA
)

B12πr =
1

c2
d

dt

(

Eapplied

∫

2π

0

∫ r

0

rdrdφ
)

B12πr =
πr2

c2
d

dt
(E0 exp (iωt))
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B1 =
iωr

2c2
E0 exp (iωt)

So, the magnetic field induced directly from the applied field is B1 = iωr
2c2

Eapplied. Notice
that B1 ∝ ω, so higher frequencies allow more energy to exchange between E and B. If
ω = 0, we recover the DC case, there is no induced magnetic field.

Next on the agenda, use Faraday’s law to find E1 induced from B1. The loop integral
for Faraday’s law is for the electric field, while the area integral is for the magnetic field.
It is wise to choose an area for the flux integral such that B is perpendicular to the surface
(parallel to the unit vector specifying the direction of the area). Meanwhile, it is also
convenient if E along any given side of the loop is either constant, or perpendicular to that
side. A loop such as that shown in Fig. 8 satisfies these conditions. Notice that since E
is parallel to the cylinder axis, it is perpendicular to two sides of the loop, and parallel to
the other two sides. The magnetic field is perpendicular to the area everywhere.

h

z

r

dz

dr

r

h

Figure 8: Side view of capacitor, the magnetic field is perpendicular to the plane of the
loop shown, and increases in magnitude in the r̂ direction.

Faradays law:

∮

( ~Eapplied + ~E1) · ~dl = −dΦB

dt

∮

( ~Eapplied + ~E1) · ~dl = − d

dt

(
∫

~B1 · ~dA
)

Symmetry and the right-hand-rule indicate that E1 must be along the axis (in the ±ẑ
direction). This simplifies the calculation of the loop integral, which can be broken into
four parts, one part for each side. The two sides along the radial direction must give zero
contribution as ẑ is perpendicular to r̂, so ẑE · r̂dr = 0. Furthermore, E1 along the axis
must be zero, for B1 ∝ r, and application of Faraday’s law gives E1 → 0 as r → 0. Then:

∮

( ~Eapplied + ~E1) · ~dl =
∫ h

0

~Eapplied · ẑdz +
∫

0

h
( ~Eapplied + ~E1) · ẑdz
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= Eapplied(h) + Eapplied(−h) + E1(−h)

= −hE1

The result of the loop integral is equal to minus the time derivative of the magnetic
flux:

−hE1 = − d

dt

(

∫ h

0

∫ r

0

φ̂B1 · φ̂drdz
)

= − d

dt

(

∫ h

0

dz
∫ r

0

iwr

2c2
E0 exp (iωt)dr

)

= − d

dt

(

iwh

2c2
E0 exp (iωt)

∫ r

0

rdr

)

Solving for E1:

E1 = − d

dt

(

iw

4c2
r2E0 exp (iωt)

)

= −
(

ωr

2c

)2

E0 exp (iωt)

The applied electric field plus the first correction term due to the changing magnetic field
is written;

Eapplied + E1 =

[

1−
(

ωr

2c

)2
]

E0 exp (iωt)

If the calculation were continued, adding successive correction terms to the applied electric
field, the resulting field would be

Eapplied + E1 + E2 + . . . = E0 exp (iωt)

[

1− 1

(1!)2

(

ωr

2c

)2

+
1

(2!)2

(

ωr

2c

)4

− . . .

]

(7)

= E0 exp (iωt)J0(
ωr

c
)

The expression in the square brackets of Eq. 8 is an expansion known as a Bessel function;
the symbol for it is J0(

ωr
c
). A sketch of the function is shown in Fig. 9.

Note that if the applied electric field were no longer time varying (ω = 0), the electric
field would be E0 = Eapplied = constant everywhere between the capacitor plates. When
the applied field varies with time, the actual (total) electric field between the plates be-
comes a function of r, the radial distance from the axis of symmetry. To make a resonant
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Figure 9: J0 bessel function.

accelerating cavity, enclose the space between end plates with a cylindrical wall, placing
the wall at the radius corresponding to the first zero of the Bessel function. The first zero,
J0(2.4) = 0, is where the argument has the value ωr

c
= 2.4, so that the radius of the cavity

must be r = 2.4c
ω
. Notice that as the drive frequency goes up, the cavity walls move in

toward the central axis rwall ∝ 1

ω
. Higher drive frequencies correspond to cavities with

smaller cross-section. When the walls are at a radius where the electric field drops to zero,
the ohmic losses in the cavity walls are minimized. Then, less energy is dissipated, allowing
for more stored energy in the cavity.
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