
Module A

Controlling Risks
Safety System Models

Software Reliability

• Software does not wear out and there are no
latent manufacturing defects.

– However, there may be bugs

• Due to programmer error

• Or poor requirements specification

January 2012 Controlling Risks: Safety Systems

Software Reliability

• Software reliability is the ability of the
software to perform the expected function
when needed.

• As software becomes more complex the
ability to verify correctness increases
exponentially.

𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑂𝑛

lim
𝑛→∞

𝑡𝑖𝑚𝑒

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑛

January 2012 Controlling Risks: Safety Systems

Stress-Strength

• Software strength is affected by the amount of
stress-rejection designed into the software.

• Software that checks for valid inputs and
rejects invalid inputs will fail much less
frequently.

• The stress to a software system is the
combination of inputs, timing of inputs and
stored data seen by the CPU.

January 2012 Controlling Risks: Safety Systems

Software Diagnostics

• Software diagnostics and stress rejection
increase software strength.

• Software Diagnostics

– Automatic software verification during execution

– Prevents software failures

– Identifies faults

January 2012 Controlling Risks: Safety Systems

Stress Rejection

• Potential stressors that
might cause software
failure are filtered.

• Plausibility assertions
check the inputs to
software and stored data.

• Data format and range is
checked before
commands are executed.

• Data pointers are verified
to be within a valid range
for an array.

January 2012 Controlling Risks: Safety Systems

McCabe Complexity

• The number of control
flow paths in an
algorithm may be
calculated using the
MaCabe Complexity
Metric

𝑁𝑃 = 𝑒 − 𝑛 + 2

NP = 6 – 5 + 2 = 3

1

2

3

4

5

January 2012 Controlling Risks: Safety Systems

Control Flow Testing

• The number of paths in
the algorithm provides
the number tests that
must be executed to
verify the correctness of
the program.
– Does not account for path

variations due to input
data.

– Testing all paths may not
detect all software design
faults.

January 2012 Controlling Risks: Safety Systems

NP-complete

• A decision problem L is NP-complete if it is in the set of
NP problems so that any given solution to the decision
problem can be verified in polynomial time, and also in
the set of NP-hard problems so that any NP problem
can be converted into L by a transformation of the
inputs in polynomial time.

• The most notable characteristic of NP-complete
problems is that no fast solution to them is known.
That is, the time required to solve the problem using
any currently known algorithm increases very quickly
as the size of the problem grows.

January 2012 Controlling Risks: Safety Systems

An Exercise Left to the Student

Determining whether or not it is possible to solve these problems quickly, called the
P versus NP problem, is one of the principal unsolved problems in computer science
today.
The Clay Mathematics Institute is offering a $1 million reward to anyone who has
a formal proof that P=NP or that P≠NP.

January 2012 Controlling Risks: Safety Systems

Polynomial time

• An algorithm is said to be of polynomial time if its
running time is upper bounded by a polynomial
expression in the size of the input for the algorithm,
i.e., T(n) = O(nk) for some constant k. Problems for
which a polynomial time algorithm exists belong to the
complexity class P.
– The quicksort sorting algorithm on n integers performs at

most An2 operations for some constant A. Thus it runs in
time O(n2) and is a polynomial time algorithm.

– All the basic arithmetic operations (addition, subtraction,
multiplication, division, and comparison) can be done in
polynomial time.

January 2012 Controlling Risks: Safety Systems

Code Trace Verification

• The use of personnel to determine the correctness of
software code does not fall in polynomial time.

• This is because the application software is designed
and compiled using the SDK (software development
kit), running on an OS, that will run on a PLC.

• However, code trace verification (checking code line-
by-line) is very useful and should be performed.
– Realize that it does not account for 100% complete

verification of correctness.

January 2012 Controlling Risks: Safety Systems

Input Space

• The input space is the collection of all possible
input conditions or sequences of input
conditions.

• The input space view of program operation
offers an advantage in that program execution
paths can be estimated in terms of the
functions being performed.

January 2012 Controlling Risks: Safety Systems

Software Modeling

• If the number of possible execution sequences
is very large, then software can be modeled
statistically.

January 2012 Controlling Risks: Safety Systems

Basic Model

• Assume that there are
some number of
software design faults.

• All faults are likely to
cause failure and be
repaired.

• The failure rate is
proportional to the
current number of
faults in the program.

January 2012 Controlling Risks: Safety Systems

Basic Model

• N0 – the number of faults at the beginning of the
test period.

• Nc(t) – the number of repaired faults.

• k – the ratio of remaining faults and field failure
rate per hour.

λ 𝑛𝑐 = 𝑘[𝑁0 − 𝑛𝑐 𝑡]

lim
𝑡→∞

𝑘[𝑁0 − 𝑛𝑐(𝑡)] = 0

January 2012 Controlling Risks: Safety Systems

Non-linear Repair Rate

• We must assume that the actual repair does
not occur in linear time, since software faults
are not repaired at a constant rate.

• A closer approximation is
λ τ = 𝑘 𝑁0𝑒−𝑘τ

• The failure rate is an exponentially decreasing
function with time.

January 2012 Controlling Risks: Safety Systems

Non-linear Failure Rate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Software Tested and Repaired

lambda

January 2012 Controlling Risks: Safety Systems

Software Reliability Model
Assumptions

• Faults are independent
– Faults are usually introduced from misunderstood

functional requirements, design error, coding
error

– These usually result in independent faults

• Times Between Failures is independent
– When testing follows a plan, failures cause more

intensified verification in the fault area

– This assumption is not valid for most testing
processes

January 2012 Controlling Risks: Safety Systems

Software Reliability Model
Assumptions

• Detected faults are removed in negligible time
– This assumption is almost always violated in real

projects

• No new faults are introduced
– Yeah, right

• Faults are equal
– Some faults are found quickly and other may exist in

software for a long time before the fault is found.
– The assumption is reasonable because initial testing

finds the obvious faults in the beginning of the failure
rate curve

January 2012 Controlling Risks: Safety Systems

Summary

• Here’s what you should walk away with
– Programmable safety systems reject many stressors

– Diagnostics improve the ability to detect faults

– The complexity of verifying algorithms increases with
the lines of code

– The time spent testing the code directly affects the
failure rate of the software application

• My advice
– Review the code after significant effort has been

made to test the algorithm!

January 2012 Controlling Risks: Safety Systems

