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Effects of Errors

— dipole errors

— quadrupole errors

— resonance



Closed orbit distortion

 Dipole kicks can cause particle’ s trajectory deviate away from
the designed orbit

— Dipole error So

A

— Quadrupole misalighment

» Assuming a circular ring with a single
dipole error, closed orbit then becomes:
BPM

x(s) 2 x(s) 0] s
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Closed orbit: single dipole error

» Let’ s first solve the closed orbit at the location where the
dipole error is

B ELCSE il B
x'(s,) x'(s,) v,

0
x(sy) = P.(Sy) > sin0. costQ,
x(8) = B G5B, () 5 5 cos[ws.s) - m0,]

» The closed orbit distortion reaches its maximum at the
opposite side of the dipole error location



Closed orbit distortion

» In the case of multiple dipole errors distributed around the
ring. The closed orbit is

x(8) = /B, (s) E«/ﬁ (s,

» Amplitude of the closed orbit distortion is inversely
proportion to sinTQ, |

cos[w(s,-,so) - 70, |

2 sin stQ

— No stable orbit if tune is integer!



Measure closed orbit

» Distribute beam position monitors around ring.

orbit [wn]

Beam

orbit [w)




Control closed orbit

» minimized the closed orbit distortion.
» Large closed orbit distortions cause limitation on the
physical aperture
» Need dipole correctors and beam position monitors
distributed around the ring

» Assuming we have m beam position monitors and n
dipole correctors, the response at each beam
position monitor from the n correctors is:

rzﬁZsmlﬂQ cos[lp(si,so)—an]




Control closed orbit

»On (1) ()
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» To cancel the closed orbit measured at all the bpms, the
correctors are then
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Quadrupole errors

* Misalignment of quadrupoles
— dipole-like error: kx

— results in closed orbit distortion

» Gradient error:
— Cause betatron tune shift

— induce beta function deviation: beta beat



Tune change due to a single gradient error

* Suppose a quadrupole has an error in its gradient, i.e.

e U N ANEOR A 0
k1 ~(kl+AKD) 1)\ -kl 1)\ AR 1

(cos2xzQ. , + a, . sin27Q )

M(s+C.s)= l+a,

sin27zQ
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cos2m(Q ,+ 00,) = ETr(M(s +C,9))

/J)X’SO sin27Q

(cos2mQ ., - a, sin2xQ )
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Tune shift due to multiple gradient errors

* In a circular ring with a multipole gradient errors, the tune
shift is

60, _—EﬁxSAkz



Beta beat

* In a circular ring with a gradient error at s0, the tune shift is

So

M(S+C,S)=M(S,SO)( Alkl ?)M(SO,S)

B.(s)sin2xQ = B ,(s)sin2xQ , +
Akl ﬁxo(s)fxo(so [cos(2mQ,, + 21 Ay, , D]

Ap B0 (o)
5 = Akl > sin270.. cos(2mQ,.,+2 1Ay, D)

Unstable betatron motion if tune is half integer!




Beta beat

* In a circular ring with multiple gradient errors,

A () = N Bro®)
5] 2sm2xQ

E\/ﬁxo (s))Aklcos(Qm Q. ., +21 Ay, 1)

i

Unstable betatron motion if tune is half integer!

Beta beat wave varies twice of betatron tune around the ring



Resonance condition

* Tune change due to a single quadrupole error

1

cos[27(0,, + 00, )] =cos27Q,, - % Aklsin27Q,

X,80

1
» If O, =C2k+ 1)5 + €, the above equation becomes

cos[2(Q ., +00. )] =1+ %ﬁx’so Akle

and Qx can become a complex nhumber which means the
betatron motion can become unstable



Resonance

Integer resonance Half Integer resonance



Transverse Resonances

— Linear coupling

— resonances mechanisms
— Resonance conditions
— 374 order resonances



Source of linear coupling

* Skew quadrupole

B, =-qgx; B,=qy

x"+K (8)°x = ——2 = —qy

B

K 2
y'+K, (s)"y =



Coupled harmonic oscillator

* Equation of motion

X 28, O\ W " )
X"'to, x=q"y Y'+0,y=¢x

» Assume solutions are:

x=Ae'™ y=2De

Lot

_a)zA + a)sz — qu —O!)ZB + (j)yzB = qu

(0, -0 w, -w’)=q"

w
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Coupled harmonic oscillator

. W’ + ooy2 + \/(a))f —wy2)2 + 44"
2

2
)

» The two frequencies of the

harmonic oscillator are
functions of the two (l)y
unperturbed frequencies

» When the unperturbed
frequencies are the same, a
minimum frequency
difference )

il -
w X



Example of a Coupled harmonic oscillator
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Resonance mechanism

* Errors in the accelerators perturbs beam motions

* Coherent buildup of perturbations



Driven harmonic oscillator

* Equation of motion

d”x(1) () = F(1) = zcmeiwmt

dt’
» for f(t)=C e

dzx(t)
dt’

» Assume solution is like  x(7) = Ae' + A '

+w°x(t)=C e




Resonance response

» Response of the harmonic oscillator to a periodic force is

x(t) = Ae'™ + Co




Betatron oscillation

* Equation of motion
x"+K(5)x=0 K(s+L))=K(s)
= A\/ECOS(U) + %)

» In the presence of field errors including mis-aglinments, the
equation of motion then becomes

AB
x"+K(s)x=——2
where B'O

AB, = B,(b, + b, x + bx’ +...)

Dipole error  quadrupole error  sextupole error



Floquet Transformation

* Re-define () as:
x'"+K(5)x=0 K(s+L))=K(s)
C(s)=x(s)/4/B,(s) P(s)=9(s)/Q, or¢'=1/(Q,p,)

» In the presence of field errors including mis-aglinments, the
equation of motion then becomes

dzg + ng 1 _Q2/33/2 ABy
where dg> " Bp

dzg 2 QjBo 2 2
" 0% =- i by +BOE+Bib,E+.. ]




Resonance contd

* For each n:

2 3/2
E +Q§§=—Q b pib e
The solution of the homogenous differential equation
d’¢
do’

is C=e'% _Let’s put this back to the right side of the
inhomogeneous equation of motion, one then gets

d Z _Q /))3/2 ﬁxb e-in P
de® Bp




Resonance contd

* for a circular machine, beta functions and lattices are periodic.
One can then expand

(n+3)27. ik
/3)6 bn £ 3 E Cke

* Now, the inhomogeneous equation of motion then becomes

> >
o +Q§ S Q: Eei(k—an)gb

d¢’ Bp 4
* Compare this with the driven harmonic oscillator
d’x(1)

07N = f(r)—ECe"”



Resonance contd

d2 2 1.
§;+Q§§=_Qx Eew 0,)¢
d¢ Bp 4

* This means the motion becomes unstable(on resonance) when
Q, =%(k-nQ,)
— i.e. resonance location at, here k and n both are integers
(m+1)Q =k and (n-1)Q =k
— If k=0, no resonance condition
— Any error of x" can drive a (n+1)th order of resonance
* Driving term is then given

1 1 (n+1)/2 —ik¢p
C, = )b (s)e " ds
(Bp)anXSﬁ/” ()b, (s)




Resonance condition

» In the absence of coupling between horizontal and vertical

k=)0,
dipole 0 Qx,y=integer
quadrupole I 2Qx,y=integer
Sextupole 2 3Qx,y=integer
Octupole 3 4Qx,y=integer

» In the presence of coupling between horizontal and vertical

MQ, + NQ, = k




n+ |

3

Tune diagram
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* the resonance strength

decreases as the order
goes higher

» the working point should

be located in an area
between resonances
there are enough tune
space to accommodate
tune spread of the beam



Phase space: 3™ order resonance

In the phase space of x, Px 10

x=A\//37xcosz/J s

X

 separatrix: boundery between
stable regionand  -*
unstable region
* Fixed points: where 10
dx dP
Fiws £7y
dn dn




Phase space: 4! order resonance
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Phase space: 5" order resonance
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