
Effects of Errors 

-  dipole errors  
-  quadrupole errors 
-  resonance 
 



Closed orbit distortion 

•  Dipole kicks can cause particle’s trajectory deviate away from 
the designed orbit 
- Dipole error 
- Quadrupole misalignment 
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}  Assuming a circular ring with a single 
dipole error,  closed orbit then becomes: 
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Closed orbit: single dipole error 
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}  Let’s first solve the closed orbit at the location where the 
dipole error is 
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}  The closed orbit distortion reaches its maximum at the 
opposite side of the dipole error location  



Closed orbit distortion 

}  In the case of multiple dipole errors distributed around the 
ring. The closed orbit is 
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x(s) = βx (s) βx (si)
i
∑ θi

2sinπQx

cos ψ(si,s0) −πQx[ ]

}  Amplitude of the closed orbit distortion is inversely 
proportion to sinπQx,y 
- No stable orbit if tune is integer! 



Measure closed orbit 

}  Distribute beam position monitors around ring. 



Control closed orbit 

}  minimized the closed orbit distortion. 
}  Large closed orbit distortions cause limitation on the 

physical aperture  
}  Need dipole correctors and beam position monitors 

distributed around the ring 
}  Assuming we have m beam position monitors and n 

dipole correctors, the response at each beam 
position monitor from the n correctors is:  
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Control closed orbit 

}  Or, 

}  To cancel the closed orbit measured at all the bpms, the 
correctors are then 
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Quadrupole errors 

•  Misalignment of quadrupoles 
-  dipole-like error: kx 
-  results in closed orbit distortion 

}  Gradient error: 
- Cause betatron tune shift 
-  induce beta function deviation: beta beat 



Tune change due to a single gradient error 

•  Suppose a quadrupole has an error in its gradient, i.e. 
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Tune shift due to multiple gradient errors 

•  In a circular ring with a multipole gradient errors, the tune 
shift is 

δQx =
1
4π

βx,si
Δki

i
∑ l



Beta beat 

•  In a circular ring with a gradient error at s0, the tune shift is 

s0 
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βx (s)sin2πQx = βx0 (s)sin2πQx0 +

Δkl βx0 (s)βx0 (s0 )
2
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Unstable betatron motion if tune is half integer! 
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Beta beat 

•  In a circular ring with multiple gradient errors,  

Δβ
β
(s) = βx0 (s)

2sin2πQx0

βx0 (si )Δkil
i
∑ cos(2πQx0 + 2 |Δψs,si |)

Unstable betatron motion if tune is half integer! 

Beta beat wave varies twice of betatron tune around the ring 



Resonance condition 

•  Tune change due to a single quadrupole error 

cos[2π (Qx0 +δQx )]= cos2πQx0 −
1
2
βx,s0

Δkl sin2πQx0

}  If                            , the above equation becomes 

    and Qx can become a complex number which means the 
betatron motion can become unstable 
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Resonance  
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Transverse Resonances 
-  Linear coupling 
-  resonances mechanisms 
-  Resonance conditions 
-  3rd order resonances 
 



Source of linear coupling 

•  Skew quadrupole 
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Coupled harmonic oscillator 

•  Equation of motion 
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}  Assume solutions are: 
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Coupled harmonic oscillator 

}  The two frequencies of the 
harmonic oscillator are 
functions of the two 
unperturbed frequencies 

}  When the unperturbed 
frequencies are the same, a 
minimum frequency 
difference 
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Example of a Coupled harmonic oscillator 



Resonance mechanism 

•  Errors in the accelerators perturbs beam motions 
•  Coherent buildup of perturbations 



Driven harmonic oscillator 

•  Equation of motion 
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}  for 

}  Assume solution is like 
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Resonance response 
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}  Response of the harmonic oscillator to a periodic force is 
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Betatron oscillation 

•  Equation of motion 

}  In the presence of field errors including mis-aglinments, the 
equation of motion then becomes 
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x = A βx cos(ψ + χ)
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Floquet Transformation 

•  Re-define () as:  

}  In the presence of field errors including mis-aglinments, the 
equation of motion then becomes 
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Resonance contd 

•  For each n: 

The solution of the homogenous differential equation 
 
 
is                    . Let’s put this back to the right side of the 
inhomogeneous equation of motion, one then gets 
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Resonance contd 

•  for a circular machine, beta functions and lattices are periodic. 
One can then expand 

•  Now, the inhomogeneous equation of motion then becomes 

•  Compare this with the driven harmonic oscillator  
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Resonance contd 

•  This means the motion becomes unstable(on resonance) when 
 
 

–  i.e.  resonance location at, here k and n both are integers 
 
–  If k=0, no resonance condition 
–  Any error of xn can drive a (n+1)th order of resonance 

•  Driving term is then given 
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Resonance condition 

error n 
dipole 0 Qx,y=integer 
quadrupole 1 2Qx,y=integer 
Sextupole 2 3Qx,y=integer 
Octupole 3 4Qx,y=integer 

}  In the absence of coupling between horizontal and vertical 

k = (n±1)Qx,y

}  In the presence of coupling between horizontal and vertical 
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MQx + NQy = k



Tune diagram 

•  the resonance strength  
  decreases as the order  
  goes higher 
 
•  the working point should 
  be located in an area  
  between resonances 
  there are enough tune  
  space to accommodate  
  tune spread of the beam 



Phase space: 3rd order resonance 

X’ 

Px 
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Px = βx x '+αx x = −A βx sinψ
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x = A βx cosψ

In the phase space of x, Px 

•  separatrix: boundery between 
                    stable region and 
                    unstable region 
•  Fixed points: where  
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Phase space: 4th order resonance 



Phase space: 5th order resonance 


