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Motivations:
Why does anyone care about accelerators?

Medicine

Materials

Basic Research

Exciting products…     
exciting opportunities



US Particle Accelerator School

Accelerators are the hallmark
of highly technological societies

Source: U. Amaldi

Societal applications & their technology develop from basic research
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Accelerators are big business

Sources: W. Maciszewski & W. Scharf, L. Rivkin, * EPP2010, ** R. Hamm

Major research machines are a tiny fraction of the total, but…
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World-leading discovery science is the key
to competitive economic advantage

Accelerators are essential tools for discovery  in physics, chemistry & biology
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5 Minute Exercise

Why are you here?

What do you hope to learn

Discuss with your group of 5
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The Basics: Special Relativity
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Energy & Mass units

 To describe the energy of individual particles, we use the eV, the energy that a
unit charge

gains when it falls through a potential, ΔΦ = 1 volt.

 We can use Einstein’s relation to convert rest mass to energy units

Eo = mc2

 For electrons,

Eo,e = 9.1x10-31 kg x (3x108 m/sec)2 = 81.9x10-15 J  = 0.512 MeV

 For protons,

 Eo,p = 938 MeV

! 

e =1.6 "10#19  Coulomb

! 

1 eV =1.6 "10#19  Joule
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Relativity: transformation of physical laws
between inertial frames

v

What is an inertial frame?

How can you tell?

x

y

z

xʹ′

yʹ′

zʹ′

In an inertial frame free bodies have no acceleration
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Under the Galilean transformation

the laws of physics remain invariant in all inertial frames.

Postulate of Galilean relativity

! 

" x = x #Vxt
" y = y
" z = z

t'= t

Not true for electrodynamics !

For example, the propagation of light

! 

"  # v x = vx $Vx
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Observational basis of special relativity

Observation 1: Light never overtakes light in empty space
==> Velocity of light is the same for all observers

For this discussion let c = 1

x

t

v = c = 1
World line

of physicist
at rest

World line
of physicist

moving at
velocity v

Space-time diagrams



US Particle Accelerator School

Relativistic invariance

Observation 2:
All the laws of physics are the same in all inertial frames

  This requires the invariance of the space-time interval

! 

c " t ( )2 # " x 2 # " y 2 # " z 2 = ct( )2 # x 2 # y 2 # z2

x

t

v = c = 1World line
of physicist

at rest

World line of physicist
moving at velocity vtʹ′

xʹ′
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Lorentz boost replaces Galilean transformation

where Einstein’s relativistic factors are

! 

c " t = # ct $%z( )
" x = x
" y = y
" z = # z $%ct( )

! 

" =
v
c

    and    # = 1
1- " 2
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Thus we have the Lorentz transformation

Or in matrix form

! 

" x =
x # vt

1# v 2 /c 2
  ,   " t =

t # (v /c 2)x
1# v 2 /c 2
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Proper time & proper length

 Define proper time, τ, as duration measured in the rest frame

 The length of an object in its rest frame is Lo

 As seen by an observer moving at v, the duration, T , is

And the length, L,  is
  

! 

T =
"

1# v
2

c 2
$ %" > "

L = Lo/γ
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Four-vectors & scalar invariants

 Introduce 4-vectors, wα, with 1 time-like & 3 space-like
components (α = 0, 1, 2, 3)
 xα = (ct, x, y, z) = (ct, x)  [Also, xα = (ct, -x, -y, -z)
 Note Latin indices i =1, 2, 3

 Norm of wα is a Lorentz scalar (invariant in all frames)

! 

w = (w"w" )
1/ 2 = (wo

2 # w1
2 # w2

2 # w3
2)1/ 2

! 

w 2
= gµ"w

µw"    where the metric tensor is 

        gµ" =

1 0 0 0
0 #1 0 0
0 0 #1 0
0 0 0 #1

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
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Velocity, energy and momentum

 For a particle with 3-velocity v, the 4-velocity is

 Total energy, E, of a particle  equals its rest mass, mo, plus
kinetic energy, T

! 

E = moc
2 + T = "moc

2

! 

u" = (#c,#v) =
dx"

d$
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Tutorial exercise: 10 minutes

 The Fermilab Alvarez Linac accelerates protons to a
kinetic energy of 400 MeV

 a) Calculate the total energy of the protons in units of MeV

 b) Calculate the momentum of the protons in units of MeV/c

 c) Calculate the relativistic gamma factor

 d) Calculate the proton velocity in units of the velocity of light.
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Motivations: How it all began
Paradigm 1: Fixed target experiments

Rutherford explains scattering of alpha particles on gold
discovering the nucleus & urges … On to higher energy probes!

214Po
source

ilm
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Rutherford articulated Figure of Merit 1

Particle energy on target
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Why we use energetic beams for research?

  Resolution of "Matter" Microscopes
 Wavelength of Particles (γ, e, p, ...)  (de Broglie, 1923)

 Higher momentum => shorter wavelength => better resolution

 Energy to Matter
 Higher energy produces heavier particles

λ   =   h / p =  1.2  fm/  p   [  GeV/c]  
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The advantage of the fixed target physics:
Figure of Merit 2

  

! 

Events
second

=" process o Flux o Target Number Density o Path Length

Luminosity

Typical values:

Flux ~ 1012 - 1014 s-1

Number density ~ ρNAZ/A ~ 5 x 6 x 1023 / 2
Path length ~ 10 cm

Luminosity ~ 15 x 1023 x 1014 ~ 1036 – 1038 cm-2s-1

Ideal for precision & rare process physics, 
BUT how much energy is available for new physics
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Momentum & available energy

 The 4-momentum, pµ, is

 Recalling that

we have

! 

E = moc
2 + T = "moc

2
! 

pµ = mou
µ = (c"m0,"m0v)

! 

p2 = (m2c 2" 2 # " 2m 2v 2) = m2c 2" 2 # " 2m 2c 2(1# 1
" 2 )

$ 

% 
& 

' 

( 
) 

    = (m2c 2" 2 # " 2m 2c 2 + m2c 2) = m 2c 2

! 

pµ = mou
µ = (c"m0,"m0v) = (E

c
,"m0v)



US Particle Accelerator School

Particle collisions

 Two particles have equal rest mass m0.

Laboratory Frame (LF): one particle at rest, total energy is E.

Centre of Momentum Frame (CMF): Velocities are
equal & opposite, total energy is Ecm.

Exercise: Relate E to Ecm

projectile target
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The fixed target paradigm has its limits

! 

Ecm = m1
2 + m2

2 + 2m2c
2Ebeam

       " 2mc 2Ebeam   for equal masses

Invariance of
(p1 + p2)µ • (p1 + p2)µ

in Lorentz frames implies that
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A great invention comes to the rescue

Collide beams !

If m1 = m2    and if    E1 = E2 = E
Ecm = 2 E

The full kinetic energy of both particles
is now available to physical processes
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ADA - The first storage ring collider (e+e-)
by B. Touschek at  Frascati (1960)

The storage ring collider idea was invented
by Rolf Wiederoe in 1943!
  – Collaboration with Bruno Touschek
  – Patent disclosure 1949

Completed in less than one year

! 

Ecm = 2Ebeam
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  30 GeV per beam with > 60 A circulating current
 Required extraordinary vacuum (10-11 Torr)
 Great beam dynamics challenge - more stable than the solar system

 Then on to the 200 GeV collider at Fermilab (1972) and …

 The SppS at CERN
 Nobel invention:

Stochastic cooling

 And finally the Tevatron
 Requires a major
     technological invention

The next big step was the ISR at CERN

First machine to exploit 
superconducting magnet technology

–
–
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Small things make a difference:
SC wire & cable ==> TeV colliders

Sub-elements of a NiTi
superconducting wire strand

The dark outlines are a resistive coating
64-strand cabling machine at Berkeley

NiTi superconducting cable 
showing stands & filaments

Cable concept invented by Martin Wilson

Cable design suppresses eddy currents as the current is increased
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How big can this get? The LHC tunnel

This goes on for 28 km!

400 MJ 
in 

the beams !
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Energy frontier of discovery is extended
by inventions in accelerator technology (in red)

SLED

SC cable

Stochastic
 cooling

Wakefields, impedances

Strong 
focusing

Colliding beams

Superfluid 
cryogenics

The Future ?
Higgs
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α

1

2

This looks too good to be true!
What about the luminosity?

! 

Events =  Cross - section "  #Collision Rate$ "Time
Beam energy: sets scale of physics accessible

! 

Luminosity =  N1 "  N2 " frequency
Overlap Area

=
N1 "  N2 " f

4#$x$y
 "Correction factors

We want large charge/bunch, high collision frequency & small spot size 

Luminosity ~ 1031 – 1034 cm-2s-1
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Show explicitly that the expression for
collider luminosity

is equivalent to the expression for
fixed target luminosity.

10 minute exercise:
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Doppler shift of frequency
Harvard v. Yale crew teams

Distinguish between coordinate
transformations & observations

 Yale sets his signal to flash at a
constant interval, Δt'

 Harvard sees the interval
foreshortened by K(v) as Yale
approaches

 Harvard see  the interval stretched
by K(-v) as Yale moves away

Light 
cone

Light 
cone

Harvard 
at rest

Yale rows 
past at 
velocity v

Homework: Using the world line diagram
Show K(v) = K-1(-v) 
For γ large find K(γ) 

K<1

K>1
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Head-on Compton scattering
by an ultra-relativistic electron

 What wavelength is the photon that is scattered by 180°?
Write your answer in terms of K(γ)

E=γmc2 λout

λin
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Undulator radiation: What is λrad?

An electron in the lab oscillating at frequency, f, 
emits dipole radiation of frequency f

 f

What about the
relativistic electron?
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Mechanics,
Maxwell’s Equations

&
Special Relativity
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The Basics - Mechanics
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Newton’s law

 We all know

 The 4-vector form is

 Differentiate                     with respect to τ

 The work is the rate of changing mc2

! 

F =
d 
dt
p

! 

F µ = "c dm
dt
," dp
dt

# 

$ 
% 

& 

' 
( =

dpµ

d)

! 

p2 = mo
2c 2

  

! 

pµ

dpµ

d"
= pµF

µ =
d(mc 2)
dt

#F o v = 0
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 Motion in the presence of a linear restoring force

 It is worth noting that the simple harmonic oscillator is a
linearized example of the pendulum equation

   that governs the free electron laser instability

Harmonic oscillators & pendula

! 

F = "kx

! 

˙ ̇ x + k
m

x = 0

! 

x = A sin"ot  where  "o = k
m

! 

˙ ̇ x +"o
2 sin(x) # ˙ ̇ x +"o

2(x $ x 3

6 ) = 0
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Solution to the pendulum equation

 Use energy conservation to solve the equation exactly

 Multiply     by          to get

 Integrating we find that the energy is conserved
! 

˙ ̇ x +"o
2 sin(x) = 0

! 

˙ x 

! 

1
2

d
dt

˙ x 2 "#o
2 d

dt
cos x = 0

! 

1
2"o

2 ˙ x 2 # cos x = constant =  energy of the system = E

With x= θ

Stupakov: Chapter 1
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Beams subject to non-linear forces
are commonplace in accelerators

 Examples include
 Space charge forces in beams with non-uniform charge

distributions
 Forces from magnets higher order than quadrupoles
 Electromagnetic interactions of beams with external structures

• Free Electron Lasers
• Wakefields
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Properties of harmonic oscillators

 Total energy is conserved

 If there are slow changes in m or ω, then I = U/ωo remains
invariant

! 

U =
p2

2m
+
m"o

2x 2

2

! 

"#o

#o

=
"U
U

This effect is important as a diagnostic 
in measuring resonant properties of structures 
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Hamiltonian systems

 In a Hamiltonian system, there exists generalized positions qi, generalized
momenta pi, & a function H(q, p, t) describing the system evolution by

 H is called the Hamiltonian and q & p are canonical conjugate variables

 For q = usual spatial coordinates {x, y, z} & p their conjugate momentum
components {px, py, pz}
 H coincides with the total energy of the system

Dissipative, inelastic, & stochastic processes are non-Hamiltonian

i

i

p
H

dt
dq

!

!
=

i

i

q
H

dt
dp

!

!
"=

! 

q "  q1,q2,....,qN  { }
p "  p1, p2,...., pN  { }

EnergyKineticEnergyPotential +=+= TUH
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Lorentz force on a charged particle

 Force, F, on a charged particle of charge q
in an electric field E and a magnetic field, B

 E =  electric field with units of force per unit charge,
newtons/coulomb = volts/m.

 B = magnetic flux density or magnetic induction, with
units of newtons/ampere-m = Tesla = Weber/m2.

! 

F = q E +
1
c
v "B

# 

$ 
% 

& 

' 
( 
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A simple problem - bending radius

 Compute the bending radius, R, of a non-relativistic
particle  particle in a uniform magnetic field, B.
  Charge = q
  Energy = mv2/2

! 

FLorentz =  q v
c
B =  Fcentripital  =  mv

2

"

         # " =
mvc
qB

=
pc
qB

" m( ) = 3.34 p
1 GeV/c
$ 

% 
& 

' 

( 
)  

1
q
$ 

% 
& 
' 

( 
)  

1 T
B

$ 

% 
& 

' 

( 
) 



US Particle Accelerator School

10 minute exercise from Whittum

 Exercise:  A charged particle has a kinetic energy of 50
keV. You wish to apply as large a force as possible. You
may choose either an electric field of 500 kV/m or a
magnetic induction of 0.1 T. Which should you choose
 (a) for an electron,
 (b) for a proton?
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The fields come from charges & currents

 Coulomb’s Law

 Biot-Savart Law

! 

F1"2 = q2
1

4#$o
q1

r1,2
2

ˆ r 1"2

% 

& 
' 

( 

) 
* = q2E1

r1,2

r1,2
i1dl1

i2dl2

! 

dF1"2 = i2dl2 #
µ0

4$
(i1dl1 # ˆ r 12)

r1,2
2

% 

& 
' 

( 

) 
* = i2dl2 #B2
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Compute the B-field from current loop

 On axis there is  only Bz by symmetry

 The Biot-Savart law says

! 

sin" = R r    and   r = R2 + z2

! 

dl " ˆ r = dl = Rd#

! 

B =
I
cr2 Rsin" d# ˆ z  =  2$IR2

c R2 + z2( )3 / 2
0

2$

%  ˆ z 

R

r
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The far field B-field has a static dipole form

Importantly the ring of current does not radiate
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Question to ponder:
What is the field from this situation?

R

r

We’ll return to this question in the second half of the course
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Electric displacement & magnetic field

In vacuum,

 The electric displacement is D = εoE,

 The magnetic field is H = B/µo

Where

εo = 8.85x10-12 farad/m   &   µo= 4 π x10-7  henry/m.
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 Electric charge density ρ is source of the electric field, E
(Gauss’s law)

 Electric current density J =  ρu is source of the magnetic
induction field B (Ampere’s law)

If we want big magnetic fields, we need large current supplies

Maxwell’s equations (1)

! 

" •E = #

! 

" #B = µoJ + µ0$o
%E
%t
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 Field lines of B are closed; i.e., no magnetic monopoles.

 Electromotive force around a closed circuit is proportional
to rate of change of B through the circuit (Faraday’s law).

Maxwell’s equations (2)

! 

" •B = 0

! 

" #E = $
%B
%t
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Maxwell’s equations: integral form

Displacement current



US Particle Accelerator School

The first accelerators:
DC (electrostatic) accelerators

   High 
  voltage 
generator

Electrical ground

 Vacuum 
enclosure

+
-

Parallel plates

+

Experiment

+

Note the exposed high voltage hazard
The energy is limited 

by high voltage break down
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Possible high energy DC accelerator?

At t = 0 the ion source at 1 injects a proton 

of energy Eo in the gap pointed at a hole in plate 2. 

The entire device is imbedded in a constant 

magnetic (dipole) field, B, 

pointing out of the surface.

Exiting the plate 2, the proton enters the 

innermost virtual beam pipe. 

If B = 100 Gauss and Eo = 100 keV, 

what is the radius of the first orbit?

After 10,000 revolutions, what is the energy 

of the proton as it leaves plate 2.
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Circuit theory

Accelerator physicists often use
network (circuit) analogs of accelerator systems

1) RF systems
2) Vacuum systems
3) Control systems
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Example: Vacuum design storage ring
Synchrotron radiation in hard bends of CESR-B

Estimate the pumping speed needed for Titanium pumps & NEG pumps

System requirement: Pch < 1.7 nTorr
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Basic concepts:
Start with dc circuits

 Kirchoff’s law’s
 The sum of Voltage drops around any loop equals zero
 The sum of the currents into any node equals zero

 Ohm’s law:
 The voltage drop across a resistance:  V = I R
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Ohm's Law Generalized

 Basic approach is the Fourier analysis of a circuit

 Start with

 Instead of V = IR where the quantities are real we write

  We know this works for resistors.

V(t) = R I(t) ==> ZR is real = R

 What about capacitors & inductors?

! 

˜ V = Ve j("t +# )

  

! 

˜ V (") = ˜ I (")
t 
Z (")
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Impedance of Capacitors

 For a capacitor

 So our generalized Ohm’s law is

where
! 

I = C dV
dt

" 

# 
$ 

% 

& 
'  (  ˜ I = C d

dt
Ve j()t +* ) = j)C ˜ V 

  

! 

˜ V = ˜ I 
t 
Z C

! 

˜ Z C =
1

j"C
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Impedance of Inductors

 For a capacitor

 So our generalized Ohm’s law is

Where
! 

V = L dI
dt
" 

# 
$ 

% 

& 
'  (  ˜ V = L d

dt
Ie j()t +* ) = j)L˜ I 

  

! 

˜ V = ˜ I 
t 
Z L

! 

˜ Z L = j"L
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Combining impedances

 The algebraic form of Ohm's Law is preserved

==> impedances follow the same rules for combination in   
series and parallel as for resistors

 For example

 We can now solve circuits using Kirkhoff’s laws, but in
the frequency domain

! 

Zseries = Z1 + Z2

Zparallel = 1
Z1

+ 1
Z2

" 
# $ 

% 
& ' 

(1

=
Z1Z2
Z1 + Z2
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Exercise: Compute the impedance   Z
looking into the terminals  (10 miutes)

V(t)

I(t)

C

L

R
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Looking into the terminals, we have

! 

Z(") = j"C + ( j"L + R)#1[ ]
#1

! 

The resonant frequency is "o = 1
LC! 

Z(") =
1

j"C + ( j"L + R)#1
=

( j"L + R)
( j"L + R) j"C +1

=
( j"L + R)

(1#" 2LC) + j"RC
= X + j$

V(t)

I(t)

C
L

R
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Resonant behavior of the lumped circuit

The width is

! 

"#
#0

=
R
L /.C

! 

 Z(") ~ 1# "
2

"o
2

$ 

% 
& 

' 

( 
) 

2

+ ("RC)2
* 

+ 
, 
, 

- 

. 
/ 
/ 

#1

Converting the denominator of Z to a real number we see that 
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More basics from circuits - Q

  

! 

Q =  "o o  Energy stored
Time average power loss   

! 

=  2" o Energy stored
Energy per cycle

    

! 

E =  1
2
L IoIo

*

and

  

! 

P  =  i2(t) R =  1
2
IoIo

*Rsurface

! 

"   Q =  
L

C
R

 =  #$
$o

% 

& 
' 

( 

) 
* 

+1
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Boundary conditions for a perfect conductor
σ = ∞

1. If electric field lines terminate on a surface, they do so
normal to the surface
a) any tangential component would quickly be neutralized by lateral

motion of charge within the surface.

b) The E-field must be normal to a conducting surface

2. Magnetic field lines avoid surfaces
a) otherwise they would terminate, since the magnetic field is zero

within the conductor

i. The normal component of B must be continuous across the
boundary for σ ≠  ∞
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RF-cavities
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RF-cavities for acceleration:
The heart of modern accelerators

Microtron Synchrotron

Linac
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RF cativties: Basic concepts

 Fields and voltages are complex quantities.
 For standing wave structures use phasor representation

 For cavity driven externally, phase of the voltage is
θ = ωt  + θο

 For electrons v ≈ c;  therefore z = zo+ct

! 

˜ V = Vei"t     where    V = ˜ V 

Zo  is the reference plane

At t = 0 particle receives maximum voltage gain
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Basic principles and concepts

 Superposition

 Energy conservation

 Orthogonality (of cavity modes)

 Causality
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Basic principles:
Reciprocity & superposition

 If you can kick the beam, the beam can kick you

==>
Total cavity voltage  =  Vgenerator+ Vbeam-induced

Fields in cavity = Egenerator+ Ebeam-induced
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Basic principles: Energy conservation

 Total energy in the particles and the cavity is conserved
 Beam loading

ΔWc  = Ui - Uf 
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Basics: Orthogonality of normal modes

 Maxwell’s equations are linear
 The EM field is NOT a source of EM fields

 Therefore,
 Each mode in the cavity can be treated independently in

computing fields induced by a charge crossing the cavity.

 The total stored energy is equals the sum of the energies in the
separate modes.

 The total field is the phasor sum of all the individual mode fields at
any instant.
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Basic principles: Causality

 No disturbance ahead of a charge moving at v ≈ c

 In a mode analysis of the growth of beam-induced fields,
field must vanish ahead of the moving charge for each mode
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Basic components of an RF cavity

Outer region: Large, single turn Inductor

Central region: Large plate Capacitor

Beam (Load) current

Displacement current

Wall current

Power feed from rf - generator
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We have already solved this circuit
Lumped circuit analogy of resonant cavity

V(t)

I(t)

C
L

R

! 

Z(") = j"C + ( j"L + R)#1[ ]
#1

! 

The resonant frequency is "o = 1
LC! 

Z(") =
1

j"C + ( j"L + R)#1
=

( j"L + R)
( j"L + R) j"C +1

=
( j"L + R)

(1#" 2LC) + j"RC



US Particle Accelerator School

Q of the lumped circuit analogy

The width is

! 

"#
#0

=
R
L /.C

! 

 Z(") ~ 1# "
2

"o
2

$ 

% 
& 

' 

( 
) 

2

+ ("RC)2
* 

+ 
, 
, 

- 

. 
/ 
/ 

#1

Converting the denominator of Z to a real number we see that 



US Particle Accelerator School

Translate circuit model to a cavity model:
Directly driven, re-entrant RF cavity

Outer region: Large, single turn Inductor

Central region: Large plate Capacitor! 

L =
µo"a

2

2"(R + a)

! 

C = "o
#R2

d

! 

"o = 1
LC

= c 2((R + a)d
#R2a2

$ 

% & 
' 

( ) 

1
2

Q – set by resistance in outer region

! 

Q =
L
C
R

Expanding outer region 
raises Q

Narrowing gap 
raises shunt impedance

Source: Humphries, Charged Particle
Accelerators
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Properties of the RF pillbox cavity

 We want lowest mode: with only  Ez & Bθ

 Maxwell’s equations are:

 and

 Take derivatives

==>

! 

1
r
"
"r

rB#( ) =
1
c 2

"
"t
Ez

! 

"
"r
Ez =

"
"t
B#

! 

"
"t

1
r
"
"r

rB#( )
$ 

% & 
' 

( ) 
=
"
"t

"B#
"r

+
B#
r

$ 

% & 
' 

( ) 
=
1
c 2

" 2Ez
"t 2

! 

"
"r
"Ez
"r

=
"
"r
"B#
"t

! 

" 2Ez
"r 2

+
1
r
"Ez
"r

=
1
c 2

" 2Ez
"t 2

d

Ez

b

Bθ

! 

" walls =#
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For a mode with frequency ω



  Therefore,

 (Bessel’s equation, 0 order)

 Hence,

 Apply boundary condition for conducting walls, Ez(R) = 0,
therefore

! 

Ez r, t( ) = Ez (r) ei"t

! 

" " E z +
" E z

r
+
#
c
$ 

% 
& 

' 

( 
) 
2

Ez = 0

! 

Ez (r) = Eo Jo
"
c
r

# 

$ 
% 

& 

' 
( 

! 

2"f
c
b = 2.405
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E-fields & equivalent circuit: Ton1o mode

Ez

Bθ

R
el

at
iv

e 
in

te
ns

ity

r/R

T010

C L
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E-fields & equivalent circuits
for To2o modes

T020
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E-fields & equivalent circuits
for Tono modes

T030

T0n0 has 
n coupled, resonant

circuits; each L & C 
reduced by 1/n
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Simple consequences of pillbox model

L

Ez

R

Bθ

 Increasing R lowers frequency
      ==> Stored Energy, E ~ ω-2

                  E  ~  Ez
2

 Beam loading lowers Ez for the
next bunch

 Lowering ω lowers the fractional
beam loading

 Raising ω lowers Q ~ ω -1/2

 If time between beam pulses,
Ts ~ Q/ω 

      almost all E is lost in the walls
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The beam tube complicates the field modes
(& cell design)

Ez

Bθ

 Peak E no longer on axis
 Epk ~ 2 - 3 x Eacc

 FOM = Epk/Eacc

 ωo more sensitive to  cavity
dimensions
 Mechanical tuning & detuning

 Beam tubes add length & €’s
w/o acceleration

 Beam induced voltages ~ a-3

 Instabilities

a


