Introduction to single-pass FELs for UV X-ray production

S. Di Mitri (45min.)



An ideal light source should be...
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An ideal light source should provide...

High resolution at small spatial scales
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Large statistics in single-shot

L large number of photons per pulse

Large statistics in multi-shot

[% high repetition rate

17/06/2013 S. Di Mitri - USPAS CO - Lecture_Mo_01




Advantages of a /inac-driven light source

: : 2 ¢’ 7/2 |2
d An accelerated charge particle radiates: P, =——-"

A2
’ })circ - 7/ })lin

d Leptons (i.e., electrons) radiate more than hadrons (i.e., protons) when

subjected to the same force. Circular acceleration is more efficient (and typically
cheaper) than linear.

d But, e-beams in synchrotron light sources (SLS) reach equilibrium properties
that are typically far from providing radiation as wished by FEL users
(synchrotron radiation damping of particles’ velocities is balanced by the
guantum excitation due to random emission of photons in time) .

d An electron radiofrequency linear accelerator (RF e-LINAC) can be used to
overcome the SLS equilibrium dynamics and to “shape” the e-beam as desired.

However, a more efficient radiating process is still needed to surpass the SLS’s
brilliance level...



Pictures courtesy of

Coherent radiation from an undulator T. Shintake, R. Bakker
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* The electron transverse velocity couples
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Pictures courtesy of

Microbunching and FEL instability T. Shintake, S. Mitton
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Recapitulating: SLS vs. linac-driven FEL

Peak brilliance [Photons/(s mrad” mm- 0.1% BW)]
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The breakthrough of FELS’ brilliance
is allowed by the cohrent emission.
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Storage rings are complementary to FELs as
for A-tunability, multiple-users access, stability

and pulse rate.

RING LINAC Should be...
Norm. emitt < diffraction-limited
[ n.q] 7 (10, 0.1) 0.1-1 photon emittance:
el YAJ4m~0.1-1
Energy spread, < FEL energy bw:
A .01-0.1
C5 [%] 0 0.01-0 Pre~0.01-0.1
Bunch length, 10 0.1-1 Tunable in fs-range
G, [ps]
As high as possible,
:DF:]k Furrent 10 1000 L5y 5(A) =N
1., (1) <N’
|[:(:2p]6tltlon rate 108 10'-10* | As high as possible
Energy and
intensity 10°-10°% | 102-103 | As much as possible
stability
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Recapitulating: what do we need for a UV X-ray FEL

L High energy, monochromatic e-beam, possibly with high bunch rate

L Radiofrequency e-linac, normal-conducting (NC) or super-conducting (SC)
[~ 1 GeV for EUV soft X-ray, ~ 10 GeV for Hard X-ray. Energy spread < 0.1%]

L Small size, small angular divergence e-beam

L. High brightness e-sources, e.g. photo-injectors
[Ye, =vY0,0,, < 10um for EUV soft X-ray, < 1um for hard X-ray]
 Large number of particles in a short duration

N Bunch length compressors, RF or magnetic
[e.g., I ~ kA over 10’s of fs]

(d Beam parameters have to be uniform over many cooperation lengths

L~ RF or magnetic manipulation of the longitudinal particle distribution
[Collective effects such as wakefields and coherent synchrotron radiation
start playing a role here]

O Alow—gap, long enough undulator, with short magnetic period

I% Low-gap out-of-vacuum or in-vacuum undulator segments
[A, < 10cm for EUV soft X-ray, < 3cm for hard X-ray. Total length ~ 30— 150 m]
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Is that all we really need ?

[ Connect different accelerator sections (injector, main linac, undulator, dump)
N Transfer lines (no acceleration) preserving the e-beam quality

(J Diagnose the e-beam parameters

L Diagnostic stations for transverse and longitudinal particle distribution

d Stop the e-beam at intermediate energies and after the undulator
N (Safe) Beam dump lines

 Clean unwanted halo particles traveling with the beam core

L Collimation systems

O This list never really ends...

Diagnostics,
Collimation, etc.
1. e- GUN

Hee:: PPTYAY fcococoD .....

2. INJECTOR 3. MAGN. COMPRESSOR
(e.g., linac + chicane)
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LCLS (SLAC, California): 7.5 — 0.15nm, 14 GeV

X-FEL based on 1-km of existing NC linac (3GHz, ~20MV/m).
First lasing at 0.1nm in 2009 Now running for users operation.
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Photo-Injector (UCLA-BNL-SLAC-type ) e e owl
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FLASH (DESY, Germany): 45 — 4nm, 1.3 GeV
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Pictures from
DESY website

Superconducting linac (TESLA-type)
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FERMI@Elettra (E-ST, ltaly): E0—4nm, 0.9-1.5 Gel/
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Magnetic bunch length compressor (LEUTL-type)

Lower energy
particles

Higher energy
particles

Path length difference __ particles’ energy

(bunch shortening) difference
I I
Atewpm = 1_PS
Compression ~ 6 Ateyry =~ 6 PS

Uncompressed
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.......

peak current [a. u.]

bunch duration [a. u.]
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SACLA (Sprlng-8 Japan): <0.Inm, 8 GeV

{ard™ Tbasedion 230m long NG [inac (5 7GHZ, =a5n
First Iasmg at 0.12nm in 2011. Commissioining is finishing.
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Pictures courtesy of

Undulator (short-period, in-vacuum) T. Shintake
Undulator Type In-Vacuum Planer Undulator
Undulator Lines Elxperimental Stations Active Length 5m
Electron Beam B -
Undulator Period 18 mm
Magnetic Circuit Hybrid
(NdFeB+Permendur)
Peak Field | Max imum 131 T
Nominal 113T
K Max i mum 2.2
Nominal 1.9
Gap Minimum 3.5 mm
Nominal 4.5 mm
Maximum Attractive Force | ~ 6 ton

SACLA First Lasing
June 7, 2011

Spontaneous X-ray laser
radiation _ (hv=10 keV)
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Other accelerator components




Photon transport

1.FEL photons escaping the undulator are
diagnosed before going to the user station
(photon hutch).

2.The FEL is switched to
different users stations
with gratings and mirrors.

3.The FEL finally
reaches the
sample.

g USPAS CO - Lecture_Mo_01 19



