
Transverse dynamics, single particle

S. Di Mitri (1.5 hr.)
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Magnetic focusing

� Any beam of same-charge particles tend to disperse because of repulsive Coulomb forces

and initial particles’ angular divergence.
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� External transverse focusing maintains the beam compact and the charge density high. For

ultra-relativistic particles, magnetic focusing is more practical and efficient than electric.
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×+= is the Lorentz force. To  produce the same work of 1 MeV over 1 m, we need E = 1 MV/m 

or just B = 3 T.

� An FEL beam delivery system is a sequence of RF and magnetic elements.

• Dipole magnets [ By=B0 ] are used in spectrometer lines for beam dump and diagnostics,

in magnetic compressors and transfer lines. They determine the beam direction.

• Quadrupole magnets [ By=(dBy/dx)∆x ] are in between RF structures, diagnostic stations,

transfer lines and undulator. They determine the beam transverse size.

• Sextupole magnets [ By=(d2By/d2x)∆x2 ] are rarely used in dispersive regions for

linearization of the longitudinal phase space.

18/06/2013 2S. Di Mitri - USPAS CO - Lecture_Tu_07



Dipole magnet

� Particles with different longitudinal momentum follow different trajectories (i.e., bending

radius) according to:

Dipole 
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� The lateral separation from the reference (i.e., on-energy) trajectory per unit relative

energy deviation is the longitudinal momentum dispersion function:

EXERCISE: demonstrate the aforementioned relationship between pz and By. Hint: use equation motion for

the radial coordinate.

� When applied to the beam energy spread, ηx detrmines the chromatic beam size. This can

be regulated (or made null) along the beam line by controlling ηx.
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Quadrupole magnet

Normally-
oriented 
1uadrupole 
magnet

Magnetic 
An alternating series of focusing and defocusing
quads (lenses), not too far each other, leads to

� A quadrupole magnet implies a transverse force that is linear with the particle’s transverse

displacement from the quadrupole magnetic axis.
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� The principle of Alternating Strong Focusing applies to rings as well as to linacs. In practice,

use many split magnets of alternating focusing sign to confine the beam in the accelerator.

The total net effect is focusing in both transverse planes.

Magnetic 
poles

quads (lenses), not too far each other, leads to
overall focusing. Same in the other plane.

EXERCISE: demonstrate the aforementioned relationship for the linear focusing. Hint: start from Lorentz

force. Verify that a quadrupole focusing in one plane is defocusing in the other.

� If we consider the motion of the beam centroid into a displaced quadrupole magnet, we

find that the beam is (cohrently) kicked by:

klxx ='
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Magnetic 
poles

� Higher order magnets (e.g., sextupoles) introduce nonlinear focusing, i.e. the restoring

force goes like xq, with q ≥ 2. When used in dispersive regions, they couple xββββ and xηηηη.
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Multipolar field expansion:

R=pole radius

Multi-pole field expansion

� Sextupoles used in dispersive regions and

in the presence of correlated energy

spread, can be used to manipulate (e.g.,

linearize) the longiotudinal phase space.

1. RF curvature

2. Off-crest acceleration (adds linear E-chirp)

3. Sextupole in dispersive region

4. Off-crest acceleration (removes linear E-chirp)
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Hill’s equation
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expand B up to first order in x

d/dt � d/ds

consider an off-momentum pz = γmevz = pz,0(1+δ)
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xββββ, solution of the homogeneous e.o.m. describes 

the betatron oscillations (below, on-energy and 

xηηηη, solution of the 
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the long. momentum 

dispersion, ηx.
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the betatron oscillations (below, on-energy and 

with no acceleration)

dispersion, ηx.

Parameters of Courant-

Snyder (also Twiss functions)

Single particle Courant-Snyder invariant
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Beam emittance

� As the particle moves along the line in the linear approximation, it maps an ellipse in the

phase space (x,x’) whose axes and slope change point to point, but whose area = 2Jx,y(s)

remains constant. This is the particle C-S invariant.

� We now consider the ensemble of particles at an arbitrary point of the line. For a linear

motion, particles lye on omothetic ellipses. Liouville’s theorem states that in the absence of

“frictional” forces (dissipative or diffusion terms ∝ x’ in Hill’s eq.), the area of the beam

ellipse is a constant of the motion. This is the beam geometric emittance.

� Important: Liouville’s theorem (area preservation) is still valid for a nonlinear motion!

18/06/2013 7S. Di Mitri - USPAS CO - Lecture_Tu_07

Beam size

Beam angular 

divergence

BEAM PHASE 

SPACE AREA



Principal Trajectories

Transfer line made of quadrupoles and dipoles
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From Hill’s eq. (no acceleration):
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• Transport matrix (C,S = “principal 

trajectories”; D = η).

• C, S, C’, S’, D, D’ depend on the 

geometric and magnetic properties of 

the element.
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EXERCISE: determine the transport matrix for a quadrupole magnet in thin lens approximation, that is lq �

0 but klq = const.
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Simplectic matrices

I.I. PrincipalPrincipal trajectoriestrajectories (PTs hereafter) are defined with some conventional initial

conditions: C(0)=1, S(0)=0, C’(0)=0, S’(0)=1, which make the det(M(0)) ≡ W(0) = 1.

II.II. Each PT satisies Hill’s eq. (by def.). Now assume to have an additional frictionalfrictional termterm ∝
C’, S’ and sum the two equations with proper multiplication factors:

III.III. Last eq.states W(s)W(s) == 11 ∀∀∀∀∀∀∀∀ss ⇔⇔⇔⇔⇔⇔⇔⇔ ζζζζζζζζ == 00. Group of simplectic matrices satisfies W = 1 for any
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III.III. Last eq.states W(s)W(s) == 11 ∀∀∀∀∀∀∀∀ss ⇔⇔⇔⇔⇔⇔⇔⇔ ζζζζζζζζ == 00. Group of simplectic matrices satisfies W = 1 for any

algebric manipulation of its members.

IV.IV. Consider the vector product A = dx × dx’ (areaarea inin thethe phasephase spacespace).

• It evolves according to the linear transformation:

• We find AA == WW⋅⋅⋅⋅⋅⋅⋅⋅ AA00, that is a transport matrix with unitary determinant (e.g.,

simplectic) preserves the phase space area in the absence of frictional forces.
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Stable transport
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1.    Impose equality of the the C-S- invariant for x2, x1.

2. Use x2=M(x1) in terms of Principal Trajectories and substitute into point 1.

3. We can determine M in terms of the Twiss functions:

Assume standard FODO lattice along the main linac and Quads in thin lens approximation. 

Stability implies (general property):
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One  FODO  period
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Which emittance?

1. Acceleration gives a term ∝ x’ in Hill’s eq. (x’ ≡ ∆px/pz ∼ 1/βγ). Consider canonical

coordinates (x, px) so that Jx(x,x’) � Jx(x, px): The transverse momentum is not affected

by longitudinal acceleration, so that the normalized emittance εεεεL
n,x= βγεβγεβγεβγεL

x is preserved.

2. Normalized emittance is affected by frictional forces at very low energies (e.g., short-

range space charge forces). Once these can be neglected (>50 MeV for ∼1 nC high

brightness beams), Liouville’s theorem predicts that it is preserved all along the

accelerator. Accordingly, the geometric emittance shrinks like εεεεL
x ∼∼∼∼ 1/βγβγβγβγ.

IDEAL  ACCELERATOR

3. Unfortunately, frictional forces due to emission of synchrotron radiation (e.g., in

dipoles) enlarge the Liouville emittance. Might be the same for other short-range e.m.

REAL  ACCELERATOR

dipoles) enlarge the Liouville emittance. Might be the same for other short-range e.m.

interactions with boundary. These are called “collective effects”.

4. Can single particle effects, like nonlinear magnetic focusing, degrade the emittance?

� Liouville theorem still holds in the presence of nonlinear focusing.

� However, we do not really measure the beam canonical phase space area, just

particles density distribution in the phase space. The distribution statistical

parameters (e.g., mean, std, etc..) are used to evaluate a statistical emittance.

� Statistical parameters of the distribution are affected by nonlinear forces, so the

statistical emittance can be degraded, in contrast to Liouville’s theorem.

MORE AND MORE REAL...
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Statistical emittance

� Statistical geometric emittance, εx(P), is a measure of the spread (in transverse position and

angular divergence) of a given fraction P of beam particles in the phase space (x,x’). Thus, it

always relates to the given fraction of charge that is sampled in the phase space.
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� Connection between beam C-S parameters and statistical emittance is given by the beam

matrix:
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Chromatic aberration

The most important source of εx degradation from single particle dynamics is chromatic

aberration, that is the phase advance depends on the particle energy, ∆µ=∆µ(δ).
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In practice, the effective quadrupole strength acting on the particle depends on its energy:

Particles at different 

energies are mapped 

onto different ellipses.

Pictures courtesy of

H.Briant, CAS 94-01

Chromaticity,
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Aberration-induced emittance growth

We assume to perturb the particle distribution with a local error kick Q2 = <∆x’2>. The

istantaneously perturbed emittance can be estimated with the beam matrix:
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If the perturbation is small enough, we can write: 2
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The chromatic kick error in a quadrupole is ∆x’ = kδ l x, hence: ( ) 22
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Now assume a sextupolar field component in a non-dispersive region (real magnets always 

have magnetic field errors due to finite pole size, manufacturing errors, etc.).

The geometric kick error by a sextupole is ∆x’ = m l x2, hence: ( ) 22
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1
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ε
ε

≅
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QUAD. CHROMATIC ABERRATION

SEXT. GEOMETRIC ABERRATION

EXERCISE: evaluate the emittance growth induced by a sextupolar chromatic aberration (beam size is

assumed to be dominated by the chromatic contribution).
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Magnetic field tolerances

� Every real magnet includes systematic and random field errors, both due to the finite

magnet dimension and mechanical tolerances. The formers are constrained by symmetries

of the nominal field pattern. The latters may cover all orders of the field expansion.

� The magnets should be manufactured in a way that field components higher than the

nominal should be small enough to avoid beam emittance dilution. Same approach as

before applies. We assume perfectly aligned magnets.

Quadrupole component (n=1) in a Dipole magnet (n=0):
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Optics mismatch
Same emittance growth as due to aberrations is expected to happen if the beam is injected

into the line with an already mismatched ellipse. We can distinguish two practical cases:

1) The entire beam phase space is mapped onto an ellipse which is different from the design

one. Thus, particles may explore wider phase space amplitudes that excite aberrations.

2) Longitudinal portions of the bunch –slices– are mismatched each other. Thus, the projected

phase space area is wider than that for the entirely matched beam (see below).
MATCHED 

BEAM FILAMENTING 

BEAM

FULLY 

FILAMENTED 

BEAM
slice #1

slice #2
slice #3

Pictures courtesy of

H.Briant, CAS 94-01

MISMATCHED 

BEAM
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Mismatch parameter, B (normal linac operation usually requires B < 1.1): 

B also describes the RMS emittance dilution due to

filamentation of a mismatched beam, independently from the

specific charge distribution in (x,x’): εε B=~

Note that RMS emittance can still be approximately preserved (B≈1), while the total

emittance (100% particles in phase space) is not. The total emittance dilution factor is:

,1
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Optics sensitivity to focusing errors

o We start from a general form of the final optics mismatch due to generic focusing errors kiτi

distributed along the accelerator:
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o Consider one error (quadrupole) at the time and average over ∆µ:

where ξ can be defined as the optics sensitivity to quadrupole errors. If T=B–1 (e.g., 5%) is

the tolerance on the final optics mismatch induced by N error kicks (e.g., 100), then onthe tolerance on the final optics mismatch induced by N error kicks (e.g., 100), then on

average ξq should be smaller than T/√N (0.5%) at each quadrupole location.

o Notice that if kτ is a focusing error that can lead to emittamce growth (e.g., τ=δ), thenξq and

T become, resepctively, the sensitivity and tolerance on the final emittance dilution:
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o Optimization loops in codes can be used to search quadrupole strengths that both satisfy all

optics constraints and, at the same time, minimize the optics sensitivty to focusing errors.
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� A rather large energy spread (∼1% RMS) is typically imposed to the e-beam with RF off-

crest phasing to execute magnetic bunch length compression. Such an energy spread is

usually produced with a few accelerating structures, starting from ∼0.1% level. After

compression, it is adiabatically damped by on-crest acceleration along tens of meters.

Large energy spread
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On-crest acceleration leads 
to adiabatic damping
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Strong focusing

� At the same time, strong focusing (kl ≥ 0.5m-1) is adopted for particles confinement in small

iris structures, collimators, to optimize the resolution of diagnostic stations and to

counteract collective effects.

BC

strong k here for 
coher. synch. 
radiation

MAIN LINAC TL UNDULATOR

strong k here 
for diagnostics

strong k here for
collimation
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oscillations and to re-

match the beam to the

next diagnostic and

colimation station.

The sensitivity tends

to follow the β-

amplitude.
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Optics matching: why, where.

� Optics matching stations are usually placed:

� at the injector exit, because SC-forces make the beam optics less predictable;

� in front of laser heater for optimum e-beam/laser transverse pverlap;

� in front of diagnostic stations to improve the measurement resolution;

� in front of magnetic compressors to counteract CSR-emittance growth;

� in front of undulator, for optimum e-beam/photons coupling, thus to

maximize the FEL amplification.
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RF focusing

Assume a TW-CG structure, transit time factor = 1. Ez has now explicit radial

dependence. Maxwell eqs. for t-dependent e.m. field:
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In conclusion:
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� Neglect term ∼γ-2 and consider a static Ez,0 through a gap long lg:
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� Previous case for a cell-to-cell focusing model gives:
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� Term ∼γ-2  provides RF phase focusing : ( ) ( )φ
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Transport matrix

�Cell-to-cell (also “ponderomotive” or “body-focus) and edge focusing

describe the fringe field effect inside and at the edge of the structure,

respectively.

� In the following, we will consider TW structures, at energies > 100 MeV.

�Transport matrix for acceleration with pseudo-canonical coordinates (x,

x’) is not simplectic ⇒ automatically includes adiabatic damping.
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� L � 0, the RF focal length is:
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Coupler cell RF kick

� Geometric asymmetries of the input/output coupler cells may contribute with

transverse electric field kicks that affect the beam trajectory and size, with

dipole, quadrupole and higher order Ez dependence on the particle offset.
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M. Dal Forno
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induces emittance growth.



Impact on the beam motion

� The input coupler effect typically dominates because:

� beam is at lower energy,

� accelerating field at the entrance is not attenuated yet.

� Trajectory (mi)steering can be compensated with steering magnets in

proximity of the accelerating structure.

� However, a beam passing off-axis in the structure can excite transverse

wakefields (see next lectures). Use feed-forward steering or put steerers

on the structure.
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on the structure.

� For on-crest acceleration (typical in injector), the head-tail induced emittance

growth (from equation previous slide) is:



Spurious RF focusing
Pictures courtesy of

T. Hara, M. Dal Forno

� Special coupler designs (“racetrack” cell shaping,

symmetric RF waveguide, cell tuning) are usually

adopted to get rid of the dipolar and possibly of the

quadrupolar field component.

� Residual effects, typically quadrupolar, have to be

taken into account as a “correction factor” in the

modeling (matrix) of RF focusing.

Traj. Resp. Matrix,

meas. vs. model:

BEFORE model “correction”

Traj. Resp. Matrix,

meas. vs. model,

AFTER model “correction”
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BEFORE model “correction” AFTER model “correction”

in the horizontal plane only!



RF focusing in ELEGANT code

� TWLA: 2π/3 CG, edge focusing (opt.), numerical integration.

� RFCA: π SW, edge focusing (opt.), body-focus (opt.), matrix (single-kick approx.

by default), N_KICKS, PHASE_REFERENCE.

� Also good for TW-CG, with body-focus turned off.

� “N_KICKS = XX” is equivalent to a split structure. Used for numerical

integration of wakes (e.g., geometric, LSC, etc.) in a long structure.

� For the one-structure model, just use: N_KICKS=0, PHASE_REFERENCE = 0.

� RFCA split in units (e.g., for particle dynamics inside a long structure).
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� Each unit has to be long (multiple of) λRF.

� Proper focusing for a TW-like structure is given by setting: N_KICKS = 1,

END1_FOCUS = 1 and END2_FOCUS = 1 in each unit (inner focusing is

cancelled out and only that at the edges remains).

� Set PHASE_REFERENCE=n, with n integer and unique for each unit

(otherwise the units will be individually phased, which could cause

unphysical result).

!! Warning!! In old Elegant versions, Twiss functions are computed

correctly only for N_KICKS = 0 !!


