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Linac Design for FELs, Lecture Tu 5

Velocity bunching & more on                 
magnetic-chicane bunch compression

MV
last revised 15-June



Brief summary of what we learned yesterday 

• Beam energy change through rf structure
– Ultrarelativistic approx. 

• Setting of RF phase to control the beam energy chirp

• Concept of magnetic-chicane bunch compressor
– Orbit path-length dependence on particle energy
– Correlation between particle energy and its position along the bunch (energy 

chirp) 

• Momentum compaction R56 for 4-bend C-shaped chicane

• Compression factor 

• Linearization of the longitudinal phase-space using harmonic     
rf cavities
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Outline

1. Compressing low-energy bunches 
– Ballistic compression

– Velocity bunching 

2. More on magnetic-chicane compression 
– Sensitivity of beam jitters to RF parameters

– One-stage vs. multiple-stage compression. 
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Compression at low energy: velocity bunching

• High beam energy (v~c): different energies -> no difference in velocity (c). 
– Bends provide the dispersion needed to establish a dependence of the path-length on 

beam energy that can be exploited to do compression

• Low beam energy (v<c):  different energies  -> difference  in velcity can be 
significant
– Exploit different times of arrival by  particles with different velocities to do compression 

in straight non-dispersive channels.
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• In some cases low-energy compression is desirable
– Typically when the e-source generates beams with too low a current.   
– Desirable feature compared to magnetic compression (no CSR effects). 

But it is more vulnerable to space-charge effects

• Note on use of terms:
– Velocity-bunching compression can be done during  acceleration  
– The term “Ballistic compression” is often used when compression is done without accelerating
– “Velocity bunching”  is the more generic term
– “RF compression”  also used



Conceptual picture of ballistic compression 

• For compression,  particles in the tail should have larger energy (velocity) 
– Same sign of energy chirp as for magnetic compression in 4-bend C-Shape chicane  
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Example of Ballistic Compression in action:    
Studies for the NGLS injector
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Fig courtesy of C. Papadopoulos

186 MHz Normal Conducting RF-Gun
Accelerating electrons to 1.25 MeV energy (~750keV kinetic energy)
Accelerating gap: ~4cm (19MV/m field at cathode) 
(APEX- prototype presently under commissioning)

“Buncher”
Single 1.3 GHz RF cavity

(Normal Conducting)

Solenoids (emittance compensation)

“Booster”
1.3 GHz Cavities (Tesla style)
(Super Conducting) 



Beam half-way through gun accelerating gap 
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Beam at exit of gun accelerating gap 
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Fig. from C. Papadopoulos
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Beam at entrance of buncher
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Fig. from C. Papadopoulos
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Beam at exit of buncher
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Fig. from C. Papadopoulos
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Beam just downstream the buncher
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Fig. from C. Papadopoulos
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Beam 1.2m downstream the buncher
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Fig. from C. Papadopoulos
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Ballistic compression: expression for compression 
factor (linear approximation)

• Expand equations about  reference orbit 𝑡 = 𝑡𝑟 + Δ𝑡 , 𝛾 = 𝛾𝑟 + Δ𝛾

• Find the equations for Δ𝑡 and Δ𝛾 (first order) 

• Define time so that 𝑡 = 0 when the ref. particle crosses the cavity  

• Set rf phase so that the reference particle  goes through the cavity at 
“zero crossing” : cos 𝜑rf = 0 (i.e. energy of reference particle doesn’t 
change) ->  𝜑rf = ±𝜋/2

• Choose 𝜑rf = −𝜋/2.  (To have the right energy  chirp  - higher energy 
particles in the tail.) 

• Compression factor:
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𝑑𝛾

𝑑𝑠
= −

𝑒𝐸𝑠0 𝑠

𝑚𝑐2
cos 𝜔rf𝑡 + 𝜑rf

𝑑𝑡

𝑑𝑠
=

𝛾

𝑐 𝛾2 − 1

𝐶 ≡
Δ𝑡(𝑠)

Δ𝑡 𝑠 = 0
= 1 −

𝑒𝑉0
𝑚𝑐2

𝑠𝑘rf

𝛾2 − 1
3
2

−1

Dirac 𝛿 function

Standing wave 
RF cavityRelativistic equation

For longitudinal motion
(with s as the independent

variable) 

cos 𝜔rfΔ𝑡 − 𝜋/2

Δ𝑡

tail

Drift

Rf-cavity operated at 
“zero-crossing”

Drift

• Assume kick approximation for cavity (0-length cavity length at 𝑠 = 0).  

−
𝑒𝐸𝑠0 𝑠

𝑚𝑐2
=

𝑒𝑉0
𝑚𝑐2

𝛿(𝑠)

𝒔

Work-out details
as an exercise 



Velocity bunching: compress while accelerating
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• If current out-of gun is already high further compression is best done while also 
accelerating (to reduce effect of  space-charge forces; ease emittance compensation)  

• Compression takes place over longer, multi-cavity structure  
• Dynamics of compression is best illustrated in travelling-wave structures
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Single-stage or multi-stage compression?

• Because of collective effects (space charge) max. amount of  velocity bunching 
compression at low energy is limited by desire to preserve beam quality 
– Magnetic compression is still needed (usually done at sufficiently high energy to limit adverse 

impact of collective effects)

• Magnetic compression: is it better to do all the compression at once, or break it up 
through two or more chicanes?

• Favoring  multi-stage magnetic compression:
– CSR  effects on transverse emittance (2nd and further stage compression done at higher 

energy to reduce CSR effects)  
– Reduced sensitivity to rf jitters

• Favoring single-stage magnetic compression:
– Control of microbunching
– Reduced system complexity (not critical) 
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Examples of velocity-bunching compression 
experiments 
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More on Magnetic Compression
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Multi-stage magnetic compression is  more robust 
against various sources of jitters

• Fluctuations of rf structure parameters (voltage, phase) around 
set values  are unavoidable.

• They cause undesirable “jitters” in
– Final electron beam energy 
– Beam arrival time       
– Beam peak current 

• E.g. for Superconducting Structures (typically easier to 
stabilize) aggressive but not unreasonable  targets for max. rf
fluctuations are
– 0.01deg (rf phases) 
– 0.01%  (rf voltages)
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Example 1: Sensitivity  of compression factor to       
RF phase. Single-stage magnetic compression
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𝐶 =
1

1 + ℎ𝑅56
ℎ = −

𝑒𝑉𝐿1krfsin𝜑𝐿1
𝐸𝐵𝐶1

Δ𝐶

𝐶
=

1

C

𝜕𝐶

𝜕ℎ
Δℎ = −

1

𝐶
𝐶2𝑅56Δℎ = −𝐶𝑅56ℎ

Δℎ

ℎ
= −𝐶(𝐶−1 − 1)

Δℎ

ℎ
= (𝐶 − 1)

Δℎ

ℎ

Δℎ

ℎ
=

1

ℎ

𝜕ℎ

𝜕𝜑𝐿1
Δ𝜑𝐿1 = −

𝐸𝐵𝐶1

𝑒𝑉𝐿1krfsin𝜑𝐿1
(−

𝑒𝑉𝐿1krfcos𝜑𝐿1

𝐸𝐵𝐶1
)Δ𝜑𝐿1 =

Δ𝜑𝐿1

tan 𝜑𝐿1

𝜟𝑪

𝑪
= (𝑪 − 𝟏)

𝚫𝝋𝑳𝟏

𝐭𝐚𝐧𝝋𝑳𝟏

Proportional to 𝐶 − 1 ≃ 𝐶

singular at 0-phase (for 
fixed compression 𝐶) 

L1L0 BC1

𝝋𝑳𝟏

𝑉𝐿1

𝜑𝐿0 = 0

𝑉𝐿0

Beam enters here
w/o energy chirp 

Study sensitivity of compression factor
to L1 rf phase errors

𝐸0 𝐸𝐵𝐶1

Compression factor: Linear chirp after L1:



Example 2: Sensitivity  of compression factor to 
RF phase. Double-stage magnetic compression
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𝑎1 ≡ −
𝑒𝑉𝐿1krfsin𝜑𝐿1

𝐸𝐵𝐶1

𝑎2 ≡ −
𝑒𝑉𝐿2krfsin𝜑𝐿2

𝐸𝐵𝐶2

ℎ1 = 𝑎1

ℎ2 = 𝐶1𝑎1
𝐸𝐵𝐶1
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+ 𝑎2
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1
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×

1
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𝐸𝐵𝐶2
≪ 𝑎2 therefore ℎ2 ≃ 𝑎2 , and  𝐶2 ≃

1

1+𝑎2𝑟56

Δ𝐶

𝐶
= −

1

𝐶
𝐶1
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2𝑟56Δ𝑎2
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𝝋𝑳𝟐

𝑉𝐿2

𝜑𝐿1
𝑉𝐿1

𝐶1 =
1

1 + ℎ1𝑹𝟓𝟔
𝐶2 =

1

1 + ℎ2𝒓𝟓𝟔

Total
compression

𝐸0 𝐸𝐵𝐶1 𝐸𝐵𝐶2

chirp contributed
by L1

chirp contributed
by L2



Example 2: Sensitivity  of compression factor to RF phase. Double-stage magnetic 
compression (cont’d)

• Conclusion: in two-stage compression there is the potential to make sensitivity to rf
phase jitter smaller
– The condition for the most benefit is 𝐶1𝑎1

𝐸𝐵𝐶1

𝐸𝐵𝐶2
≪ 𝑎2 .  (Although it may be difficult to 

enforce)
– In practice,  compression sensitivity to phase jitters will be higher than predicted by  the 

formula above but still reduced  compared to one-stage compression  21

𝐶1 =
1

1 + 𝑎1𝑅56
𝐶2 ≃

1

1 + 𝑎2𝑟56

= −𝐶1 𝐶1
−1 − 1

Δ𝑎1

𝑎1
− 𝐶2 𝐶2

−1 − 1
Δ𝑎2

𝑎2

Δ𝐶

𝐶
= −

1

𝐶
𝐶1
2𝑅56Δ𝑎1𝐶2 + 𝐶1𝐶2

2𝑟56Δ𝑎2 = −𝐶1𝑅56Δ𝑎1 − 𝐶2𝑟56Δ𝑎2

= −𝐶1𝑅56𝑎1
Δ𝑎1
𝑎1

− 𝐶2 𝑟56𝑎2
Δ𝑎2
𝑎2

𝚫𝑪

𝑪
= 𝑪𝟏 − 𝟏

𝚫𝒂𝟏
𝒂𝟏

+ 𝑪𝟐 − 𝟏
𝚫𝒂𝟐
𝒂𝟐

~ 𝟐 𝑪
𝚫𝝋

𝐭𝐚𝐧 𝝋

For comparison, for single-stage we found 
Δ𝐶

𝐶
= 𝐶 − 1

Δℎ

ℎ
~ 𝑪

𝜟𝝋

𝐭𝐚𝐧 𝝋

Assuming 𝐶1~𝐶2 ≫ 1,
𝐶 = 𝐶1𝐶2

𝛥𝜑𝐿1~𝛥𝜑𝐿2~𝛥𝜑
𝜑𝐿1~𝜑𝐿2~𝜑



Summary 

• RF compression is one more tool in the tool-box for beam manipulations
– It has to be done at low energy (++ and --)

• Multi-stage magnetic compression is usually preferred  as a way to reduce 
certain collective effects (CSR impact on transverse emittance)
– It can make the beam more sensitive to other collective effects (microbunching

instability). 

• Sensitivity to rf parameter errors is smaller in multi-stage compression 
– E.g. compression (peak current) jitter dependence on rf phase errors 
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𝜟𝑪

𝑪
= (𝑪 − 𝟏)

𝚫𝝋𝑳𝟏

𝐭𝐚𝐧𝝋𝑳𝟏



Bonus material
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Velocity bunching: analytical model

• Travelling wave structure 
– Straightforward extension of formalism to standing-wave structures (Decompose 

travelling wave into forward + backward travelling waves; effect of backward wave will 
average out)
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𝑑𝛾

𝑑𝑠
= −

𝑒𝐸𝑠0 𝑠

𝑚𝑐2
cos 𝑘rf𝑠 − 𝜔rf𝑡 + 𝜑0

𝑑𝑡

𝑑𝑠
=

𝛾

𝑐 𝛾2 − 1

𝑑𝜙

𝑑𝑠
= 𝑘rf 1 −

𝛾

𝛾2 − 1

𝑑𝛾

𝑑𝑠
= −

𝑒𝐸𝑠0 𝑠

𝑚𝑐2
cos 𝜙

𝜑 = 𝑘rf𝑠 − 𝜔rf𝑡(𝑠) + 𝜑0

Chang dynamical 
Coordinate  from 𝑡 to 𝜑

New equations

𝑑𝜑

𝑑𝑠
= 𝑘rf − 𝜔rf

𝑑𝑡

𝑑𝑠
=

= 𝑘rf 1 −
1

𝛽
= 𝑘rf 1 −

𝛾

𝛾2 − 1



Derivation of invariant

• H is independent of 𝑠  𝐻 is a constant of motion 
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𝑑𝜙

𝑑𝑠
= 𝑘rf 1 −

𝛾

𝛾2 − 1
≡
𝜕𝐻

𝜕𝛾

𝑑𝛾

𝑑𝑠
= 𝛼 cos 𝜙 ≡ −

𝜕𝐻

𝜕𝜑

System of equations
can be thought of as 
a canonical system with
effective Hamiltonian  H:

𝑯 = 𝒌𝐫𝐟 𝜸 − 𝜸𝟐 − 𝟏 − 𝜶𝒌𝐫𝐟 𝐬𝐢𝐧𝝋
𝛼 = −

𝑒𝐸𝑠0 𝑠

𝑚𝑐2

Beam injected
at zero crossing  

Phase space

Beams moves
to higher
energy,
is compressed  

𝚫𝝋𝟎

𝚫𝝋𝒇



Compression factor in the linear approximation 

• Use  invariance of Hamiltonian:

• Assume for simplicity that 𝛾 − 𝛾2 − 1 ~0 at exit of 
Compressing structure

• Compression factor 
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𝐻0𝑟 = 𝑘rf 𝛾0𝑟 − 𝛾0𝑟
2 − 1 − 𝛼𝑘rf sin𝜑0𝑟

𝑘rf 𝛾0 − 𝛾0
2 − 1 − 𝛼𝑘rf sin𝜑0 = sin𝜑1 ≡

𝐶 =
|Δ𝑡0|

|Δ𝑡1|
=
|Δ𝜑0|

|Δ𝜙1|
≃
cos𝜑𝑟0
cos𝜑𝑟1

Max. compression 
Is when phase

𝜑𝑟1 =
𝜋
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Invariant @injection
For reference partice


