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Radiation Damping – Transverse Directions

Emission of a photon does not change the direction of the transverse momentum
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Radiation Damping

Radiation damping rates and damping times
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Radiation damping in Longitudinal Directioin

   Radiation loss depends on E2 (E – energy of electron, Uγ – energy loss per turn)  
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Damping partitions (independent of the arrangement of magnetic optics) 
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Quantum Excitation 

Photon emission process is rapid and discrete: 

   Change energy/momentum, not position
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Critical photon  energy:



Quantum Excitation and Energy Spread and Bunch Length

Mean Photon Energy
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Energy Spread : balance of radiation damping and quantum excitation

   (A – amplitude of longitudinal motion)
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Relative Energy Spread (at the limit of zero current)

Bunch Length (simple phasespace rotation due to synchrotron oscillation)  
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Quantum Excitation and Transverse Emittance

Horizontal Emittance (at the limit of zero current)
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Vertical Emittance

For a storage ring with perfect mid-plane symmetry, the H-function in the y-direction is 

zero due to zero vertical dispersion:

Vertical emittance due to a finite opening of radiation angle (1/γ) is very small

Vertical emittance in the storage ring is typically determined by emittance coupling

A reasonably large vertical beam size can be desirable in some cases to achieve a longer 

beam lifetime and to reduce beam instabilities
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Phase Ellipse

Consider the uncoupled transverse motion.  (u, u') is used to 
represent either horizontal or vertical phase space 

Emittance in this phase space can be defined as the area occupied by the particles divided by p

u'

u

Without acceleration, (u, u') can be used to present the phase space.

From Liouville's theorem, the emittance which is the phase space area is an invariant of 
the motion.

Transverse emittance therefore is constant for charged particle beams in an magnetic 
optics. 
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RMS Emittance

In the case of a real beam with a finite number of particles (N), a RMS 
emittance can be defined
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This allows us to associate equivalent ellipse in the phase space with area 

with the real beam distribution
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Beam Twiss Parameters

A set of twiss parameters can be defined using the equivalent beam ellipse by 
comparing the following ellipse expressions
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Figure by David Robin,LBNL



Machine Ellipse vs Beam Ellipse

The beam ellipse should be matched to the machine ellipse in order to be 
effectively transported in the periodic system
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Nonlinear Forces and Filamentation
For a Hamiltonian system, the emittance is conserved due to Liouville's theorem

However, when nonlinear forces act on the system, e.g. nonlinear magnetic fields, space 
charge force, the rms emittance is not conserved

Filamentation: a nonlinear mixing of the particle distribution in the phase space
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Filamentation will typically lead to the growth of the rms emittance while the 
emittance according  Liouville's theorem is supposedly to remain unchanged



Importance of Emittance in Accelerator Applications

What determines the emittance

Emittance is an invariant in Hamiltonian system: transport lines, 
linear accelerators, heavy particles rings with no substantial 
radiation damping. Initial preparation of the beam determines its 
emittance.

Emittance is determined by the balance of synchrotron radiation 
emission (quantum excitation) and radiation damping in the 
electron and positron storage rings.

Importance of Emittance in Accelerator Applications

Synchrotron light sources: smaller emittance means higher brightness

Colliders: smaller emittance results in higher luminosity

FELs: a large emittance will degrade the FEL gain, requiring to increase 
the length of FEL undulators to achieve the same gain and saturation



Importance of Emittance in Accelerator Applications

Price of a low emittance storage ring

Low emittance usually needs a strong focusing, which desires a set of 
strong sextupoles to compensate its large negative chromaticity. The 
nonlinear forces introduced by these sextupoles may significantly reduce 
the dynamic aperture. Many techniques have been developed to optmize 
the nonlinear beam dynamics of a storage ring.

A  small emittance ring may have a short Touschek lifetime (when the 
emittance is extremely small, the Touschek lifetime becomes longer again).

The error tolerance on magnets is tight for a small emittance ring.

The requirement on the power supply stability is higher as the beam size is 
small.
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