Chapter 5:
Introduction of Cryomodule

Typical operating temperature of SRF cavities is 1.8 K~4.5 K

Helium circuit:

SRF cavities are immersed in liquid helium (helium vessel)
Helium supply and return lines are connected to helium vessel
Helium vessel can be pumped down to get lower temperature

Thermal design:

Minimize thermal loss

Typically uses multi-layer insulation and intermediate temperature boundary
in a vacuum chamber

Power coupler: Couples RF power to a cavity

Mechanical tuner
Keeps a cavity on resonance or within a certain range of detuning

HOM coupler: Couples HOMs—-> damp and extract HOM

Magnetic shielding: Reduces ambient magnetic field



Keep cold efficiently

One of the major concerns in cryomodules.
Large scale refrigeration plant is also one of major challenges for large scale
machines

Need a very careful consideration in thermal and safety points of view.
thermal: minimize thermal loss or optimize operating condition
safety: cryogenic incident (machine protection, personnel protection)

Insulation: reduce thermal heat transfer
convection: vacuum chamber
conduction: penetrations, supporting structures
thermal radiation: Multilayer insulation (MLI), thermal shield



Heat Transfer

Radiation Higs
Radiation


http://earthfortress.com/wp-content/uploads/2009/06/heatrans.jpg

Conduction heat transfer

When a temperature gradient exists in a body or between objects that are in
physical contact, there’'s an energy transfer from the high temperature region to
the low temperature region.

The heat transfer rate is proportional to area, temperature gradient
oT
q=—-kKA—[W]
OX

where A area for conduction
k : proportioral constant called thermal conductivity (material property)
function of a temperature

Z—T :temperature gradient
X

Ex. Each end of rod (2cm dia. And 0.5m long) is connected to thermal
boundaries at 4K and 300 K,

Stainless steel: assume constant k=3 W/mK - gq=1*n*1e-4*296/0.5=0.568 W
Copper: assume constant k=300 W/mK - g=1*n*1e-4*296/0.5=56.8 W
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using a FEM code.
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Convection heat transfer

Heat transfer occurring due to the bulk motion of fluid (gas, liquid).

The transfer of energy between an object and its environment, due to fluid
maotion.

Pressure < 10 torr: negligible effect

Radiation heat transfer

The transfer of energy to or from a body by means of the emission or
absorption of electromagnetic radiation
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Energy radiated per unit time and per unit area by the ideal radiator is given
by the Stefan-Boltzmann law:

E, =oT"* where o is the Stefan - Boltzmann constant,5.669x10° W/(m? - K*)

Ex.) Heat exchange between non-blackbodies

G(T14 _T24)
1/e, +1/e, -1
oA, (Ty -T,)
1/e, + (AJA,)(L/e, -1)

1) Two infinitely parallel plates=> /A =

2) Two long concentric cylinders=> (=

Inner cylinder: T, A;, g;
Outer cylinder: T,, A,, €,

3) layers of low emissivity material and insulators.
Ideally (a/A)yitn shietds=(A/A)without shieid/ (1+N), N=number of layers



Phase diagram of “He
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Superfluid:

A phase of matter in which viscosity of a
fluid vanishes.

Discovered in 1937 by Kapitza, Allen, and
Misener.

L. Landau won the Novel Prize in Physics
‘Phenomenological and semi-microscopic
theory of superfluidity of “He’.
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Film creeping

Thermo-caloric effect


http://en.wikipedia.org/wiki/File:Helium-II-creep.svg

Cryogenic efficiency

Ideal Carnot efficiency
T

op

nideal —

T T

ambient ~ 'op

Ex. Ideal case:  mjy,=0.345 for 300K—>77K,
Nigea=0-014 for 300K—>4.2K

In practice, actual efficiency is much lower than this ideal case.
N/Migear™ Nratio LYPICally ranges 0.1~0.35 (<0.1 in small systems)
Smaller machine has lower efficiency.

As technologies improve, efficiencies are getting higher.

Some reference numbers for scaling
Room temperature power/power at 4.5 K: 250~350
Room temperature power/power at 2 K: 1100~1300

Rough scaling:
If we have 100 W load at 2 K - we need ~120 kW cryogenic system at least.
(we will re-visit this concern for machine efficiency estimation in Chapter 7)



Helium properties at saturation
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Low efficiency + small heat capacity + expensive: need very careful design



Ex. SNS Refrigerator System
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SNS CHL layout
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Schematics of cryomodule

Helium supply line Helium return/pumping port
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Space frame and thermal shield

Cavity string

g r‘CaV|ty with _'
a “\Hehum vesseI!J‘ 0

y



Ex: SNS Cryomodule
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Ex. SNS Cavity Assembly
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Resonance frequency control

Slow tuner (mechanical tuner):

Compensate static or quasi-static detuning
(initial offset or slow drift of resonance frequency)

Compress/expand cavity length typically using stepper motor

Coarse tuning: usually put the resonance frequency in the allowable band
Typical tuning range: about +/- few mm

Types:

CEA/Scalay tuners

blade tuner (DESY, INFN)
side jack tuner (KEK)



Helium
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Fast tuner:
Fine & fast tuning
Pulsed operation: Compensate Lorentz force detuning within RF pulses
High Q.,.; Compensate microphonics
Piezoelectric actuators: electromechanical actuator. Linear
electromechanical interaction between the mechanical and the
electrical state in piezoelectric materials.
typical tuning range: few to several um
magnetostrictive actuator: solid state magnetic actuator. A current

driven coil surrounding the magnetostrictive rod generates the
expansion of the rod.



Piezoelectric actuator

Voltage is applied to the piezoelectric actuator device which make the piezo
stack shrink/expand

- Shrink/expand pW
Piezo
stack Piezo-stack
L ;ag_einput
Typically

Stroke: 70~80 mm for 100 mm stack at room temperature
stroke at cryogenic temperature-> 5~10 % of that at room temperature
Resolution: ~Hz



Model vs. Reality




Power Coupler

Function:

Concerns:

Inner conductor

Deliver RF power

Coupling = Q. Outer conductor

Transmission loss Ceramic window

Thermal stability
Mechanical stability
Simplicity
Reliability

Cost

Multipacting Inner conductor

extension

Outer conductor

extension
Frequency

Power needed
Coupling
Types Doorknob

Cooling o —
Window Capacitor for d.c. bias

Waveguide
for doorknob



waveguide to room light detector (PM)
coax temperature

transition window warm vacuum warm coax cold coax
pumping port @ 62 mm @ 40 mm
Z=50 Ohm Z=70 Ohm

cold window
4.2 K point

Coaxial

bias voltage
feedthrough

pickup

isolating roomtemperature 70 K point 18K
Kapton foil isolation vacuum flange to
flange cavity

TTF3 coupler (ILC)

Waveguide
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Coupler conditioning
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