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Cryopumping Basics . . . Cryocondensation

• A cryogenic surface will trap any

molecule that contacts the surface 

if it is cold enough.

Cooling gases to the extent that gas 

molecules lose sufficient energy to  
form condensation layers.
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Cryopumping Basics . . . 
Equilibrium Vapor Pressure

Equilibrium occurs when the rate of 
gas molecules returning  to the 

liquid/solid (condensing) is equal to 
the rate of energetic molecules 
becoming gaseous (vaporizing).

Equilibrium vapor pressure is 
the state where as many 

molecules are 
condensing as are vaporizing.
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Cryopumping Basics . . . 
Pressure within a Cryopump

What determines the Pressure inside a 
Cryopump?

Surface Temp.       at 16K at 25K at 31K

•Nitrogen  > 10-12 Torr > 10-7 Torr > 10-4 Torr

•Argon > 10-12 Torr > 10-9 Torr > 10-4 Torr

•Oxygen        > 10-12 Torr > 10-10Torr > 10-4 Torr

•Hydrogen > 10+2 Torr

•Helium > Atm.
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Cryopumping Basics . . . Cryocondensation

60-80 K10-20 K4.2 K

4.2 K is impractical as Helium still boils

H2O

N2

Ar

Ne
H2

He
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Cryopumping Basics . . . Cryosorption

Cooling gas molecules to the 
extent that gas molecules, upon 
contacting a sufficiently cooled 
surface, lose enough energy to 
accumulate on the surface. 

• A flat cryoadsorbing plate retains 
some molecules.

• Flat surface allows molecules to 
continue moving.

Cryosorbing Plate

Ejected
Molecules

Cryopumping Surface

Free
Molecules

Adsorbed 
Molecules

Surface Collisions
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Cryopumping Basics . . . Cryosorption

• Sieve material, such    as 
charcoal, provides greater 
surface area and limited 
apertures.

• Large surface area capacity;

1150-1250 m2/gm

Activated Charcoal

Sieve Material

Internal Cavities
Limited

Apertures
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Cryopumping Basics . . . Cryosorption

• Increased surface area provides 
greater capacity.

• Released molecules remain 
confined.

• Irregular surface constricts 
motion.

• Cryosorption of hydrogen, neon, 
and helium accomplished.

Activated Charcoal
Free

Molecules

Adsorbed Molecules
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Cryopumping Basics . . . Surface Equilibrium

When the number of molecules 
arriving on the chamber surface 
(adsorbing) equals the number 
leaving the surface (desorbing), 
then the system is in “Surface 

Equilibrium”.
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Equilibrium

Equilibrium Vapor Pressure:

- CONDENSATION

- VAPORIZATION

Surface Equilibrium:

- ADSORPTION

- DESORPTION
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Cryopumping Basics . . . Cryosorption and 
Cryocondensation

Air gases and water vapor are condensed, 
noncondensible gases are captured.

60-80 K10-20 K

H2O
N2

Ar

Ne
H2

He

1st Stage2nd Stage
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Cryopump Concept

• Cryopumps are designed to 
create  these condensing 
and adsorbing surfaces.
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Cryopumping Basics . . . Adsorption Isotherm

An adsorption isotherm is a measure of 
the surface population density of a gas 

at a constant temperature.

σσσσ = f(P, T)

where σσσσ = density of molecules of gas 
on a surface per cm2

P = equilibrium pressure of
system

T = system temperature

Ejected
Molecules

Free
Molecules

Adsorbed 
Molecules
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Cryopumping Basics . . . Adsorption Isotherm

Ejected
Molecules

Free
Molecules

Adsorbed 
Molecules

Adsorption isotherms can be expressed several ways:

% Coverage

σσσσ = 0.20  surface 20% covered
σσσσ = 1 One monolayer (σσσσm)
σσσσ = 2 Two monolayers (2σσσσm)

Molecules/cm2

σσσσ = 1015 molecules/cm2
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Cryopumping Basics . . . Adsorption Isotherm

• Usually an adsorption isotherm represents  
pressure vs. coverage data for a specific 
temperature.

• As the temperature increases, the equilibrium 
pressure increases for a specific surface 
coverage.

• Each gas has its own unique adsorption isotherm  
for the same temperature.

• For all gases, the equilibrium pressure of an 
adsorption isotherm is less than the vapor 
pressure at that temperature.

• As surface coverage goes up (to several 
monolayers), the equilibrium pressure will approach 
the vapor pressure.
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Cryopumping Basics . . . Pumping Speed

• A cold surface has a finite 
pumping speed for a gas as long 
as the pressure of the 
adsorption isotherm is less than 
the pressure of the gas.

• As the surface coverage 
increases, the equilibrium 
pressure increases.

• Smax is set by the surface 
conductance limitations of the 
cryopump.

In cryosorption pumping, speed is 
dependent on the quantity of gas 

already adsorbed and the pressure.








=
P

P
 - 1S  S e

max
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Cryopumping Basics . . . Sticking Coefficients

CryoSurface  
Temperature 

(K)

Gas and Gas Temperature 

N2 CO O2 Ar CO2

77 K 300 
K

77 K 300 
K

77 K 300 
K

77 K 300 
K

77 K 300 
K

10 1.0 0.65 1.0 0.90 1.0 0.68 1.0 0.75

12.5 0.99 0.63 1.0 0.85 1.0 0.68 0.98 0.70

15 0.96 0.62 1.0 0.85 0.90 0.67 0.96 0.67

17.5 0.90 0.61 1.0 0.85 1.0 0.86 0.81 0.66 0.92 0.65

20 0.84 0.60 1.0 0.85 0.80 0.66 0.90 0.63

22.5 0.80 0.60 1.0 0.85 0.79 0.66 0.87 0.63

25 0.79 0.60 1.0 0.85 0.79 0.66 0.85 0.63

77 0.85 0.63

Ref. “Cryopumping”, Dawson and Haygood, Cryogenics 5 (2), 57, (1965)
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Cryopump

Characteristics:

• No fluids, lubricants, or moving 
parts

• High crossover capability 
minimizes backstreaming

• High water pumping speed

• Tailorable pumping speeds

• Operate in all orientations

• Continuous backing not required

Flange

Central
Processor

Vacuum
Vessel

1st Stage
Array

2nd Stage
Array

Radiation
Shield

Capture Type Pump
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• A cryopump is built around the 
cold-head.

– Creates the cold 
temperatures needed to 
condense and adsorb gases

– Two stages, each at a 
different temperature

• Achieves these temperatures by 
the expansion of helium.

Cryopump Components . . .The Cold-Head

1st Stage:
65 K

2nd Stage:
12 K
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Cryopump Components . . .
shield, vacuum vessel, and flange

• A radiation shield is attached to 
the 1st stage of the cold-head.

– Copper for conductivity

– Nickel plating for protection

• The vacuum vessel isolates the 
cryopump.

• The inlet flange attaches  to the 
chamber.

Radiation
Shield

Vacuum
Vessel

Flange
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Cryopump Components . . .
1st and 2nd Stage Arrays

• The 1st stage (65 K) array 
is attached to the radiation 
shield.

– Condenses water vapor

• A series of arrays with 
charcoal are attached  to 
the 2nd stage (12 K) of the 
cold-head.

– Condenses O2, N2, Ar

– Adsorbs H2, He, Ne 12 K Arrays
w/ Charcoal

65 K Array
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Primary Displacer

• Stainless housing

• Brass screen for thermal 
mass

• Phenolic casing

• Helium inlet and exhaust 

Cryopump System . . . The Refrigerator

Displacer
Housing

Exhaust Valve

Seal

Brass
Screen

Inlet Valve
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Secondary Displacer

• Second stage attached to 
top of primary displacer 
allows even lower 
temperatures.

• Lead shot for thermal 
mass.

• Phenolic casing.

Cyropump System . . . The Refrigerator

Displacer
Housing

Exhaust Valve

Seal

Brass
Screen

Inlet Valve

Seal

Lead
Shot
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• Cycle begins with both 
displacers at TDC.

Cyopump System . . . The Refrigerator

Top
-Dead
Center
(TDC)
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• Cycle begins with both displacers 
at TDC.

• Inlet valve opens.

• Displacers move downward.

Cryopump System . . . Refrigeration Cycle
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• Cycle begins with both displacers 
at TDC.

• Inlet valve opens.

• Displacers move downward.

• Helium fills void above primary 
displacer and passes through 
secondary displacer to fill second 
void.

Cryopump System . . . Refrigeration Cycle
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• At BDC, inlet valve closes.

• Exhaust valve opens.

• Gas has expanded in both voids 
and cools.

• Displacers move upward.

Cryopump System . . . Refrigeration Cycle

Bottom
-Dead
Center
(BDC)
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• Cooled gas flows down through 
both displacer matrices removing 
heat from thermal masses.

• Gas exits through exhaust valve.

Cryopump System . . . Refrigeration Cycle



USPAS January 2013
Cryopumps
Page 29

Ref  ©2000 Helix 
Technology Corporation

• Displacers again at TDC.

Cryopump System . . . Refrigeration Cycle
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• Displacers again at TDC. 

• Remaining gas exits.

• Exhaust valve closes.

• Cycle repeats at 72 rpm.

Cryopump System . . . Refrigeration Cycle
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Cryopump System . . . Refrigeration Cycle

After each cycle both displacer 
matrices (thermal masses) are 

colder, with the secondary mass 
colder than the primary ...

... incoming helium is  pre-cooled 
accordingly BEFORE expansion.



USPAS January 2013
Cryopumps
Page 32

Ref  ©2000 Helix 
Technology Corporation

Cryopump System Overview

Cold-Head
Power Cable

Input Power Cable

Cold Head

Cryopump

Mounting Flange
(Interface to Vacuum 
Chamber)

To
Roughing
System

Supply Line

Return LineHelium
Compressor

Unit

Control
Module
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Cryopump Operation - Cryocondensation

• Water molecules collide with the 
cooled surfaces of the 65 K  
first stage array.

• Condensation layers form as more 
of these molecules collect.
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Cryopump Operation - Cryocondensation

• Other molecules such as oxygen, 
nitrogen, and argon pass between 
the first stage arrays. 

• By colliding with the 12 K second 
stage arrays, these molecules 
also form condensation layers.
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Cryopump Operation - Cryoadsorption

• The noncondensible H2, He, and 
Ne molecules pass between the 
first stage arrays.

• Collide with walls and second 
stage arrays.

• Become adsorbed upon contacting 
the charcoal surfaces.
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Cryopump Operation - Cryoadsorption

• Affixing activated charcoal sieve 
material to the underside of the 
12 K second stage arrays, allows 
H2, He, and Ne to be 
cryoadsorbed.

Array

Charcoal
Sieve Material
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During normal operation, water 
vapor is condensed on the 65 K 
first stage array while oxygen, 

nitrogen, and argon are condensed 
on the 12 K second stage array.

Cryopump Operation – Argon Hang-Up

12 K
Array

65 K
Array
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Cryopump Operation – Argon Hang-Up

• Argon Hang-Up can occur if the 
first stage gets too cold.

• Results in argon being condensed 
(pumped) on the first stage.

• Where it stays until lower partial 
pressures are reached.

<65 K
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10-10         10-7           10-4           10-3 

Water   130K     153K     185K     198.5K

Argon   23.7K    28.6K    35.9K    39.2K

EQUILIBRIUM VAPOR PRESSURE

Cryopump Operation – Argon Hang-Up

• When the equilibrium pressure is 
reached.

– Argon liberates

– Pumpdown slows

– Causes “False Full” condition

65 K
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Cryopump Operation – Argon Hang-Up

• Argon liberates until it  is 
repumped onto the second stage 
where it should have been 
pumped.

65 K
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Cryopump Operation – Argon Hang-Up

• Argon Hang-Up can be avoided 
with modern controllers 
interfaced to the first stage 
sensor and heater. 

- Monitors and controls 
temperature

- Prevents a “Too Cold” 
condition

H
e
a
t
e
r

Control Module

T
e
m
p
e
r
a
t
u
r
e

S
e
n
s
o
r

Constant
65 K
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Gas Collected  =  Pressure  x  Speed  x  Time

Gas Capacity (at STP)

Water Vapor 1000 liters (gas)

1 liter (ice)

Nitrogen & Argon 1000 liters (gas)

1 liter (ice)

Hydrogen 17 liters (gas)

Typical Capacity - 8” Cryopump

Cryopump Design . . . Capacities
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Cryopump Operation . . . Crossover

During chamber evacuation,when should the 
high-vacuum valve be opened?

For cryopumps, the maximum crossover 
capability is specified as the impulsive 

mass input that causes the second stage 
to rise no higher than 20 K.
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Cryopump Operation . . . Crossover

Example: Crossover Pressure Calculation

Crossover value for a CTI On-Board 8 = 150 Torr-liters

Crossover formula:  Crossover value = P in Torr
Chamber volume

150 Torr-liters = .5 Torr or 500 milliTorr

Understanding crossover can produce faster 

pumpdown times and cleaner vacuum too.

300 liters
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Cryopump Operation . . . Regeneration

The objective of regenerating a cryopump is to remove the 
captured gases from the pump and restore its pumping 

capacity.

Whenever your system is down is a good opportunity to 
regenerate your cryopump without affecting your up-

time.

So . .. when should cryopumps be regenerated?
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Cryopump Operation . . . Regeneration

• Regeneration
– Warm-Up and Purge

Regeneration

TIME (hrs)

TEMP
(K) Warm-Up

and Purge

High Vacuum
Valve Closed

Pump Off
Purge Tube
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Cryopump Operation . . . Regeneration

• Regeneration
– Warm-Up and Purge

– Extended Purge

– Rough Out

– Rate-of-Rise (ROR) Test

Roughing Line

Regeneration

TIME (hrs)

TEMP
(K) Warm-Up

and Purge

Extended Purge, Rough,
& Rate-of-Rise Test
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Cryopump Operation . . . Regeneration

• Regeneration
– Warm-Up and Purge

– Extended Purge

– Rough Out

– Rate-of-Rise (ROR) Test

– Cool Down

Regeneration

TIME (hrs)

TEMP
(K) Warm-Up

and Purge

Extended Purge, Rough,
& Rate-of-Rise Test

Cool Down
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Cryopump Operation . . . Regeneration

• Regeneration

Typically 5-6 hours cold-to-
cold.

Regeneration

TIME (hrs)

TEMP
(K) Warm-Up

and Purge

Extended Purge, Rough,
& Rate-of-Rise Test

Cool Down

5
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Example of Cryo-pumped Accelerator – DARHT II
(the Dual Axis Radiographic Hydro-Test)
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Example of Cryopumped Accelerator – APT RFQ

• Cryogenic Pumping System for Cavity 
system, with H2 Pumping Speed of 
12,000 L/s

• This assembly was completed and 
successfully tested at LLNL Vacuum 
Lab. The whole system was then 
delivered and installed at the 
APT/LEDA facility.


