January 14-18 2013



Vacuum Science and Technology for Accelerator Vacuum Systems

Yulin Li and Xianghong Liu Cornell University, Ithaca, NY





Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)





# Table of Contents

- Vacuum Fundamentals
- Vacuum Instrumentation
- Vacuum Pumps
- Vacuum Components/Hardware
- Vacuum Systems Engineering
- Accelerator Vacuum Considerations, etc.

#### SESSION 4.1: VACUUM MATERIALS

- Metals
  - → Stainless Steels
  - $\rightarrow$  Aluminum and Alloys
  - → Copper and Alloys
  - $\rightarrow$  Other metals
- Non-metals

   → Ceramics and Glasses
   → Delymore
  - $\rightarrow$  Polymers

### Stainless Steels – Classifications



- Stainless steel is a steel alloy with at least 11% chromium content by weight. It is also called corrosion-resistant steel.
- Austenitic stainless steel (300 series): These are generally non-magnetic steel alloys. They contain a maximum of 0.15% carbon, a minimum of 16% chromium and sufficient nickel and/or manganese to retain an austenitic structure at all temperatures from the cryogenic region to the melting point of the alloy. The low carbon (-L) grades are used when welding is involved. In UHV applications, especially accelerators, 300 stainless steels are commonly used.
- Other less used types of stainless steel alloys are: Martensitic stainless steels (400 series), precipitation-hardening martensitic stainless steels (most common used 17-4PH) and ferritic stainless steels. Martensitic stainless steels are much more machinable, and are magnetic. Those are much less used for accelerators, mainly due to the magnetism.

4



### Austenitic Stainless Steels



- \* High strength, moderate formability, excellent weldability.
- \* Can be extruded in simple shapes
- \* 304L 55, most commonly used in vacuum, but may become magnetized from machining and welding.
- \* 316L SS, with Mo added, more expensive, resistant to chemical attack, welds are non-magnetic 316LN SS, a nitrogen-enhanced 316L steel, much more expensive, but excellent strength at very elevated temperatures (as high as 1000°C)
- Wide variety of circular tubes and pipes available (seamless & welded)
- Outgassing rates can be decreased by employing good machining techniques, chemical cleaning and baking (up to 900°C)
- \* Poor thermal and electrical conductivity





| Property                        | 304L | 316L | 316LN | OFE Cu |
|---------------------------------|------|------|-------|--------|
| Ultimate Tensile Strength (MPa) | 564  | 560  | 637   | 338    |
| Tensile Strength (ksi)          | 81.8 | 81.2 | 92.4  | 49.0   |
| Yield Strength (Mpa)            | 210  | 290  | >280  | 217    |
| Yield Strength (ksi)            | 30.5 | 42.1 | >41.6 | 31.5   |
| Elongation at Break (%)         | 58   | 50   | 58    | 55     |
| Modulus of Elasticity (Mpa)     | 197  | 193  | 200   | 115    |
| Modulus of Elasticity (ksi)     | 28.6 | 28.0 | 29.0  | 16.7   |

| Ref. www.matweb.com |
|---------------------|
|---------------------|



#### Physical Properties for Stainless Steels



| Property                                  | 304L                                                                                           | 316L                                                                                      | 316LN                                                                                               | OFE Cu                  |
|-------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------|
| Composition:                              | C 0.03%<br>Cr 18-20%<br>Mn 2%<br><i>Fe Balance</i><br>Ni 8-12%<br>P 0.045%<br>S 0.03%<br>Si 1% | C <0.03%<br>Cr 17.9%<br>Mn 2.0%<br>Mo 2.5%<br>Fe Balance<br>Ni 11-14%<br>S 0.03%<br>Si 1% | C <0.03%<br>Cr 17.9%<br>Mn 2.0%<br>Mo 2.5%<br>Fe Balance<br>Ni 10.8%<br>N 0.16%<br>S 0.03%<br>Si 1% | Cu 100%                 |
| Melting Point (°C)                        | 1427                                                                                           | 1385                                                                                      | 1400                                                                                                | 1083                    |
| Density (g/cc)                            | 8.0                                                                                            | 8.0                                                                                       | 8.0                                                                                                 | 8.92                    |
| Electrical Resistivity ( $\Omega$ -cm)    | 7.2 x 10 <sup>-5</sup>                                                                         | 7.2 x 10 <sup>-5</sup>                                                                    | 7.4 x 10 <sup>-5</sup>                                                                              | 1.71 x 10 <sup>-6</sup> |
| Elect. Conduct. (% IACS*)                 |                                                                                                |                                                                                           |                                                                                                     | 101                     |
| Therm. Conduct. (W/m-K)                   | 16.2                                                                                           | 16.3                                                                                      | 16.0                                                                                                | 391                     |
| Coeff. Of Therm. Exp. (°C <sup>-1</sup> ) | 17.2×10-6                                                                                      | 16.0x10 <sup>-6</sup>                                                                     | 16.0x10 <sup>-6</sup>                                                                               | 17.5×10 <sup>-6</sup>   |

7









Plate/Rod - ESR or Cross-Forged



- Stainless steels are the most common material for making knife-edge sealing flanges
- For making knife-edge seal flanges, either ESR or cross-forged stainless steels should be used to avoid costly defects on the knife-edge tip

THE ELECTROSLAG REMELTING (ESR) PROCESS IS USED TO REMELT AND REFINE STEELS AND VARIOUS SUPER-ALLOYS, RESULTING IN HIGH-QUALITY INGOTS.





#### Cornell DC Photo-Cathode Electron Gun Chamber





#### As received stainless steel gun chamber



Air-baked, and assembled to the gun, w/ pumps and gauges





## Aluminum and Alloys



| Alloy<br>Number | Major Alloy<br>Element(s) | Characteristics and Sample Applications                                                                                             |
|-----------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1xxx            | None                      | Good electric and thermal conductivities, corrosion resistance.<br>Typical applications: electric conductor wires and bus           |
| 2xxx            | Copper                    | High strength, at room and elevated temperatures, Alloys 2011, 2017, and 2117 are widely used for fasteners and screw-machine stock |
| Зххх            | Manganese                 | Similar property as 1100, slightly higher strength. Good for sheet works.                                                           |
| 4xxx            | Silicon                   | Excellent flow characteristics. Alloy 4032 for forging, 4043 used for GMAW and TIG 6xxx alloys.                                     |
| 5xxx            | Magnesium                 | Mostly for structural applications, matching 6xxx extrusions well. 5083 alloy suitable for cryogenic applications.                  |
| 6xxx            | Magnesium<br>+ Silicon    | 6061-T6 is one of the most commonly used, 6063 is mostly used in extruded shapes                                                    |
| 7xxx            | Zinc                      | Mostly for structural, supporting frames. 7075-T6 is one of the most used 7000 series aluminum, and strongest one.                  |
| 8xxx            | Sn, Li, etc.              | Specialty alloys not cover by other series.                                                                                         |







- Besides alloy designations (with Nxxx), there are standard temper designations for aluminum alloys, with one letter and a numeral.
- For strain-hardened (cold-worked), there are hardness designations.
  - -F as fabricated;
  - -H1 Strain hardened without thermal treatment
  - -H2 Strain hardened and partially annealed
  - -H3 Strain hardened and stabilized by low temperature heating

#### For alloys can be heat treated to produce stable tempers (partial list)

- -O Full soft (annealed);
- -T2 Cooled from hot working, cold-worked, and naturally aged
- -T4 Solution heat treated and naturally aged
- -T5 Cooled from hot working and artificially aged (at elevated temperature)
  - -T51 Stress relieved by stretching
    - -T511 Minor straightening after stretching
- -T6 Solution heat treated and artificially aged







- \* Moderate strength, good formability, easy to machine
- 6063-T4 can be extruded in complicated shapes
- \* 6061-T6 is the most common aluminum alloy for vacuum components
- \* 5083 is a good alloy for welding
- Aluminum is much cheaper to machine than stainless steel (2x to 3x cheaper)
- \* Aluminum is much less likely been radiactivated.
- Special care must be taken in the design of welds and the techniques used due to higher thermal conductivity and thermal expansion (30% > 55)
- Surface anodizing degrades outgassing characteristics, but improves chemical resistance





| Property                    | 1100-0 | 5083-H34 | 6061-T6 | OFE Cu |
|-----------------------------|--------|----------|---------|--------|
| Tensile Strength (MPa)      | 165    | 345      | 310     | 338    |
| Tensile Strength (ksi)      | 23.9   | 50.0     | 45.0    | 49.0   |
| Yield Strength (Mpa)        | 150    | 280      | 275     | 217    |
| Yield Strength (ksi)        | 21.8   | 40.6     | 39.9    | 31.5   |
| Elongation (%)              | 5      | 9        | 12      | 55     |
| Modulus of Elasticity (Mpa) | 69     | 70.3     | 69      | 115    |
| Modulus of Elasticity (ksi) | 10.0   | 10.2     | 10.0    | 16.7   |

Ref. www.matls.com



#### Typical Physical Properties for Aluminum



| Property                                  | 1100-0                                                       | 5083-H34                                                                                                     | 6061-T6                                                                                                              | OFE Cu                |
|-------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------|
| <b>Composition:</b>                       | Al 99%<br>Cu 0.05-0.2%<br>Mn 0.05%<br>Si+Fe 0.95%<br>Zn 0.1% | Al 94.8%<br>Cu 0.1%<br>Cr 0.05-0.25%<br>Mg 4-4.9%<br>Mn 0.4-1%<br>Fe 0.4%<br>Si 0.4%<br>Ti 0.15%<br>Zn 0.25% | Al 98%<br>Cu 0.15-0.4%<br>Cr 0.04-0.35%<br>Mg 0.8-1.2%<br>Mn 0.15%<br>Fe 0.7%<br>Si 0.4-0.8%<br>Ti 0.15%<br>Zn 0.25% | Cu 100%               |
| Melting Point (°C)                        | 643                                                          | 591                                                                                                          | 582                                                                                                                  | 1083                  |
| Density (g/cc)                            | 2.71                                                         | 2.66                                                                                                         | 2.7                                                                                                                  | 8.92                  |
| Electrical Resistivity (Ω-cm)             | 3×10 <sup>-6</sup>                                           | 5.9×10 <sup>-6</sup>                                                                                         | 3×10 <sup>-6</sup>                                                                                                   | 1.7×10 <sup>-6</sup>  |
| Heat Capacity (J/g-°C)                    | 0.904                                                        | 0.9                                                                                                          | 0.896                                                                                                                | 0.385                 |
| Therm. Conduct. (W/m-K)                   | 218                                                          | 117                                                                                                          | 167                                                                                                                  | 391                   |
| Coeff. Of Therm. Exp. (°C <sup>-1</sup> ) | 25.5×10 <sup>-6</sup>                                        | 26×10-6                                                                                                      | 25.2×10-6                                                                                                            | 17.5x10 <sup>-6</sup> |

#### Ref. www.matls.com



### Machined Aluminum "Switch-yard" Chamber











#### Aluminum Electron Beam Stopper













#### Extruded Beam Pipes – Complex Shape











### Copper and Alloys



- Copper and alloys are designated by a system starting with letter "C", followed by 5 digits, more copper contents with lower numbers.
- Typical copper alloys are C10100 (OFHC), C26800 (Yellow Brass, Zinc alloy), C61400 (Bronze, Silicon alloy), C17200 (Beryllium coppers)
- Low-to-moderate strength, good formability
- Excellent electrical and thermal characteristics
- Difficult to weld (e-beam welding is best)
- May be joined by welding, brazing, and soldering
- Good outgassing characteristics, rates can be decreased by following good machining techniques, chemical and baking (~200° C)





#### Oxygen-Free High Conductivity (OFHC) Copper



- OFHC is often used in accelerator vacuum system, where high heat load in encountered. It is also used to construct normal conducting radio-frequency (RF) cavities.
- C10100 This is the purest grade, with 99.99% Cu, <0.0005% (or 5 ppm) oxygen content.
- □ *C10200 99.95% Cu (including Ag), <0.001% (10-ppm) oxygen content.*
- □ *C11000 Also know as Electrolytic-Tough-Pitch (ETP) copper. It is* 99.9% pure and has 0.02% to 0.04% oxygen content (typical).
- Low oxygen content is critical for vacuum assemblies involving welding







| Density  | Electric<br>Resistivity    | Thermal<br>Conductivity | C.T.E.      | M.P.   |
|----------|----------------------------|-------------------------|-------------|--------|
| 8.9 g/cc | 1.71x10 <sup>-6</sup> Ω-cm | 383 ~ 391 W/m-K         | 17.0 µm/m-K | 1083°C |

| Temper Designation Standard | Tensile Strength (ksi) |      | Yield Strength |
|-----------------------------|------------------------|------|----------------|
|                             | Min.                   | Max. | (ksi, min.)    |
| 060 Soft                    | 30                     | 38   |                |
| H00 Cold-Rolled, 1/8-hard   | 32                     | 40   | 20             |
| H01 Cold-rolled, ¼-hard     | 34                     | 42   | 28             |
| H02 Half Hard               | 37                     | 46   | 30             |
| H03 ¾-hard                  | 41                     | 50   | 32             |
| H04 Full hard               | 43                     | 52   | 35             |





#### Copper Vacuum Chamber Example





C10100  $\frac{1}{2}$ -Hard Cu plates machined to form a beam pipe



C10100  $\frac{1}{2}$ -Hard Cu sheet bend to U-box to form a TiSP pumping plenum



SST L-shaped plates added to complete vacuum envelop, with enhance mechanical strength.

(Flanges to be added)





Copper Extrusions Cooling Bar Extrusion -"Dipole" Chamber Screen Extrusion Extrusion



# Machined Copper Chamber (PEP-II RF Cavities)





- 26 cavities
- \$4M total fabrication cost
- Integral cooling channels with electroformed cover
- 5 axis machining
- e-beam welded
- 17 separate manufacturing steps









#### Glidcop is pure copper with $Al_2O_3$ dispersed throughout.

- · High strength, moderate formability, poor weldability.
- · Available in sheets, plate, wire, and extruded rounds.
- · Maintains good mechanical strength after brazing.
- · Outgassing rates are similar to pure copper.
- · Thermal and electrical properties are good.

| Grade Designations |                 | Copper |       | Al <sub>2</sub> O <sub>3</sub> |       |
|--------------------|-----------------|--------|-------|--------------------------------|-------|
| UNS                | SCM Metal Prod. | Wt %   | Vol % | Wt %                           | Vol % |
| C15715             | Glidcop AL-15   | 99.7   | 99.3  | 0.3                            | 0.7   |
| C15725             | Glidcop AL-25   | 9.5    | 98.8  | 0.5                            | 1.2   |
| C15760             | Glidcop AL-60   | 98.9   | 97.3  | 1.1                            | 2.7   |

#### Ref. SCM Metal Products





Glidcop™ Physical Properties



| Property                                   | C15715                | C15725                | C15760                | OFE Cu                |
|--------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Melting Point (°C)                         | 1083                  | 1083                  | 1083                  | 1083                  |
| Density (lb/in³)                           | 0.321                 | 0.320                 | 0.318                 | 0.323                 |
| Electrical Resistivity ( $\Omega$ )        | 11.19                 | 11.91                 | 13.29                 | 10.20                 |
| Elect. Conduct. (% IACS*)                  | 92                    | 87                    | 78                    | 101                   |
| Therm. Conduct. (W/m-K)                    | 365                   | 344                   | 322                   | 391                   |
| Coeff. Of Therm. Exp. ( $^{\circ}C^{-1}$ ) | 16.6×10 <sup>-6</sup> | 16.6×10 <sup>-6</sup> | 16.6×10 <sup>-6</sup> | 17.7×10 <sup>-6</sup> |
| Mod. Of Elasticity (psi)                   | 19×10 <sup>6</sup>    | 19×10 <sup>6</sup>    | 19×10 <sup>6</sup>    | 19×10 <sup>6</sup>    |

\* International Annealed copper Standard

Ref. SCM Metal Products



### Glidcop™ Mechanical Properties <sup>1</sup>



| Grade             | Form   | Tensile Strength (ksi) <sup>2</sup> | Yield Strength (ksi) <sup>2</sup> |
|-------------------|--------|-------------------------------------|-----------------------------------|
| AL-15             | Plate  | 53 ~ 70                             | 37 ~ 66                           |
| (C15715)          | Rod    | 57 ~ 72                             | 47 ~ 66                           |
|                   | Rounds | 53                                  | 37                                |
| AL-25<br>(C15725) | Plate  | 60 ~ 76                             | 43 ~ 68                           |
|                   | Rod    | 64 ~ 80                             | 52 ~ 77                           |
|                   | Rounds | 60                                  | 43                                |
| AL-60             | Plate  |                                     |                                   |
| (C15760)          | Rod    | 72 ~ 90                             | 69 ~ 87                           |
|                   | Rounds | 68                                  | 48                                |
| C10100            |        | 30 ~ 50                             | 20 ~ 35                           |

- 1. Ref. <u>http://www.hoganas.com</u>
- 2. Large spread reflect strength at different tempers



#### NSLS II Crotch and Absorber Made of Glidcop™





Ref: H. Hseuh, NSLS II, BNL







### Other Metals – Beryllium



- Beryllium is the lightest metal with good mechanical strength and good thermal conductivity.
- Beryllium is machinable and can be jointed via vacuum braze or e-beam welding.
- Beryllium is hazard mat'l, must be handled by highly trained experts





UHV X-ray Windows

Duke



75µm Be e<sup>-</sup> Injection Window





SynchLight Mirror





#### Other Metals – Niobium & Titanium

- High purity, small grain niobium is the key material for constructing superconducting RF cavities for many existing and future (such as Jlab, Cornell CESR and ERL, Tesla, ILC, etc.) facilities
- The grade od the Nb material is usually certified by so-called RRR (Residual-resistance ratio). Hydrogen in the Nb bulk is often degassed for high-Q cavities.
- To match CTE, titanium (grade 1 and grade 5) are used to joint to Nb cavities for flanges and helium vessels.
- E-beam welding is the primary technique for Nb and Ti.

















### Non-Metals – Ceramics and Glasses



- Alumina ceramics (Al2O<sub>3</sub> > 99%) are widely used for electric breaks, instrument and electric power feedthroughs, RF windows in the accelerator vacuum systems.
- Alumina ceramic beam pipes with thin inner metallic coating are also used as a part of pulsed magnet for beam feedback, injection kickers, etc.
- Ceramics are jointed to metal flanges using vacuum furnace braze technique.
- Many type of glasses are used mainly as viewports on vacuum systems, for visual inspection of in-vacuum components, for light transmissions (laser entrance, beam profile viewers, etc.)
- Machined ceramic parts are UHV compatible. Special diamondtipped tools are used for ceramic machining. There are also machinable ceramics, such Macor®.



#### Properties of Some Glasses for Vacuum



| Property                            | Fused<br>Silica | Pyrex<br>7740 | 7720ª  | Soda<br>7052ª | 0080 | Lead<br>0120 |
|-------------------------------------|-----------------|---------------|--------|---------------|------|--------------|
| Composition                         |                 |               |        |               |      |              |
| SiÓ <sub>2</sub>                    | 100             | 81            | 73     | 65            | 73   | 56           |
| $B_2O_3$                            |                 | 13            | 15     | 18            |      | 1 .          |
| Na <sub>2</sub> O                   |                 | 4<br>2        | 4<br>2 | 2<br>7        | 17   | 4            |
| Al <sub>2</sub> O <sub>3</sub>      |                 | 2             | 2      | 7             | 1    | 2            |
| K <sub>2</sub> O                    |                 |               | ,      | 3             |      | 9            |
| PbO                                 |                 |               | 6      |               |      | 29           |
| LiO                                 |                 |               |        | 3             | 9    |              |
| Other                               |                 |               |        | 3             | 9    |              |
| Viscosity characteristics           |                 |               |        |               | -    |              |
| Strain point °C                     | 956             | 510           | 484    | 436           | 473  | 395          |
| Annealing point °C                  | 1084            | 560           | 523    | 480           | 514  | 435          |
| Softening point °C                  | 1580            | 821           | 755    | 712           | 696  | 630          |
| Working point °C                    |                 | 1252          | 1146   | 1128          | 1005 | 985          |
| Expansion coefficient ×10-7/°C      | 3.5             | 35            | 43     | 53            | 105  | 97           |
| Shock temperature, 1/4-in. plate °C | 1000            | 130           | 130    | 100           | 50   | 50           |
| Specific gravity                    | 2.20            | 2.23          | 2.35   | 2.27          | 2.47 | 3.05         |
|                                     |                 |               |        |               |      |              |

Source. Reprinted with permission from Corning Glass Works, Corning, NY. 7720 glass is used for sealing to tungsten and 7052 glass is used for sealing to Kovar.





| Table 16.6 Physical Properties of Some Ceramics                                                            |                                                                                                                                                                                                     |                                                  |                                              |                                                             |                                        |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|----------------------------------------|
| Ceramic                                                                                                    | Main Body<br>Composition                                                                                                                                                                            | Expansion<br>Coefficient<br>(×10 <sup>-7</sup> ) | Softening<br>Temperature<br>(°C)             | Tensile<br>Strength<br>(10 <sup>6</sup> kg/m <sup>2</sup> ) | Specific<br>Gravity                    |
| Steatite<br>Forsterite<br>Zircon porcelain<br>85% alumina<br>95% alumina<br>98% alumina<br>Pyroceram 9696" | MgOSiO <sub>2</sub><br>2MgOSiO <sub>2</sub><br>ZnO <sub>2</sub> SiO <sub>2</sub><br>Al <sub>2</sub> O <sub>3</sub><br>Al <sub>2</sub> O <sub>3</sub><br>Al <sub>2</sub> O <sub>3</sub><br>Corderite | 7090<br>90120<br>3050<br>5070<br>5070<br>5070    | 1400<br>1400<br>1500<br>1400<br>1650<br>1700 | 6<br>7<br>8<br>14<br>18<br>20                               | 2.6<br>2.9<br>3.7<br>3.4<br>3.6<br>3.8 |
| Macor 9658 <sup>a</sup>                                                                                    | ceramic<br>Fluro-                                                                                                                                                                                   | 57                                               | 1250                                         | 14 *                                                        | 2.6                                    |
|                                                                                                            | phlogophite                                                                                                                                                                                         | 94                                               | 800                                          | 10 %                                                        | 2.52                                   |

Source. Reprinted with permission from Vacuum, 25, p. 469, G. F. Weston. Copyright 1975, Pergamon Press, Ltd. Reprinted with permission from Corning Glass Works, Corning, NY.

b

Modulus of rupture.



#### Non-Metals – Elastomers and Polymers



- Elastomers, polymers and plastics have also found application in accelerator vacuum systems. Their vacuum properties and radiation resistance must be verified for the applications.
- Elastomers, particularly Viton® (fluorocarbon) are usually used as vacuum seals, often as gate seals for UHV gate valves.
- Though Teflon is UHV compatible, it is easily hardened and break down under radiation. PEEK (Polyether ether ketone) is a type of engineered plastics that is suitable for accelerator UHV applications. PEEK has good formability and machinability. The most uses are in vacuum multi-pin connectors.
- □ Kapton® (polyimide) films are suitable for accelerator UHV applications.





### Dry Lubrications in UHV Systems



- For in-vacuum movement that involves two metallic surfaces in contact, particularly two similar metals, lubrication is between the contacting surfaces is necessary.
- □ For UHV applications, dry-lubrication is widely used. In a dry lubrication, the process of lubricating relies on a solid film.
- The desirable properties of a dry lubricant are low vapor pressure, low shear strength, and good adhesion to the base metal.
- Commonly used UHV-compatible dry lubricants are silver (electroplated), MoS<sub>2</sub>, WS<sub>2</sub> (Dicronite®) (via PVD). Teflon coating is also a UHV-compatible dry lubricant, however, it is not durable in radiation environment.





### UHV-compatible grease lubricants





However, extreme low vapor pressure may not be good enough in applications where energized desorption may occur.





Stimulated desorption of Krytox







### Methods of Making Vacuum Joints











Welding is the process where two materials are joined by fusion

- > Welding is the most common method for joining metals in vacuum systems.
- Inert gas welding is the most common type of welding (TIG, MIG).
- Joint design is critical from vacuum, metallurgical and distortion standpoints.
- > Cleanliness is essential.
- Other welding processes to consider are electron beam and laser welding.





## TIG – Tungsten Inert Gas Welding





- TIG welding is one of most difficult welding, when operating manually.
- Inert gas mixture (Ar and He) form a shield to protect the hot-zone from oxidization. The composition of the gas mixture vary with metal and mass.
- Arc power may be direct current or alternate current
- G Filler rod is often used, but not needed for some fusion welds.



# Welding Stainless Steel



- TIG welding of stainless steels is among easiest, and heat-affected zone (HAZ) is very small.
- In most cases, filler is not needed. However, reinforce stitch welds with filler are added for strengthening the welded joint.











- The high thermal conductivity of copper makes welding difficult. Heating causes the copper to re-crystalize forming large grain size and annealing. Distortion is also a big problem.
- Copper weldment can be fused via TIG with or without fillers. •
- Braze copper to copper, or copper to stainless steel is also done with TIG ٠ technique, using CuSil (72%Ag-28%Cu) alloy fillers. (At Cornell, we call this BT-weld, or Braze-TIG.)
- Copper requires: •
  - 1. Very high welding speeds
  - 2.Excellent material purity (OFE copper) and cleanliness.
  - 3.Good joint design
  - 4. Welding coppers must be done in an inert glove-box, or at least purging in-vacuum surfaces.
- Electron beam welding is an excellent process for welding copper. •
- Vacuum furnace braze is also a good option for coppers. •





# Welding Aluminum



- Low melting point, relatively high thermal conductivity, and high rate of thermal expansion make welding aluminum more problematic than stainless steel.
- □ Aluminum requires:
  - > 1. High welding speeds (higher current densities)
  - > 2. Good material purity and cleanliness
  - > 3. Good joint design
- Aluminum welds have a tendency to crack from excessive shrinkage stresses due to their high rate of thermal contraction. Filler rods (usually 4043 or similar alloys) always needed.
- □ To keep the aluminum weldment clean from oxidization, AC power is usually used during TIG, with characteristic popping noises.



# Electron Beam Welding (EBW)



- EBW provides extremely high energy density in its focused beam producing deep, narrow welds.
- This rapid welding process minimizes distortion and the heat affected zone.
- · Very good control and reproducibility in weld penetration.
- A disadvantage of EBW is that the process takes place under vacuum (P =  $10^{-5}$  Torr):
  - Extensive fixturing required
  - High initial cost
  - Weld preps are extremely critical, as no filler used.
  - Complexity
  - Welds are not cleanable



### Copper chambers EBW





**RF** Cavity

#### Welding 1-mm thick Copper Cover on CesrTA EC Detector Chamber



Load into EBW Chamber







# SLAC Electron Beam Welder











Soldering is the process where materials are joined together by the flow of a "filler metal" through capillary action.

- Soldering is differentiated from brazing primarily by the melting temperature of the filler metals. Solder alloys melt below 450°C.
- Because of lower working temperature, usually corrosive flux is needed to ensure proper 'wetting' of the surfaces.
- □ All soft solders are unacceptable for UHV systems because:
  - \* They contain Pb, Sn, Bi, Zn (vapor pressures are too high)
  - System bake-out temperatures typically exceed alloy melting points.
  - \* Residuals of corrosive flux left on the joints, a long-term reliability issue.
- □ Most silver solders are unacceptable.









Brazing is the process where two dissimilar materials are joined together by the flow of a "filler metal" through capillary action.

- □ There are several different brazing processes:
  - 1. Torch
  - 2. Furnace
  - 3. Induction
  - 4. Dip
  - 5 Resistance
- Brazing can be used to join many dissimilar metals. The notable exceptions are aluminum and magnesium.
- □ Cleanliness is important in brazing. Cleanliness is maintained by use of a flux or by controlling the atmosphere (vacuum or  $H_2$ ).
- □ For vacuum furnace brazing, flux is NOT used.





Brazing (Cont.)



- Filler metals (brazing alloys) come in the form of wire, foils, or paste.
- Brazing alloys are selected to have melting points below that of the base metal. The brazing alloys must be able to 'wet' the base metal(s).
- Generally, brazing alloys can be categorized into eutectic or noneutectic. For eutectic alloy, the transitions between solidus and liquids occur at a very narrow band (within a degree). Eutectic alloys are usually preferable.
- Multiple braze steps are possible by choosing alloys of differing melting points and proceeding sequentially from highest to lowest temperature.
- Braze joints require tight tolerances for a good fit (0.002" to 0.004") to ensure capillary flow.



### Some Braze Alloys for UHV Components



| Alloy               | Brazing<br>Temperature | Composition               |
|---------------------|------------------------|---------------------------|
| Georo <sup>TM</sup> | 361°C                  | 88% Au, 12% Ge            |
| CuSil™              | 780° <i>C</i>          | 72% Ag, 28% Cu            |
| BAu -2              | 890°C                  | 80% Au, 20% Cu            |
| Au-Cu-Ni            | 925°C                  | 81.5% Au, 16.5% Cu, 2% Ni |
| BAu -4              | 950°C                  | 82% Au, 18% Ni            |
| 50/50<br>Au-Cu      | 970°C                  | 50% Au, 50% Cu            |
| 35/65<br>Au-Cu      | 1010°C                 | 35% Au, 65% Cu            |



#### Duke Yulin Li, January 14-18 2013

# over an hour.

- Most diffusion bonding operations are conducted in vacuum or in an inert gas atmosphere
- Diffusion bonding requires very clean components with excellent surface finishes.
- Diffusion bonding can also bonding dissimilar materials

# Diffusion Bonding

- Diffusion bonding is a joining technique where pre-machined components are held together under modest loads at elevated temperatures.
  - The loads are usually well below those producing deformation.
  - Bonding temperatures typically range from 50-80% of melting temperatures of the metals
  - Processing times vary from 1 minute to













# Friction Bonding/Welding



- Friction welding (FW) is a class of solid-state welding processes that generates heat through mechanical friction between a moving work piece and a stationary component, with the addition of a lateral force called "upset" to plastically displace and fuse the materials.
- FW is useful to bond dissimilar materials, such as aluminum to stainless steel, which otherwise difficult to joint.





# Explosion Bonding



- Two Plates Are Spaced One Above the Other with Ammonium Nitrate Explosives on top. Thin transitional metal sheet(s) is often used in order to bond dissimilar metals. A progressive charge is detonated and the plates Accelerated to Contact.
- Extreme heat and pressure created at Impact and Ultra Clean Surfaces to fuse the plates to form metallurgical bonding.









#### A Claim – All Metal Combinations can be bonded



| Atlas Tech       | nol  | ogi      | es        | Bor      | ndir   | ng I     | Mat     | rix  |         |        |       |      |           |            |             |                 |         |          |         | Сору   | Righ            | t Atla:     | s Tecl          | hnolo    | gies J | lanua    | ry 199        | 98       |      |           |  |
|------------------|------|----------|-----------|----------|--------|----------|---------|------|---------|--------|-------|------|-----------|------------|-------------|-----------------|---------|----------|---------|--------|-----------------|-------------|-----------------|----------|--------|----------|---------------|----------|------|-----------|--|
|                  |      | Aluminum | AL. Alloy | Chromium | Copper | CU Alloy | GlidCop | Gold | Hafnium | Indium | Iron  | Lead | Magnesium | Molydbenum | Moly. Alloy | Nickel, (Invar) | Niobium | Platinum | Rhenium | Silver | Steel, & Alloys | Steel, Mild | Stainless Steel | Tantalum | Tin    | Titanium | Tungsten      | Vanadium | Zinc | Zirconium |  |
|                  |      | 1        | 2         | 3        | 4      |          | 6       | 7    | 8       | 9      | 10    | 11   | 12        | 13         | 14          | 15              | 16      | 17       | 18      | 19     | 20              | 21          | 22              | 23       | 24     | 25       | 26            | 27       | 28   | 29        |  |
| Aluminum         | 1    |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| AL. Alloy        | 2    |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Chromium         | 3    |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Copper           | 4    |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| CU Alloy         | 5    |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Gold             | 6    |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| GlidCop          | 7    |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Hafnium          | 8    |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Indium           | 9    |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Iron             | 10   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Lead             | 11   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Magnesium        | 12   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Molydbenum       | 13   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Moly. Alloy      | 14   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Nickel, (Invar)  | 15   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Niobium          | 16   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Platinum         | 17   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Rhenium          | 18   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Silver           | 19   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         | 1        |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Steel, & Alloys  | 20   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Steel, Mild      | 21   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Stainless Steel  | 22   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Tantalum         | 23   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Tin              | 24   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Titanium         | 25   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Tungsten         | 26   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Vanadium         | 27   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Zinc             | 28   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Zirconium        | 29   |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Bonding Capabil  | ity  |          |           |          |        |          |         |      |         |        |       |      |           |            |             |                 |         |          |         |        |                 |             |                 |          |        |          |               |          |      |           |  |
| Flange Metal Sta | anda | irds     |           |          |        |          |         |      | Bea     | m St   | op, / | Abso | orber     | Mate       | erials      | ;               |         |          |         |        | Sup             | er-co       | onduc           | cting    | Flar   | nge N    | <i>l</i> ater | ials     |      |           |  |





#### Explosion Bonding – Examples







#### SS/AL Bond Interface Patent# 5836623



- Diffusion Inhibiting Layers: Copper and Titanium Interlayer Enables Bonding AL/SS
- Vacuum: <1x10<sup>-10</sup>cc He/Sec
- Thermal: Peak 500°C at weld up 0-250°C Operational
- Mechanical: Tensile 38,000 p





## Applications for bi-metallic joints









Alum/SST transition enable welding instrument feedthroughs to aluminum beampipe

Cu/SST transition used on Cesr-C damping wiggler beampipes









There are a variety of metal seals available for vacuum systems, including:

- □ ConFlat® flanges: for flanges OD <26"
- Helicoflex® seals: for customer designed flanges
- Metal wire seal flanges: for large flanges
- □ VATSEAL® flanges: good RF properties

Metal seals are used for UHV systems, where permeation, as well as radiation damages, are not acceptable.



# Conflat® Flanges

- Conflat® style metal seal flanges are the most widely used for UHV vacuum systems.
- During sealing, knife-edges of a pairing stainless steel flanges plastically deform a copper gasket to form a reliable seal.
- The close match of C.T.E. of stainless steel and copper ensure proper sealing force through temperature cycles, up to 450°C.
- Gaskets are usually made of <sup>1</sup>/<sub>2</sub>-hard OFHC. Silver-plated Cu gaskets are used for system baked at temperature higher than 250°C.
- Standard sizes range from 1-1/3" to 16" OD, with fixed and rotatable styles.







# Conflat® Flanges Cont.







# Conflat® Flanges Cont.



| 0.D.            | Config.      | Bolts          | B.C.Dia. | Gas.OD | Gas.ID | Thick.      | TubeSB | TubeOD | Clear  | RecDepth | A-Dia.         | B-Dia.                                   |
|-----------------|--------------|----------------|----------|--------|--------|-------------|--------|--------|--------|----------|----------------|------------------------------------------|
| 1.33"<br>133    | fixed<br>rol | 6<br>8-32      | 1.060    |        |        |             |        |        | 0.750  | 0.280    | 0.718          | • 0.841                                  |
| 21/8"           | fixed<br>rot | 4              | 1.625    |        | 1.010  | 0.470       | 0.170  | 1.00   | 1.075  | 0.236    | 1.086          | 1.297                                    |
| 2 3/4"<br>275   | fixed<br>rot | 6              | 2.312    | 1.895  | 1.451  | 0.500       | 0.209  | 1.50   | 1.560  | 0.300    | 1.650          | 1.902                                    |
| 3 3/8°<br>338   | fixed<br>rot | 8<br>5/16-24   | 2.850    | 2.425  | 2.010  | 0.625       | 0.225  | 2.00   | 2.030  |          | 2.188          | ~ 2.432                                  |
| 4 1/2"<br>450   | fixed        | 8<br>5/16-24   | 3.628    | 3.243  | 2.506  | 0.687       | 0.375  | 2.50   | 2.625  | 0.500    | 3.040          | 3.250                                    |
| 4 5/8"<br>458   | fixed        | 10<br>5/16-24  | 4.030    | 3.598  | 3.010  |             | 0.375  | 3.00   | 3.100  |          | 3.395<br>3.347 | 3 605                                    |
| 6"<br>600       | fixed        | 16<br>5/16-24  | 5.128    | 4.743  | 4.006  |             | 0.438  | 4.00   | 4.125  |          | 4.540          | commentation of the second second second |
| 6 3/4"<br>675   | fixed<br>rot | 18<br>5/16-24  | 5.969    | 5.567  | 5.010  | 0.840       | 0.460  | 5.00   | 5.125  |          | 5.364          | 5 574                                    |
| 8"<br>800       | fixed<br>rol | 20<br>5/16-24  | 7.128    | 6.743  | 6.007  | 0.875 0.937 | 0.500  | 6.00   | 6.125  |          | 6.540          | 6.750                                    |
| 10"             | fixed<br>rot | 24<br>5/16-24  | 9.128    |        | 8.007  | 0.968       |        |        | 8.125  |          | 8.540          | 8.750                                    |
| 13 1/4"<br>1325 | fixed<br>rot | 30<br>3/8-24   | 12.060   |        | 10.810 |             |        |        | 10.875 | 0.775    | 11.350         | 11.595                                   |
| 14"<br>1400     | fixed<br>rot | 30<br>3/8-24   | 12.810   |        |        | 1.120       |        |        | 12.250 | 0.775    |                |                                          |
| 16 1/2"<br>1650 | fixed<br>rol | . 36<br>3/8-24 | 15.310   |        |        | 1.120       | 0.875  | 14.00  | 14.290 | 0.775    |                |                                          |







- > Metal O-ring using an internal spring to maintain the seal force, while outer layer of the gasket deforms to make seal.
- > Vacuum rated to 1 x  $10^{-13}$  Torr; Temperature rated to  $450^{\circ}C$ .



Ref: http://www.techneticsgroup.com

## Commercial Wire Seal Flanges



- > Vacuum rated to 1 x  $10^{-13}$  Torr, Temperature rated to 450°C with copper wire gasket.
- > Typical size range: 20" 27" od with >30" possible
- > Warning male and female flanges







### Large Wire Seal Flanges at CHESS





- As with many X-ray light sources, it is always a challenge to make reliable UHV-compatible seal on a very large lid (often in vertical position) for X-ray optics, as elastomer seal is not acceptable.
- □ A reliable, inexpensive and very scalable aluminum wire seal scheme was developed at CHESS, and also adapted by NSLS II.



### Large Wire Seal Flanges at CHESS Cont.











#### How the seal is made:

- 1. Four aluminum wires are stretched across sealing surfaces, and tensioned with springs.
- The large lid is placed (with exaggerated bending) over the wires. Tightening from center towards to the corners, to ensure that the wires kept stretched.
- 3. Under cuts at corners may improved sealing reliability.

### Features of the seals:

- 1. No 'upper-size' limit.
- 2. Reproducible and reliable seals
- 3. Relatively relax seal surface finish, but need to be flat.
- 4. Only work on flanges with straight sealing edges/





# VATSEAL® Flanges



- A style of metal seal for vacuum, cryogenics and high temperature applications.
- silver-plated or gold-plated copper gaskets
- VATSEAL metal seals make a leak-tight seal and at the same time a reliable, low resistance RF contact







Elastomer Flanges



Elastomer (O-ring) sealed flanges found their uses in accelerators mostly in high-vacuum, or insolation vacuum for cryo-genic systems (such as superconducting magnet.



