BEAM MATERIAL INTERACTION,
HEATING & ACTIVATION
[second module]

Francesco Cerutti

Joint International Accelerator School

on Beam Loss and Accelerator Protection

Newport Beach November 2014



OUTLINE

Beam-material interaction.: Nuclear reactions

Radiation to Electronics

Shielding

Activation

Accelerator geometry modeling

Input from beam tracking

JIAS F. Cerutti Nov 7, 2014



THE MICROSCOPIC VIEW
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NUCLEAR REACTIONS

In general there are two kinds of nuclear reactions:

Elastic interactions are those that do not change the internal structure of the
projectile/target and do not produce new particles. Their effect is to transfer
part of the projectile energy to the target (lab system), or equivalently to deflect in
opposite directions target and projectile in the Centre-of-Mass system with no
change in their energy. There is no threshold for elastic interactions.

Non-elastic reactions are those where new particles are produced and/or the
internal structure of the projectile/target is changed (e.g. exciting a nucleus). A
specific non-elastic reaction has usually an energy threshold below which it cannot
occur (the exception being neutron capture)
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NON-ELASTIC HADRON-NUCLEON REACTIONS

In order to understand Hadron-Nucleus (hA) nuclear reactions, one has to understand first Hadron-
Nucleon (hN) reactions, since nuclei are made up by protons and neutrons.
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Intermediate Energies

) % All reactions proceed through an intermediate state containing at least
IR = .
u ] one resonance (dominance of the A(1232) resonance and of the N*
LR i resonances)
5« .
E % N;+N, > N{/+N, +n  threshold around 290 MeV,

important above 700 MeV

n+N-o>7+7"+N opens at 170 MeV
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High Energies: Dual Parton Model/Quark Gluon String Model etc omentum fraction c ¢
Interacting strings (quarks held together by the gluon-gluon interaction j E
into the form of a string). Each of the two hadrons splits into 2 colored E
partons — combination into 2 colorless chains — 2 back-to-back jets. X, S E
u (B) C
Each jet is then hadronized into physical hadrons. P 1ox o
t u r
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NON-ELASTIC HADRON-NUCLEUS REACTIONS

Target nucleus description (density, Fermi motion, etc)

!

Glauber-Gribov cascade with formation zone

!

Generalized IntraNuclear cascade

0

Preequilibrium stage
with current excitation energy and exciton configuration

(including all nucleons below 30-100 MeV.
All non-nucleons are emitted/decayed )

g

Evaporation/Fragmentation/Fission model

y de-excitation
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ELECTRONICS FAILURE [I]

CNGS 2007 physics run, 8 1017 p.o.t. delivered ( ~2% of a nominal CNGS year )

Gy per 4.5 10%° p.o.t.

10’
10 in agreement with measurements

Predicted dose levels
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Single event upsets in ventilation electronics caused

ventilation control failure and interruption of communication
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@ There is a discrepancy between the last discrete settings and

ELECTRONICS FAILURE [IH]

collimator controls

Confirmation x

the measured motor position: for " TCTYA4R1.E2'

Lu 122502 vs, 14.81
LD - = 1. 7T T

RU - -9.3902 vs. -9.39
RD - = -9.3902 vs. -9.39

DO YOU WANT TO UPDATE THE ACTUAL MOTOR POSITION?

If you answer YES, the measured position will be trimmed to the hardware.

Yes Mo

position register
resolver 12.250 4900 01001100
counter 14.810 5924 01011100
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MAIN RADIATION EFFECTS ON ELECTRONICS

. Single Event
Single % ¢ Memory bit flip (soft error)  High energy hadron fluence [cm?]
Event S,;;fs Temporary functional failure  (but also thermal neutrons!)
effects (SEUV)
Single Event  ppnormal high current state el anarey b e uenes [
(Random in Latchup Permanent/destructive if not 8 &Y
time) (SEL) protected
Total lonizing Charge build-up in oxide
. D Threshold shift & increased lonizing dose [Gy]
Cumulative 241 leakage current g y
effects (TID) Ultimately destructive
. Atomic displacements Silicon 1 MeV-equivalent
Displacement
(Long term) P Degradation over time neutron fluence [cm™2]
damage Ultimately destructive {NIEL -> DPA}
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CONVERSION FACTORS FOR
SILICON 1MeV-EQUIVALENT NEUTRON FLUENCE
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plus

HOW HIGH ENERGY HADRONS?

>20 MeV

28Si(n,xa) cross section \
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beam impact on
protection
devices
(collimators,
dumps)

RADIATION SOURCES

beam-beam collisions

beam interaction with
residual gas

oms per vadume (1im™)

- 25k -2 -150 -100 50
Diistance o P2 (m)

synchrotron radiation
(lepton colliders)

CTIF fir position sampling
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RADIATION LEVELS

Sea Level Avionic ISS Space & Deep Space

) — % 4mmmm———)

105 10¢ 107 108..10° 10 10" 10'2 10" 10 10'
_-w

- [cm 'yl

Linac 4 beam line
PSB beam line

CPS beam line
SPS beam line

104 10! 10! 102 104 10° 10° rFccee TID
w -
[Gy.y']
LHC Machine electronics LHC + Experiments

Protected Shielded Tunnel

CPS tunnel walls

SPS tunnel walls

1.26 107 10° 10 10" 102 102 _10" 10" 10" 1meV n.e
—-M [cm-2.y1]

—

Electronics Custom Boards with COTS

JIAS F. Cerutti Nov 7, 2014 13




2012 operation neutron fluence

BENCHMARKING

- beamgas: RSRMO08S —a—
beamgas: RORMO09S —e—

ev

1eV

1 keV

JIAS

1 MeV

1 GeV
F. Cerutti

1 TeV

N F.. .o [cm2] | 5RMO8S 5RM09S
(LZOI 2)

FLUKA 6.1108 3.0 107
DATA 456 108 4.32 107
(256 upsets) (25 upsets)

Agreement within 30%
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AR

mm) dentify forbidden regions

mm) design shielding

mmm) install radiation resistant equipment

high energy hadron fluence
per nominal CNGS year

CNGS radiation issues solved
during shutdown 2007-2008
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HADRON (NEUTRON) ATTENUATION

high energy
“disappearing” by non-elastic reactions
/\,0 - O'F,'ANA op ~ mIfAR/? 2 X ,0/141/3 through dense (and cheap) materials
fron
low energy neutrons

slowed down by elastic scattering
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and once thermalized

absorbed by I'adlatlve Capture (n,]/) ENDF Request 51, 2014-Oct-24,17:56:25
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PHOTON ATTEN
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DOSE EQUIVALENT

Particle fluence [cm] yields effective dose and ambient dose equivalent H*(10) [uSv]
which can be calculated through respective sets of conversion coefficients [pSv cm?],

which are a function of the particle type and energy.

The effective dose is the sum of the weighted equivalent doses in all tissues and organs of the human body: E = Y. wrHr
being the equivalent dose the sum of the weighted average absorbed doses from all radiation types: Hy = }p wg Drg

It depends on the irradiation geometry.
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Energy in GeV

Prompt dose equivalent is a quantity to minimize
as the shielding of a facility is designed, in order

to allow its integration in the environment

(e.g. at CERN limit of 300 uSv/y

with optimization (ALARA) threshold of 10 uSv/y)

JIAS

F Cerutti
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SHIELDING DESIGN

EUROPEAN
SPALLATION

Accidents

[L. Tchelidze]

- [Point full beam losslis considered (5 MW):

- “Sullivan” —0.31 Sv/h maximum total dose equivalent rate
outside of berm.

- With[30 MJ]anticipated beam spill limit -> ~ 0.5 mSv (limit is 20
mSv)
- With|600 MJ|DBA beam spill limit - >~ 10 mSv (limit is 50 mSv). DET (mSv/h) Side
Design Basis Accident - cm
- MARS results: s00] = % _

- 5 MW of|2 GeV proton beamllost in
a single point, upwards.

- 2.3 Sv/h max dose rate.

- 30 MJ -> 3.8 mSv (under the limit)

- 600 MJ -> 77 mSv (above the limit)

5.00x10% 5.20x10% 5.40x10%

T 1
III. 3 o' . II)“ IIII:II II)" I(I" |.!11' 1 ! 1y o
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ACTIVATION [I] LogiN of

The production of residuals is the result of the last step of
the nuclear reaction, thus it is influenced by all the
previous stages. However, the production of specific
isotopes may be influenced by fine nuclear structure
effects which have little or no impact on the emitted
particle spectra.

After many collisions and possibly particle emissions, the
residual nucleus is left in a highly excited equilibrated
state. De-excitation can be described by statistical
models which resemble the evaporation of “droplets”,
actually low energy particles (p, n, d, t, SHe,
alphas...) from a *“boiling soup” characterized by a
“nuclear temperature”.

The process is terminated when all available energy is
spent — the leftover nucleus, possibly radioactive, is now
“cold”, with typical recoil energies of ~ MeV.

For heavy nuclei the excitation energy can be large
enough to allow breaking into two major chunks
(fission).

Since only neutrons have no barrier to overcome,
neutron emission is strongly favored.
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ACTIVATION [I1]

A high energy nuclear reaction on a high Z nucleus fills roughly the whole charge and mass intervals
of the nuclide chart

1 A GeV 2%8Ph+p
1 | 1 | 1 | 1 | ) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ) | 1 | )
g Data Nucl. Phys. A686 (2001) 481

FLUKA Quasi-elastic

FLUKA after cascade .
FLUKA after preeq Spallation

.|Evaporation

sigma (mb)
S
o

1 R I 1V I N T T T T T I T T T I I " O
20 40 40 80 100 120 140

Mass number
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RADIOACTIVE DECAY

Bateman equations

d
d_tn =P, + (bn—l,n' An—1- Nn—l) — An - Ny

production  growth by parent decay decay
rate

which are solved for a given J/rradiation profile at different cooling times

- I, (AY),

o Lh 8h 14 7d

etc.

yielding (specific) activities [Bq(/g)] — to be compared to legal exemption limits —

and residual dose rates [uSv/h] by the decay radiation (mainly electromagnetic)
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Activity (Bg/mm®*p.p.)

'_\

ACTIVITY BENCHMARKING

500 MeV/n 238U beam on Cu
[E. Mustafin et a/, EPAC 2006, TUPLS141, 1834]
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RESIDUAL DOSE RATES:
A BENCHMARKING EXPERIMENT

Irradiation of samples of different materials to the stray radiation field created by
the interaction of a 120 GeV positively charged hadron beam in a copper target

| [M. Brugger et al, Radiat. Prot. Dosim. 116 (2005) 12-15]
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1

(nSv/h)

dD / dt

RESIDUAL DOSE RATES:
MEASUREMENTS AND SIMULATIONS [I]

Dose rate as function of cooling time for different distances between sample and detector
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1000

(nSv / h)

dD / dt

100 |

RESIDUAL DOSE RATES:

MEASUREMENTS AND SIMULATIONS [I1]
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LHC RADIOLOGICAL CLASSIFICATION DURING LS1

Point4 o=
z3

Point 5

X e -

permanent low-occupancy

==
Non-designated Area <0.5uSv/h  <2.5uSv/h "
Supervised Radiation Area <3 uSv/h <15uSv/h ==
Simple Controlled Rad. Area <10 uSv/h <50 uSv/h @
Li_mited S?y Area n/a <2mSv/h Point 7 ™=
High Radiation Area n/a <100 mSv/h f—
Prohibited Area n/a > 100 mSv/h T
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rf [em]

RESIDUAL DOSE RATE MAPS [I]

ATLAS cavern

1 week cooling

after LHC Run 1

120 T T T T T T T T

1000

800
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400

200

He(10) / [uSwh]

-2000 -1500 -1000 -500 0 500 1000 1500 2000

Non-designated Area

I
[ Simple Controlled Rad. Area
Limited Stay Area

High Radiation Area
Prohibited Area
HAD HAD
Forward
Toroid

Supervised Radiation Area l/ :

Point 1

z / [em] .‘I
)
Location Measurement FLUKA _ _ ok
[1Sv/h] [1Sv/h] E =
1 19 13 (£0.3) =
2 10 13 (£0.3) |
3 7.2 10 (£0.2)
4 47 46 (£ 0.5)
5 42 72 (£ 0.5) [C. Urscheler et al.]
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RESIDUAL DOSE RATE MAPS [I1]

HL-LHC final focus triplet around ATLAS and CMS 900fb-1 between Long Shutdowns
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INTERVENTION PLAN

valve exchange in the TAS-Q1 region at 22m from the collision point

. i i C. Adorisio and S. Roesler,
[work example by C. Garion] 4 months COOImg time I[—IL—LHC TC, Sep 30, 2014]
team # action B frc?m e du-ratlon dose per action (uSv) individual dose (pSv)
person beam pipe (minutes)
TO 2 Valve investigation 400 mm 60 290 145
A 1 1B BNl CElol T in contact 30 103
removal
B 2 Fneumaticsystem 400 mm 10 48
disconnection
B 2 Flanges disconnection in contact 20 138
B 2 Valve removal in contact 30 206
427
B 2 Valve re-installation in contact 30 206
B 2 Flanges reconnection in contact 30 206
B ) Pneumatic sYstem 400 mm 10 48
reconnection
A 1 Jacket and cabling in contact 45 155 258

installation

limit of 6 or 20 mSv/y depending on the worker category
with optimization threshold of 100 uSv/y and design criterion requiring not to surpass 2 mSv per intervention/year
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OPTIMIZATION PRINCIPLES

1. Material choice

 Low activation properties to reduce residual doses and minimize radioactive waste

* Avoid materials for which no radioactive waste elimination pathway exists (e.g., highly
flammable metallic activated waste)

* Radiation resistant

2. Optimized handling

 Easy access to components that need manual intervention (e.g., valves, electrical
connectors) or complex manipulation (e.g., cables)

e Provisions for fast installation/maintenance/repair, in particular, around beam loss
areas (e.g., plugin systems, quick-connect flanges, remote survey, remote bake-out)

» Foresee easy dismantling of components

3. Limitation of installed material

e Install only components that are absolutely necessary, in particular in beam loss areas
* Reduction of radioactive waste

[C. Adorisio and S. Roesler,
R2E and Availability Workshop,
Oct 16, 2014]
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AIR ACTIVATION

The activity of an air radioisotope (“Be, 11C, 13N, 150, 38Cl, 3°Cl, etc.) in the irradiation area
at the end of the irradiation period T is —
Ar = As (1 — eXp (_(’\ T "”?-o-n.)T))

where m,,, is the relative air exchange rate during irradiation,
I.e. the fraction of the air volume renewed per unit time

VA | )
and A is the saturation activity ‘457,\-; E Op (EL-;')(TP.T (Ej )N (AE)J":P
+ Mon PT,j / production cross \

i i i section i i
irradiated air differential fluence rate air atom density

=12 14N] 160 40
volume of (hadron) particles (T=1C, 2N, °0,%Ar)

(P=p,n,%)

Amount of activity released into atrmosphere all along the irradiation period
(ton Is the time taken by the air flux to reach the release point from the irradiated area)

1L —exp (—=(A =+ me,)T)
Aon = mopAs | T — XP (—A fon

Amount of activity released into atrmosphere after the end of the irradiation
(mosr and tyrr @s my, and t,, but referring to the shutdown period)

a"H”,r f
Aoy = Ap—et.

—————exp(—A torys
A+ Mof f ! 1)
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GEOMETRY MODELING

NEED FOR DETAILED MODELS OF ACCELERATOR COMPONENTS WITH ASSOCIATED SCORING

ELEMENT SEQUENCE AND RESPECTIVE MAGNETIC STRENGTHS
IN THE MACHINE OPTICS (TWISS) FILES
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THE LINE BUILDER

Profiting from roto-translation directives and replication (lattice) capabilities,
the AUTOMATIC CONSTRUCTION OF COMPLEX BEAM LINES,
including collimator settings and element displacement (BLMs), is achievable

Vertical
SO0 T T
Beam orbit A

I|l II
4000 + ! 1! 1! ! _II .I
\ B &
-------------------------------------------------- - g PR Y S ey ~ 3000 |— ! | | =, !II [
— L s Lo '.
bl FLUKA — g
2000 4 Twiss - .JI,’JH-F | Y
/
LOo - .f’r :
/
1] "IJI - 1
=150 =200 -150 100 =50
5 i 5 (m}
S T  [A Mereghetti et al.
: P ‘ IPAC2012, WEPPDO71, 2687]
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INPUT FROM BEAM (HALO) TRACKING

Machine protection calculations lie in a multi-disciplinary field, where particle dynamics in accelerators and
radiation-matter interaction play together.

Energy deposition, particle fluence, monitor signals ... are simulated by shower Monte Carlo codes but
imply multi-turn tracking in accelerator rings which requires dedicated codes. On the other hand, the
latter ones are faced with the problem of particle scattering in beam intercepting devices (like
collimators).

The interface regularly goes through static loss files

giving the spatial distribution of non-elastic interactions

- which cannot be handled by tracking codes - inside
the jaw material, together with the direction and

energy of the beam particle being lost
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COUPLING TOOLS

On-line coupling is becoming also available, allowing to avoid possibly critical simplifications

(approximate interaction modules in tracking codes and vice versa).

‘ N Two codes running at the same time and talking to each other
Gt~ -8 through a network port, by which particles are exchanged at run-time

\:eam @ Primary particles are transported
turn by turn by SIXTRACK
throughout the lattice.

@ When they reach a labelled element,
they are transferred to FLUKA for
transport in its 3D geometry and for
simulating the interaction with [P.G. Ortega, P. Hermes et al.,
accelerator components. LHC Collimation Working Group,

Oct 6, 2014]
@ At the end of the FLUKA insert,
marked as a geometry interface,
= e.g. various other collimators parn'cles are sent back to
l %’ @ geometry interface SIXTRACK. Proceedings of IPAC2013, Shanghai, China WEPEA064
— Optics tracking (eg SixTrack) SIXTRACK-FLUKA ACTIVE COUPLING FOR THE UPGRADE OF THE
SPS SCRAPERS
‘ M M BLB AL Meregheui*, CERN, Geneva, Switzerland. and UMAN. Manchester, UK.
F. Cerutti, R. De Maria. B. Goddard, V. Kain, M. Meddahi. O. Mete, Y. Papaphilippou,
MARS and MAD D. Sinuela Pastor. V. Vlachoudis, CERN, Geneva, Switzerland

R. B. Appleby. UMAN. Manchester, UK

—> Beam Delivery Simulation (BDSIM)
Geant4 and C++ particle tracking code
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