Control Room Accelerator Physics

Day 1
Installing Open XAL at Command Line

Plan

- Get Open XAL from Repository

- Build Open XAL from the command line

- Tour of project

- Review build options

- Configuration for Running Applications and Scripts

Requirements

- Git1.7.5

- Ant 1.8

- Java J2SE 7 with JDK

- Terminal for command line

Preparation

- Create a directory where you want to install Open XAL

alongside other related files
- We will refer to this directory as the “Project Directory”
- |t will contain source code and other files such as documents and

configuration files
- The following path could be considered:

~/Projects/OpenXAL

Download the Code

1.0pen a Terminal
2.Change Directory to the Project Directory
3.Type the following to fetch the code:

»git clone http://git.code.sf.net/p/xaldev/
openxal

- The resulting openxal directory will be referred to as
“Open XAL Home”

.5
Building Open XAL

1.0pen a Terminal
2.Change Directory to the Open XAL Home directory
3.Type the following to build everything:

»ant

Get and Build Open XAL

Sample Session

> cd
> mkdir —p Projects/OpenXAL
> cd Projects/OpenXAL

> g1t clone http://git.code.sf.net/p/xaldev/
openxal

Cloning into 'openxal'...

> cd openxal
> ant

Buildfile: /Users/t6p/Scrap/0OpenXAL/openxal/
build.xml

B
Build Products

Under build/products

apps Java Applications

lib Shared Library

scripts JRuby and Jython
scripts

services Java Services

. SN
Running an Application

Example - Run Launcher

> cd
> cd Projects/OpenXAL/openxal
> java —jar build/products/apps/launcher.jar

auncher

Bla® X ® 8 @

Run

aunches Applications and Scripts

Monitor Watch = Rules

Hosts |

Fllter: (QAplecation Filter

%

Label
Bricks
Database Browser

Knobs

Launcher

My Tuner Viewer
Optics Editor
Optics Switcher
Orbit Correction
PV Correlator

PV Histogram

PV Logger

Scan 1D

Scan 2D

Scope

Virtual Accelerator

External Lattice Generator

' Last Launch Time

Kind

Application
Application
Application
Application
Application
Application
Application
Application
Application
Application
Application
Application
Application
Application
Application
Application

a

Notes

GUI Builder.

This application allows the user to browse the database.

This application generates lattice files for Trace-3D, DYNAC and MAD.
This application allows the user to define knobs of PVs and to use them.
The launcher allows users to launch XAL applications.

This application is a general purpose device tuner / viewer

Optics Editor provides a convenient way to enable and disable nodes.
Allows the user to specify the default optics.

This application allows monitoring and correction of orbits.

This application monitors and correlates two or more PVs and plots correlatio...
The PV Histogram application displays a histogram of PV monitors values.

This application is used to archive and retrieve machine state history.

This application scan one PV and measures one or several others PVs. It provi...
This application scans two PVs and measures one or several others PVs. It pro...
The Scope application is a virtual scope suitable for viewing XAL waveform ch...
The Virtual Accelerator is a machine simulator.

Messages

Welcome

. S
Configuration

- Channel Access configuration for locating EPICS servers

- CLASSPATH to Open XAL

- JRuby and Jython scripts need to know the path to the Open XAL
shared library

- Java applications don’ t need this as it is already baked into the jars
- Documents Directory
- Default Accelerator

12
Channel Access Support

- Provides configuration for Java Channel Access (JCA)
both native (JNI) and pure Java (CAJ)

- JNI requires EPICS client libraries to be installed
- CAJ is self contained
- We will use CAJ for this course

12

Install Channel Access Support

Copy the JCALibrary.properties file to: ~/.JCALibrary/
JCALIibrary.properties

13

. S
JCALlIbrary.properties

define the location of the epics shared libraries and caRepeater executable for Mac 0S X
gov.aps.jca.jni.epics.darwin-x86. library.path = /Library/EPICS/Base/lib/darwin-x86
gov.aps.jca.jni.epics.darwin-x86.caRepeater.path = /Library/EPICS/Base/bin/darwin—-x86

define the location of the epics shared libraries and caRepeater executable for Linux
gov.aps.jca.jni.epics.linux-x86.library.path= /usr/share/epics/baseR3.14.4/1ib/1linux-x86
gov.aps.jca.jni.epics. linux—x86.caRepeater.path= /usr/share/epics/baseR3.14.4/bin/1linux-x86

define the location of the epics shared libraries and caRepeater executable for Windows
gov.aps.jca.jni.epics.win32-x86. library.path= c:/epics/baseR3.14.4/bin/win32-x86
gov.aps.jca.jni.epics.win32-x86.caRepeater.path= c:/epics/baseR3.14.4/bin/win32-x86

define default values for both JIJNI_THREAD_SAFE and JINI_SINGLE_THREADED contexts.
gov.aps.jca.jni.JNIContext.preemptive_callback = true

Channel Access address list for JNI context
test network:
gov.aps.jca.jni.JINIContext.addr_list = localhost

gov.aps.jca.jni.JNIContext.auto_addr_list = false
gov.aps.jca.jni.JNIContext.connection_timeout = 30.0
gov.aps.jca.jni.JINIContext.beacon_period = 15.0
gov.aps.jca.jni.JINIContext.repeater_port = 5065
gov.aps.jca.jni.JINIContext.server_port = 5064
gov.aps.jca.jni.JNIContext.max_array_bytes = 5000000

define default values only for INI_SINGLE_THREADED context
gov.aps.jca.jni.SingleThreadedContext.event_dispatcher = gov.aps.jca.event.DirectEventDispatcher

define default values only for JNI_THREAD_SAFE context
gov.aps.jca.jni.ThreadSafeContext.event_dispatcher = gov.aps.jca.event.QueuedEventDispatcher
gov.aps.jca.jni.ThreadSafeContext.priority = 5

15
JCALibrary.properties

JCA/JNI and JCA/CAJ Config

define default values for QueuedEventDispatcher components
gov.aps.jca.event.QueuedEventDispatcher = 5

Channel Access address list for CAJ context
com.cosylab.epics.caj.CAJContext.addr_list = localhost

com.cosylab.epics.caj.CAJContext.max_array_bytes = 5000000
com.cosylab.epics.caj.CAJContext.auto_addr_list = false
com.cosylab.epics.caj.impl.reactor.lf.LeaderFollowersThreadPool.thread_pool_size = 30

generic address list support (only seems to apply to CAJ)
#gov.aps.jca.Context.auto_addr_list = false
gov.aps.jca.Context.addr_list = localhost

16
Install CLASSPATH Support

1.Copy the script snippet into your ~/.bashrc file

CLASSPATH for Open XAL

setup the OPENXAL and related environment variables
if [-z "$OPENXAL_SETUP"] ; then
Open XAL HOME

export OPENXAL_HOME=${HOME}/Projects/OpenXAL/openxal

setup CLASSPATH
OPENXAL_LIBROOT=${0PENXAL_HOME}/build/products/1lib
OPENXAL_CLASSPATH=${0PENXAL_LIBROOT}/xal-shared.jar
classpath=${XAL_CLASSPATH}: ${0OPENXAL_HOME}/build/products/lib/xal-shared.jar
if [-z "$CLASSPATH" 1 ; then

export CLASSPATH=${classpath}
else

export CLASSPATH=${CLASSPATH}:${classpath}
fi

indicate that this file has been executed
export OPENXAL_SETUP="true"
fi

Configure Documents Directory

1.Run the Launcher

2.Select File -> Open...

3.Press “Default Folder”

4 .Select “Yes” to specify a default folder.

5.Navigate to where you want it to reside (e.g. your
Project Directory)

6.Create a new folder (e.g. named Documents)
/.Select the Documents directory
8.Select the “Make Default” button

Configure Default Accelerator

1.Copy the accelerator optics files to a location of your
choosing (e.g. the “optics” directory under the Project
Directory.

2.Launch the Optics Switcher application
3.Press the “Browse” button

4 Navigate to the “main.xal” file in the optics directory
5.Press “Make Default”

