CONTROL ROOM ACCELERATOR PHYSICS

Day 2 *Review of Linear Algebra*

Outline

- 1. Introduction
- 2. Vector spaces
- 3. Matrices and linear operators
- 4. Eigenvalues and eigenvectors
- 5. Diagonalization
- 6. Singular-value decomposition

Introduction

Motivation

- Linear algebra provides many practical techniques for analysis and solution of linear (and nonlinear) systems. We utilize these established methods in our applications.
- This material should be a review, but we formalize it then show it in the context of accelerator control applications

Introduction

Linear Algebra: Definition and Description

- Linear algebra is the branch of mathematics concerned with the study of *vectors*, *vector spaces* (also called *linear spaces*), *linear maps* between vector spaces (also called *linear transformations, linear operators*), and systems of linear equations.
- Here we will think of "linear algebra" loosely as matrices
 - Matrices are "tangible",
 - They are computer friendly
 - Represent linear relations (maps) between finite dimensional vector spaces (e.g., the space of correctors and the space of BPMs)
- Our objective here is to review some basic facts about matrices and demonstrate applications to accelerator control

Introduction

Basic Notation

- **Z** > The set of integers $\{\dots, -1, 0, +1, \dots\}$
- **R** > The set of real numbers
- \mathbf{R}^n > The *n* times Cartesian product of \mathbf{R} , or the set of "*n*-tuples" > Vectors of the form $\mathbf{x} = (x_1, \dots, x_n)$

 $\mathbf{R}^{m \times n}$ > The set of $m \times n$ matrices having real number elements

- $L: \mathbf{R}^m \to \mathbf{R}^n > \text{Linear operators mapping elements from } \mathbf{R}^m$ to elements in \mathbf{R}^n
 - $GL(n, \mathbf{R})$ > The set of elements in $\mathbf{R}^{n \times n}$ having nonzero determinant > These are the *invertible* matrices (has an inverse for matrix multiplication)

ugly details

basic idea

Vector Spaces

Definition and Description

- Definition: A vector space over the field R is a set V along with two operations, vector addition + and scalar multiplication ●, such that for any vectors u, v, w ∈ V and scalars r, s ∈ R we have the axioms:
 - Associativity of addition: $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
 - Commutativity of addition: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
 - Identity element of addition: $\exists 0 \in V$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$ for all $\mathbf{v} \in V$.
 - Inverse elements of addition:
 - For every $\mathbf{v} \in V$, there exists an element $-\mathbf{v} \in V$, called the *additive inverse* of \mathbf{v} , such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
 - Distributivity of multiplication w.r.t. vector addition: $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
 - Distributivity of multiplication w.r.t. field addition: $(a + b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$
 - Compatibility of scalar and field multiplication: $a(b\mathbf{v}) = (ab)\mathbf{v}$
 - Identity element of multiplication: $1\mathbf{v} = \mathbf{v}$, where $1 \in \mathbf{R}$ is the identity.
- Informally, "any linear combination of elements in V is also an element in V"
 - That is, If $\mathbf{u}, \mathbf{v} \in V$ and $r, s \in \mathbf{R}$ then $r\mathbf{u} + s\mathbf{v} \in V$

Anything that fits the above requirements is a vector space, and can be treated by linear algebraic methods.

Vector Spaces The Space Rⁿ

We can consider the space \mathbb{R}^n as the natural extension of the more familiar vectors in Euclidean 3 space.

This is the most common vector space for computer solution.

Vector Spaces

Examples

- Although **R**^{*n*} is the vector space of our primary concern, there are many others
 - The set $F(\mathbf{R})$ of real valued functions on the real line \mathbf{R} , $\{f: \mathbf{R} \rightarrow \mathbf{R}\}$
 - The set F([0,1]) of real functions on interval $[0,1], \{f: [0,1] \rightarrow \mathbf{R}\}$
 - Note F([0,1]) is a vector subspace of $F(\mathbf{R})$
 - The set \mathbf{R}^{∞} of infinite sequences $\{r_1, r_2, r_3, \ldots\}, r_i \in \mathbf{R}$
 - The set *F*(Z₊) of real functions on the positive integers Z₊ {*f*: Z₊ → R}
 Vector spaces R[∞] and *F*(Z₊) are isomorphic (the same thing)
 - The set $C^n(\mathbf{R})$ of continuous functions on $\mathbf{R} \{f : \mathbf{R} \rightarrow \mathbf{R} \mid d^n f/dx^n < \infty\}$
 - The set $C^{\infty}(\mathbf{R})$ of smooth functions on $\mathbf{R} \{f: \mathbf{R} \rightarrow \mathbf{R} \mid d^n f/dx^n < \infty \text{ all } n\}$
 - Note the subspace structure $C^{\infty}(\mathbf{R}) \subseteq C^{n}(\mathbf{R}) \subseteq F(\mathbf{R})$

Vector Spaces

Basis Sets

- A *basis* for vector space V is a (possibly infinite) subset $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, ...\}$ of V such that any $\mathbf{v} \in V$ can be expressed as a *linear combination* of basis vectors.
 - If $\mathbf{v} \in V$ then $\exists r_1, r_2, r_3, \ldots \in \mathbf{R}$ such that $\mathbf{v} = r_1 \mathbf{e}_1 + r_2 \mathbf{e}_2 + r_3 \mathbf{e}_3 + \ldots$
- All basis sets of V have the same cardinality, called the *dimension* of V
 dim V = |{e₁, e₂, e₃, ...}|
- Examples:

 (1,...,0), (0, 1, ...,0), ..., (0, 0, ...,1) form the *standard* basis for Rⁿ.
 {1, x, x², ..., xⁿ⁻¹} is a basis for the subspace of f in C[∞]([0,1]) such that dⁿf/dxⁿ = 0
 The eigenvectors of any symmetric, pos. def. matrix A ∈ R^{n×n} form a basis of Rⁿ.

 All these vector spaces are isomorphic!

 The first n eigenfunctions {ψ₁, ψ₂, ..., ψ_n} of quantum mechanical operator A form a basis for the subspace containing the first n observables of A.
 {1, cos 2πft, cos 4πft, ..., cos (n-1)πft} is a basis for the set of all even, band-limited functions with period 1/f, and cutoff frequency nf.

(As a Hilbert space they are not)

A *linear map* $L: U \rightarrow V$ between vector spaces U and V has the defining property

 $L(r\mathbf{x}+s\mathbf{y}) = rL(\mathbf{x}) + sL(\mathbf{y})$ for vectors $\mathbf{x}, \mathbf{y} \in U$ and scalars $r, s \in \mathbf{R}$.

(Linear maps respect the algebra of vector spaces!)

- Given any basis set {e_i} ⊆ U, by linearity L is completely defined by where it maps basis vectors {e_i} ∈ U, that is by {L(e_i)} ∈ V
 - Any $\mathbf{u} \in U$ can be expressed as $\mathbf{u} = r_1 \mathbf{e}_1 + \ldots + r_m \mathbf{e}_m$ some $\{r_i\} \subseteq \mathbf{R}$

• Then
$$L(\mathbf{u}) = L(r_1\mathbf{e}_1 + ... + r_m\mathbf{e}_m) = r_1L(\mathbf{e}_1) + ... + r_mL(\mathbf{e}_m)$$

- Is $\{L(\mathbf{e}_1), \ldots, L(\mathbf{e}_m)\}$ a basis set for V?
- A matrix **A** in $\mathbb{R}^{m \times n}$ is, in a natural way, a linear map between the vector spaces \mathbb{R}^m and \mathbb{R}^n under the usual matrix multiplication
 - Once again $\mathbf{A}\mathbf{u} = \mathbf{A}(r_1\mathbf{e}_1 + \ldots + r_m\mathbf{e}_m) = r_1\mathbf{A}\mathbf{e}_1 + \ldots + r_m\mathbf{A}\mathbf{e}_m$
 - When is $\{Ae_1, ..., Ae_m\}$ a basis set for \mathbb{R}^n ?

Matrices in Accelerator Control Maps Between Sensors and Actuators

- A matrix **A** in **R**^{*m*×*n*} can represent a linear map between the vector spaces **R**^{*m*} and **R**^{*n*}
 - Accelerator Control Example:
 - Elements of **R**^{*m*} are *corrector magnet* strengths (*m* mag.'s)
 - Elements of **R**^{*n*} are *BPM readbacks* (*n* BPMs)
 - Then A in $\mathbf{R}^{m \times n}$ is the *response matrix*
 - Note three cases concerning response matrix A:
 - *m* > *n* Domain **R**^{*m*} is "bigger" than range **R**^{*n*} (more correctors than BPMs)
 - *m* < *n* Domain **R**^{*m*} is "smaller" than range **R**^{*n*} (more BPMs than correctors)
 - *m* = *n* The matrix A is square (equal numbers of correctors and BPMs)

Matrices in Accelerator Control

Analyzing Relationship Between Sensors and Actuators

Assume A has full rank throughout

Case 1: m > n ker $\mathbf{A} \neq \mathbf{0}$

We can get to all beam positions. But, corrector settings are not unique (and they can "fight" each other).

Case 2: $m \le n$ Im $\mathbf{A} \neq \mathbf{R}^n$

We cannot get to all the beam positions. We don't have enough correctors.

> Case 3: m=nker $\mathbf{A} = \mathbf{0}$, Im $\mathbf{A} = \mathbf{R}^n$

We can steer to all beam positions. Each has a unique corrector setting.

USPAS

Matrices in Accelerator Control

Matrices are Ubiquitous in Beam Physics

Propagating the beam coordinates \mathbf{z}_i at one location of the beamline to another (downstream) location \mathbf{z}_f .

 $\mathbf{z}_f = \Phi(\mathbf{u})\mathbf{z}_i \quad \Phi \in \mathbf{R}^{6 \times 6}$

Transfer matrices

Eigenvalues, Factorization, Diagonalization

- Because matrices model important aspects of beam physics and accelerator control, it is instructive to look at their structure
 - The *eigenvectors* and *eigenvalues* of a matrix decompose the vector spaces into the natural "modes" of the system
 - Matrix *factorization* techniques decompose a matrix into constituent factors with special structure
 - Matrix *diagonalization* is a special type of factorization which identifies the eigen modes of a matrix
 - We cover two explicit methods of factoring a matrix, eigenvalue decomposition and singular-value decomposition, both are diagonalization processes.
- We focus on response matrices throughout the discussion, however, the material also applies to transfer matrices, linearized dynamics, coupled equations, etc.

Eigenvectors and Eigenvalues The Natural Modes of A Square Matrix

• For a *square* matrix **A** in **R**^{*n*×*n*} we can often find special vectors **e** in **R**^{*n*} so that

$$\mathbf{A}\mathbf{e} = \lambda \mathbf{e}$$

where $\lambda \neq 0$ is a scalar (either real or complex)

- Any such vector **e** is called an *eigenvector* of **A**
- Any such scalar λ is called an *eigenvalue* of A
- A does not change the direction of **e**, only the length!
 - A acts like an amplifier on **e** with gain λ
 - Eigenvectors $\mathbf{e}_1, \mathbf{e}_2, \dots$ are the natural, (decoupled), modes of A
 - What if we could decompose *all* of Rⁿ into eigenvectors of A? (see homework)

Eigenvectors and Eigenvalues

Example: Examining Orbit Position System Response

Say we find an eigenvector $\mathbf{e} = (e_1, e_2, ..., e_n)$ for the response matrix **A** so that

 $Ae = \lambda e$

- Drive each dipole corrector DH_i with the strength e_i at the eigenvector coordinate i e-
- Each BPM_i behaves as if it is directly connected to DH_i
- The response (beam positions) are simply amplified by eigenvalue λ

Beamline

Called a natural (uncoupled) mode of the system

Matrix Factorizations Examples:

- Algebraic analogy:
 - The integers Z have prime factorizations, e.g., $42 = 2 \cdot 3 \cdot 7$
 - Real numbers have only trivial factorizations (every real number is a factor of any other real number).
- Matrix A in R^{*m*×*n*} admits many factorizations (or *decompositions*)
 - A = LU(m=n), L upper triangular, U lower triangular ("LU" decomposition)
 - A = QR, $Q \in SO(m)$, **R** symmetric, positive definite (polar decomp.)
 - $\mathbf{A} = \mathbf{T} \mathbf{\Lambda} \mathbf{T}^{-1} (m=n), \ \mathbf{T} \in GL(n, \mathbf{R}), \mathbf{\Lambda} \in \text{diag}(\mathbf{R}^{n \times n})$ (eigenvalue decomp.)
 - $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$, $\mathbf{U} \in SO(m)$, $\mathbf{D} \in \text{diag}(\mathbf{R}^{n \times n})$, $\mathbf{V} \in SO(n)$ (sing. value decomp.)
- We cover eigenvalue decomposition and the more general singular value decomposition in detail.

Matrix Factorization

Factoring into Natural Modes

Sometimes a square matrix A in $R^{n \times n}$ can be factored as

 $\mathbf{A} = \mathbf{T} \mathbf{\Lambda} \mathbf{T}^{-1}$

Where **T** is in *GL*(*n*,**R**) (invertible) and $\Lambda = \text{diag}\{\lambda_1,...,\lambda_n\}$ in $\mathbb{R}^{n \times n}$.

- Λ is called the *spectral matrix* (with spectrum $\{\lambda_1, \dots, \lambda_n\}$)
- T is called the *modal matrix* and is composed of eigenvectors
- When this condition is satisfied, i.e. when A = TAT⁻¹, we say A is *diagonalizable*
- The matrix **T** describes the coupling modes between the correctors and the BPMs.
- The matrix Λ describes the gains between these natural couplings
- For example....

Matrix Factorization

Decoupling Beam Position Response

- Our corrector space DH is isomorphic to \mathbf{R}^n , that is, $DH \cong \mathbf{R}^n$
 - The vector $\mathbf{x} \in DH$ represents the set of corrector strengths $x_1, x_2, ..., x_n$

USPAS

- Our response space *BPM* is isomorphic to \mathbf{R}^n , that is, $BPM \cong \mathbf{R}^n$
 - The vector $\mathbf{y} \in BPM$ represents the set of beam positions y_1, y_2, \dots, y_n
- The response matrix $\mathbf{A} \in \mathbf{R}^{n \times n}$ relates \mathbf{y} to \mathbf{x} , that is, $\mathbf{y} = \mathbf{A}\mathbf{x}$

• If A factors as
$$A = TAT^{-1}$$
, then $A = T^{-1}AT$

• Set
$$\xi = T^{-1}x$$
 and $\eta = T^{-1}y$

yielding $\eta = \Lambda \xi$

or the *n* scalar equations

$$\eta_i = \lambda_i \xi_i$$
 for $i = 1, ..., n$

The restrictive part here is requiring the same number of correctors and BPMs

Design of a response decoupler

1/27/14

Matrix Diagonalization

Decoupling Beam Position Response (Special Case *m*=*n*)

Matrix diagonalization decouples our corrector space $DH \cong \mathbb{R}^n$ and our response space $BPM \cong \mathbb{R}^n$ into the natural modes of (square) response matrix \mathbb{A}

• Again, transform our inputs **x** to the *uncoupled* inputs $\xi = T^{-1}x$

- Let $\mathbf{s}_i = (0, ..., 1, ..., 0) \in \mathbf{R}^n$ be the *i*th standard basis vector
- Let $\mathbf{x} = \mathbf{e}_i$ and note (accept) $\mathbf{e}_i = \mathbf{T}\mathbf{s}_i = \operatorname{col}_i \mathbf{T} \in DH$
 - \mathbf{Ts}_i is the *i*th eigenmode. Or equivalently, $\mathbf{T}^{-1}\mathbf{e}_i = \mathbf{s}_i$ transforms eigenvectors to standard basis vectors.
 - Recall each $\mathbf{x} \in DH$ decomposes as $\mathbf{x} = \xi_1 \mathbf{e}_1 + \ldots + \xi_n \mathbf{e}_n$ (Hwk prove this!)
- Output vector $\mathbf{y}_i = \lambda_i \mathbf{e}_i = \lambda_i \mathbf{T} \mathbf{s}_i \in BPM$ is the response to eigenvector input \mathbf{e}_i .

Singular Value Decomposition (SVD) Generalizing Eigenvalue Decomposition

Any matrix $\mathbf{A} \in \mathbf{R}^{m \times n}$ may be factored as follows:

 $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$

where $\mathbf{U} \in \mathbf{R}^{m \times m}$, $\mathbf{D} = \text{diag}\{\sigma_1, \dots, \sigma_n\} \in \mathbf{R}^{m \times n}$, $\mathbf{V} \in \mathbf{R}^{n \times n}$

- The numbers $\{\sigma_1, \dots, \sigma_n\}$ are the *singular values* of **A**
 - They are non-negative real numbers
 - They are generalizations of eigenvalues for square matrices

• Specifically,
$$\sigma_i = [\lambda_i(\mathbf{A}^T \mathbf{A})]^{1/2}$$
 for $n \le m$ and $\sigma_i = [\lambda_i(\mathbf{A}\mathbf{A}^T)]^{1/2}$ for $n \ge m$

- Matrix U and V have special properties
 - $\mathbf{V}^T \mathbf{V} = \mathbf{I} \in \mathbf{R}^{n \times n}$, that is, it is *orthogonal*, in set SO(n)
 - $\mathbf{U}^T \mathbf{U} = \mathbf{I} \in \mathbf{R}^{m \times m}$, that is, it is *orthogonal*, in set SO(m)
 - (note $\mathbf{U}^T \mathbf{U} = \mathbf{I}$ implies $\mathbf{U}^T = \mathbf{U}^{-1}$)

NOTE: No requirements on the number of correctors and BPMs

Singular Value Decomposition (SVD) Generalizing Diagonalization

- The columns of V are called the *right singular vectors* of A
- The columns of **U** are called the *left singular vectors* of **A**

Again consider the matrix-vector equation

 $\mathbf{y} = \mathbf{A}\mathbf{x} = \mathbf{U}\mathbf{D}\mathbf{V}^T\mathbf{x}$

and perform the substitutions
ξ = V^Tx
η = U^Ty

We then have the (almost) equivalent decouple system

$$\eta = \mathbf{D}\boldsymbol{\xi}$$
 Like the case of a diagonalizable **A**, this equation is completely decoupled $\eta_i = \sigma_i \boldsymbol{\xi}_i$

Singular Value Decomposition (SVD) **Generalizing Diagonalization**

Returning to the corrector/BPM example with singular-value

Clearly this situation is analogous to diagonalizable case, however... We must be careful!

- Some inputs may not be connected.
- We have outputs $\{\mathbf{y}\} \subseteq \mathbf{R}^n$ that are unreachable!
- This example was for the case where m < n, we have analogous results for m > n"Dead inputs" $\{\mathbf{x}\} \subseteq \mathbf{R}^m$ that do nothing

SVD is an important part of Model-Independent Analysis in high-level beam control

USPAS

Summary

- We can factor *any* matrix $\mathbf{A} \in \mathbf{R}^{m \times n}$ as $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$
 - This factorization alone provides an enormous amount of information about a system represented by

 $\mathbf{y} = \mathbf{A}\mathbf{x}$

- Matrix V tells you coupling of inputs (i.e., the x_i)
 - Corrector combinations that have effect
- Matrix U tells you coupling of outputs (i.e., the y_i)
 - BPMs combinations that are likely/unlikely
- The diagonal matrix **D** provides ...
 - The gains (i.e., the σ_i) for the system
 - Internal system degeneracy "zero" singular value

Matrix Exponential

A Matrix Function

- Functions of (square) matrices are common in analysis
 - For example, $sin(\mathbf{A})$, $log(\mathbf{A})$, $exp(\mathbf{A})$, for $\mathbf{A} \in \mathbf{R}^{n \times n}$
 - These functions may seem strange, but they are well-defined by the *Taylor series* for their scalar function sibling (matrix powers are well-defined)
- Of particular importance for us is the matrix exponential e^{tA}
 - The scalar *t* representing time
 - Occurs frequently in linear dynamical systems as the natural response
 - Defined according to Taylor series

$$e^{t\mathbf{A}} = I + tA + \frac{t^2}{2!}A^2 + \frac{t^3}{3!}A^3 + \dots$$

- Show e^{tA} is well defined for all $A \in \mathbb{R}^{n \times n}$ given that e^{a} is well defined for all $a \in \mathbb{R}$
- Say A is diagonalizable where $A = T\Lambda T^{-1}$
 - Show that $e^{t\mathbf{A}} = \mathbf{T}e^{t\mathbf{A}}\mathbf{T}^{-1}$
 - The exponential $e^{t\Lambda}$ is easy to compute, $e^{t\Lambda} = \text{diag}\{e^{t\lambda 1}, \dots, e^{t\lambda n}\}$
 - Jacobi identity

$$\det e^{\mathbf{A}} = e^{\operatorname{tr}\mathbf{A}}$$

Control Theory

A Preview

Given a system (a "plant") *G*, control theory starts with the basic questions: Is the system...

- Stable: is the output **y** bounded for bounded inputs **u**?
 - Is $||\mathbf{y}|| < \infty$ for $||\mathbf{u}|| < \infty$?
- Observable: can we deduce internal state \mathbf{x} by observing the inputs \mathbf{u} and outputs \mathbf{y} ?
- Controllable: can we steer the system to any arbitrary output **y**?
 - (There exists a **u**(*t*) to do so?)

Then we can ask how to stabilize, how to observe, how to control

Linear, continuous-time plant G

Linear Beam Optics

Linear systems and the matrix exponential play a crucial part in linear beam optics and, consequently, the XAL online model

- In linear beam optics beamline elements are modeled by matrices $\Phi \in Sp(6)$.
 - *Sp*(6) is The group of 6x6 *symplectic* matrices.
- These matrices are formed from the exponential of another matrix **G**
- The matrix **G** represents the equations of motion
- The XAL online model is based upon these ideas

Focusing Quadrupole n

 $\mathbf{z}(s) = \mathbf{\Phi}_n(s)\mathbf{z}_0$

$$\Phi_n(s) \equiv e^{s\mathbf{G}_n}$$

 $\mathbf{z}'(s) = \mathbf{G}_n(s)\mathbf{z}(s)$

Linear Algebra Summary

- Matrices can be treated as linear operators between finite dimensional vector spaces, in particular, the spaces \mathbf{R}^n
- A square matrix **A** often has eigenvalues and eigenvectors that characterize the action of **A** upon vector space **R**ⁿ
- If a matrix A can be diagonalized as $A = TAT^{-1}$ then its action can be completely decoupled
- Any matrix $\mathbf{A} \in \mathbf{R}^{m \times n}$ may be factored according to $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$ where **D** is the matrix of singular values
 - This factorization, although not as straightforward, also characterizes the action of A upon Rⁿ (and domain R^m)

Supplementary Material

• More details on Linear Algebra

Matrix Diagonalization

Factoring into Natural Modes

Sometimes a square matrix A in $\mathbf{R}^{n \times n}$ can be factored as

 $\mathbf{A} = \mathbf{T} \mathbf{\Lambda} \mathbf{T}^{-1}$

Where **T** is in $GL(n, \mathbf{R})$ and $\mathbf{\Lambda} = \text{diag}\{\lambda_1, \dots, \lambda_n\}$ in $\mathbf{R}^{n \times n}$.

- Λ is called the *spectral matrix* (with spectrum $\{\lambda_1, ..., \lambda_n\}$)
- **T** is called the *modal matrix*
- When this condition is satisfied, i.e., when A = TAT⁻¹, we say A is *diagonalizable*
- **Fact**: If a square matrix **A** in $\mathbb{R}^{n \times n}$ has *n* unique eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$ then it can be factored as above
- In fact, a suitable **T** can be formed by augmenting all the eigenvectors as columns. Specifically,

$$\mathbf{T} = \begin{pmatrix} \mathbf{e}_1 | & \mathbf{e}_2 | & \cdots & | \mathbf{e}_n \end{pmatrix}$$

Matrix Diagonalization

Interpretation

Matrix diagonalization decouples \mathbf{R}^n into the natural modes of \mathbf{A}

- Instead of working in \mathbf{R}^n , we work in the space $\mathbf{T}^{-1}\mathbf{R}^n$!
- To make this less abstract consider equation y = Ax and, for example,
 - Think of A as a multiple-input, multiple-output, coupled amplifier.
 - Instead of using parameters x and y, use $\xi = T^{-1}x$ and $\eta = T^{-1}y$
 - Everything decouples as $\xi_i = \lambda_i \eta_i$ (transform back when you're done)

Matrix Diagonalization

Special Case: Symmetric, Positive Definite Matrix

Fact: A positive-definite ($\lambda_i > 0$, for each *i*), symmetric ($\mathbf{A} = \mathbf{A}^T$), square matrix \mathbf{A} in $\mathbf{R}^{n \times n}$ can always be diagonalized as $\mathbf{A} = \mathbf{R} \Lambda \mathbf{R}^T$

Where **R** is in the special orthogonal group SO(n) in $\mathbb{R}^{n \times n}$.

For any element **R** of SO(n) in $\mathbb{R}^{n \times n}$

- $\mathbf{R}\mathbf{R}^{\mathrm{T}} = \mathbf{I}$ where \mathbf{I} is the identity matrix
- From the above, $\mathbf{R}^{-1} = \mathbf{R}^{T}$, e.g., just like a rotation in 3-space
- det **R**= 1

A appears as a hyper-ellipsoid with semi-axes $\{\lambda_1, \dots, \lambda_n\}$ rotated by a (generalized) angle **R** in hyper-Euclidean *n* space

Singular Value Decomposition Generalizing Diagonalization

Any matrix $\mathbf{A} \in \mathbf{R}^{m \times n}$ may be factored as follows:

 $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$ Note the similarity with the special case when **A** is symmetric and positive-definite. where $\mathbf{U} \in \mathbf{R}^{m \times n}$, $\mathbf{D} = \text{diag}\{\sigma_1, \dots, \sigma_n\}$, $\mathbf{V} \in SO(n) \in \mathbf{R}^{n \times n}$

- The numbers $\{\sigma_1, \dots, \sigma_n\}$ are the *singular values* of **A**
 - They may be any (complex) number, *including zero*!
 - They are generalizations of eigenvalues for square matrices
- Matrix U has the special property that it is "partially orthogonal"
 - $\mathbf{U}^T \mathbf{U} = \mathbf{I} \in \mathbf{R}^{n \times n}$
 - Note that $\mathbf{V}^T \mathbf{V} = \mathbf{I} \in \mathbf{R}^{n \times n}$ because $\mathbf{V} \in SO(n)$

Singular Value Decomposition

Generalizing Diagonalization

- The columns of V are called the *right singular vectors* of A
- The columns of **U** are called the *left singular vectors* of **A**

Again consider the matrix-vector equation

 $\mathbf{y} = \mathbf{A}\mathbf{x} = \mathbf{U}\mathbf{D}\mathbf{V}^T\mathbf{x}$

and perform the substitutions
ξ = V^Tx
η = U^Ty

We then have the (almost) equivalent equation

$$\eta = \mathbf{D}\xi$$
 Like the case of a diagonalizable A, this $\eta_i = \sigma_i \xi_i$

- A *basis* for vector space V is a (possibly infinite) subset {e₁, e₂, e₃, ...} of V such that any v ∈ V can be expressed as a *linear combination* of basis vectors.
 If v ∈ V then ∃ r₁, r₂, r₃, ... ∈ R such that v = r₁e₁ + r₂e₂ + r₃e₃ + ...
- All basis sets of V have the same cardinality, called the *dimension* of V
 dim V = |{e₁, e₂, e₃, ...}|
- Examples:

• (1,...,0), (0, 1, ...,0), ..., (0, 0, ...,1) form the *standard* basis for **R**^{*n*}.

• {1, x, x^2 , ..., x^{n-1} } is a basis for the vector subspace { $f \in C^{\infty}([0,1]) \mid d^n f/dx^n = 0$ }

• {1, cos $2\pi ft$, cos $4\pi ft$, ..., cos $(n-1)\pi ft$ } is a basis for the set of all even, band-limited functions with period 1/f, and cutoff frequency *nf*.

• The eigenvectors of any symmetric, pos. def. matrix $A \in \mathbb{R}^{n \times n}$ form a basis of \mathbb{R}^{n} .

All these vector spaces are isomorphic!