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Introduction 
Motivation 

•  Linear algebra provides many practical techniques for analysis 
and solution of linear (and nonlinear) systems.  We utilize these 
established methods in our applications. 

•  This material should be a review, but we formalize it then show 
it in the context of accelerator control applications 
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Introduction 
Linear Algebra: Definition and Description 
•  Linear algebra is the branch of mathematics concerned with the 

study of vectors, vector spaces (also called linear spaces), linear 
maps between vector spaces (also called linear transformations, 
linear operators), and systems of linear equations. 

•  Here we will think of “linear algebra” loosely as matrices 
•  Matrices are “tangible”,  
•  They are computer friendly 
•  Represent linear relations (maps) between finite dimensional vector spaces 

(e.g., the space of correctors and the space of BPMs) 

•  Our objective here is to review some basic facts about matrices and 
demonstrate applications to accelerator control 
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Introduction 
Basic Notation 

Ø The set of integers {…, -1, 0, +1, …} 

Ø The set of real numbers 

Ø The n times Cartesian product of R, or the set of “n-tuples” 
Ø Vectors of the form x = (x1, …,xn) 

Ø The set of m×n matrices having real number elements 

Ø Linear operators mapping elements from Rm to elements in Rn  

Ø The set of elements in           having nonzero determinant  
Ø These are the invertible matrices (has an inverse for matrix multiplication) 
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Vector Spaces 
Definition and Description 
•  Definition: A vector space over the field R is a set V along with two operations, 

vector addition + and scalar multiplication •, such that for any vectors u, v, w ∈ 
V and scalars r, s ∈ R we have the axioms: 
 

•  Associativity of addition: u + (v + w) = (u + v) + w  
•  Commutativity of addition: u + v = v + u  
•  Identity element of addition: ∃ 0 ∈ V such that v + 0 = v for all v ∈ V.  
•  Inverse elements of addition:  

•  For every v ∈ V, there exists an element −v ∈ V, called the additive inverse of v, such that v + 
(−v) = 0  

•  Distributivity of multiplication w.r.t. vector addition: a(u + v) = au + av  
•  Distributivity of multiplication w.r.t. field addition: (a + b)v = av + bv  
•  Compatibility of scalar and field multiplication: a(bv) = (ab)v 
•  Identity element of multiplication: 1v = v, where 1∈ R is the identity. 

•  Informally, “any linear combination of elements in V is also an element in V “  
•  That is, If u, v ∈ V and r, s ∈ R then ru + sv ∈ V   
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Vector Spaces 
The Space Rn  

We can consider the space Rn as the natural extension of the more familiar vectors 
in Euclidean 3 space. 
 
 This is the most common vector space for computer solution. 
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Vector Spaces  
Examples 

• Although Rn is the vector space of our primary concern, there 
are many others 
 
•  The set F(R) of real valued functions on the real line R,  {f : R → R} 
•  The set F([0,1]) of real functions on interval [0,1],  {f : [0,1] → R} 

•  Note F([0,1]) is a vector subspace of F(R) 

•  The set R∞ of infinite sequences {r1, r2, r3, …}, ri ∈  R 
•  The set F(Z+) of real functions on the positive integers Z+  {f : Z+ → R} 

•  Vector spaces R∞ and F(Z+) are isomorphic (the same thing) 

•  The set Cn(R) of continuous functions on R {f : R → R | dnf/dxn <∞} 
•  The set C∞(R) of smooth functions on R {f : R→R | dnf/dxn <∞ all n} 

•  Note the subspace structure C∞(R) ⊆ Cn(R) ⊆ F(R) 
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Vector Spaces  
Basis Sets 

•  A basis for vector space V is a (possibly infinite) subset {e1, e2, e3, …} of V such that 
any v ∈ V can be expressed as a linear combination of basis vectors. 
•  If v ∈ V then ∃ r1, r2, r3, … ∈ R such that v = r1e1 + r2e2 + r3e3 + … 

•  All basis sets of V have the same cardinality, called the dimension of V 
•  dim V = |{e1, e2, e3, …}| 

•  Examples: 
•  (1,…,0), (0, 1, …,0), …, (0, 0, …,1) form the standard basis for Rn. 

 
•  {1, x, x2, …, xn-1} is a basis for the subspace of f in C∞([0,1]) such that dnf/dxn = 0 

•  The eigenvectors of any symmetric, pos. def. matrix A ∈ Rn×n form a basis of Rn. 
 

•  The first n eigenfunctions {ψ1, ψ2, …, ψn} of quantum mechanical operator A form a basis 
for the subspace containing the first n observables of A. 
 

•  {1, cos 2πft, cos 4πft, …, cos (n-1)πft} is a basis for the set of all even, band-limited 
functions with period 1/f, and cutoff frequency nf. 
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Linear Operators Between Vector Spaces 
Matrix Representations 
A linear map L : U → V  between vector spaces U and V has the defining 

property  
 
L(rx+sy) = rL(x) + sL(y) for vectors x,y ∈ U and scalars r,s ∈ R. 

 
  (Linear maps respect the algebra of vector spaces!) 

•  Given any basis set {ei} ⊆ U, by linearity L is completely defined by where it 
maps basis vectors {ei} ∈ U, that is by {L(ei)} ∈ V 
•  Any u ∈ U can be expressed as u = r1e1+…+rmem some {ri} ⊆ R  
•  Then L(u) = L(r1e1+…+rmem) = r1L(e1) + … + rmL(em)  
•  Is {L(e1), …, L(em)} a basis set for V ?  

•  A matrix A in Rm×n is, in a natural way, a linear map between the vector spaces 
Rm and Rn under the usual matrix multiplication 
•  Once again Au = A(r1e1+…+rmem) = r1Ae1 + … + rmAem  
•  When is {Ae1, …, Aem} a basis set for Rn ?  
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Matrices in Accelerator Control 
Maps Between Sensors and Actuators 

•  A matrix A in Rm×n can represent a linear map 
between the vector spaces Rm and Rn 

•  Accelerator Control Example:  
•  Elements of Rm are corrector magnet strengths (m mag.’s) 
•  Elements of Rn are BPM readbacks  (n BPMs) 
•  Then A in Rm×n  is the response matrix 

•  Note three cases concerning response matrix A: 
•  m > n  Domain Rm is “bigger” than range Rn   

(more correctors than BPMs) 
 

•  m < n  Domain Rm is “smaller” than range Rn  
(more BPMs than correctors) 
 

•  m = n  The matrix A is square   
(equal numbers of correctors and BPMs) 
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Matrices in Accelerator Control 
Analyzing Relationship Between Sensors and Actuators 
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RnRm

We can get to all beam positions. 
But, corrector settings are not 
unique (and they can “fight” each 
other).   

             Im A 
ImA ≠Rn

0 0 
ACase 2: m<n 

RnRm
We cannot get to all the beam positions.  
We don’t have enough correctors. 

kerA = 0, ImA =Rn

0 0 

ACase 3: m=n 

Rn =RmRm
We can steer to all beam positions.  
Each has a unique corrector setting. 

Assume A has full rank throughout kerA ≡ x ∈ Rn |Ax = 0{ }
ImA ≡ARm



Matrices in Accelerator Control 
Matrices are Ubiquitous in Beam Physics 

Determining the 
perturbations in the closed 
orbit of a ring when 
changing a dipole corrector 
values. 
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Matrix Decomposition 
Eigenvalues, Factorization, Diagonalization 

•  Because matrices model important aspects of beam physics and accelerator 
control, it is instructive to look at their structure 
 
•  The eigenvectors and eigenvalues of a matrix decompose the vector spaces into the 

natural “modes” of the system 

•  Matrix factorization techniques decompose a matrix into constituent factors with 
special structure 

•  Matrix diagonalization is a special type of factorization which identifies the eigen 
modes of a matrix 

•  We cover two explicit methods of factoring a matrix, eigenvalue decomposition and 
singular-value decomposition, both are diagonalization processes. 

•  We focus on response matrices throughout the discussion, however, the 
material also applies to transfer matrices, linearized dynamics, coupled 
equations, etc. 
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Eigenvectors and Eigenvalues 
The Natural Modes of A Square Matrix 
•  For a square matrix A in Rn×n we can often find special vectors e in Rn 

so that 
 
 
where λ ≠ 0 is a scalar (either real or complex) 
•  Any such vector e is called an eigenvector of A 
•  Any such scalar λ is called an eigenvalue of A  

•  A does not change the direction of e, only the length! 
•  A acts like an amplifier on e with gain λ  
•  Eigenvectors e1, e2, … are the natural, (decoupled), modes of A 
•  What if we could decompose all of Rn into eigenvectors of A?  

(see homework) 
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Eigenvectors and Eigenvalues 
Example: Examining Orbit Position System Response 
Say we find an eigenvector  

e = (e1, e2, …, en) for the 
response matrix A so that 
  Ae = λe  

•  Drive each dipole corrector 
DHi with the strength ei at the 
eigenvector coordinate i  
 

•  Each BPMi behaves as if it is 
directly connected to DHi  

•  The response (beam positions) 
are simply amplified by 
eigenvalue λ  
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Matrix Factorizations 
Examples: 
•  Algebraic analogy: 

•  The integers Z have prime factorizations, e.g., 42 = 2•3•7   
•  Real numbers have only trivial factorizations (every real number is a factor of 

any other real number). 

•  Matrix A in Rm×n admits many factorizations (or decompositions) 
•  A = LU (m=n),  L upper triangular, U lower triangular (“LU” decomposition) 
•  A = QR ,  Q ∈ SO(m), R symmetric, positive definite (polar decomp.) 
•  A = TΛT-1 (m=n),  T ∈ GL(n, R), Λ ∈ diag(Rn×n)  (eigenvalue decomp.) 
•  A = UDVT , U ∈ SO(m) , D ∈ diag(Rn×n), V ∈ SO(n) (sing. value decomp.) 

•  We cover eigenvalue decomposition and the more general singular value 
decomposition in detail. 
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Matrix Factorization 
Factoring into Natural Modes 

Sometimes a square matrix A in Rn×n can be factored as  
 
 

Where T is in GL(n,R) (invertible) and Λ = diag{λ1,…,λn} in Rn×n.  
•  Λ is called the spectral matrix (with spectrum {λ1,…,λn}) 
•  T is called the modal matrix and is composed of eigenvectors 
•  When this condition is satisfied, i.e. when A = TΛT-1, we say A is 

diagonalizable 

•  The matrix T describes the coupling modes between the correctors and the 
BPMs.   

•  The matrix Λ describes the gains between these natural couplings  
•  For example…. 
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Matrix Factorization 
Decoupling Beam Position Response 

•  Our corrector space DH is isomorphic to Rn, that is, DH ≅ Rn  
•  The vector x ∈ DH represents the set of corrector strengths x1, x2, …, xn 

  
•  Our response space BPM is isomorphic to Rn, that is, BPM ≅ Rn 

•  The vector y ∈ BPM represents the set of beam positions y1, y2, …, yn  

•  The response matrix A ∈ Rn×n relates y to x, that is,  
  y = Ax  

•  If A factors as A = TΛT-1, then Λ = T-1AT  
 

•  Set      ξ ≡ T-1x   and    η ≡ T-1y       
 
     yielding 

     η = Λξ   
 
     or the n scalar equations 
 

    ηi =λiξi    for i = 1, …, n   
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Matrix Diagonalization 
Decoupling Beam Position Response (Special Case m=n) 
Matrix diagonalization decouples our corrector space DH ≅ Rn  and our response space 

BPM ≅ Rn into the natural modes of (square) response matrix A  
 
•  Again, transform our inputs x to the uncoupled inputs ξ ≡ T-1x  

•  Let si ≡ (0,…, 1,…, 0) ∈ Rn be the ith standard basis vector 
 

•  Let x = ei and note (accept) ei ≡ Tsi = coli T ∈ DH 
•  Tsi is the ith eigenmode. Or equivalently, T-1ei = si transforms eigenvectors to standard basis vectors. 
•  Recall each x ∈ DH decomposes as x = ξ1e1 + … + ξnen  (Hwk - prove this!)  

 
•  Output vector yi = λiei = λiTsi ∈ BPM is the response to eigenvector input ei. 
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Singular Value Decomposition (SVD) 
Generalizing Eigenvalue Decomposition 
Any matrix A ∈ Rm×n may be factored as follows: 

 
  A = UDVT  

 
where U ∈ Rm×m,  D = diag{σ1,…,σn} ∈ Rm×n,  V ∈ Rn×n  

 
•  The numbers {σ1,…,σn} are the singular values of A  

•  They are non-negative real numbers 
•  They are generalizations of eigenvalues for square matrices 
•  Specifically,                                            and   

•  Matrix U and V have special properties 
•  VTV = I ∈ Rn×n , that is, it is orthogonal, in set SO(n) 
•  UTU = I ∈ Rm×m , that is, it is orthogonal, in set SO(m)  

•  (note UTU = I implies UT = U-1) 
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Singular Value Decomposition (SVD) 
Generalizing Diagonalization 

•  The columns of V are called the right singular vectors of A  
•  The columns of U are called the left singular vectors of A  

Again consider the matrix-vector equation 
 

 y = Ax =  UDVT x  
 
and perform the substitutions 
•  ξ = VTx  
•  η = UTy  

 We then have the (almost) equivalent decouple system   
 

 η = Dξ                                                     ηi = σiξi 
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Like the case of a diagonalizable A, this 
equation is completely decoupled 



Singular Value Decomposition (SVD) 
Generalizing Diagonalization 

Returning to the corrector/BPM example with singular-value 
decomposition 
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Singular Value Decomposition 
Summary 

•  We can factor any matrix A ∈ Rm×n as A = UDVT  
•  This factorization alone provides an enormous amount of 

information about a system represented by  
 

  y = Ax  
 

•  Matrix V tells you coupling of inputs (i.e., the xi) 
•  Corrector combinations that have effect 

•  Matrix U tells you coupling of outputs (i.e., the yi)  
•  BPMs combinations that are likely/unlikely 

•  The diagonal matrix D provides … 
•  The gains (i.e., the σi) for the system 
•  Internal system degeneracy – “zero” singular value 
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Matrix Exponential 
A Matrix Function 

•  Functions of (square) matrices are common in analysis  
•  For example,  sin(A), log(A), exp(A), for A ∈ Rn×n   
•  These functions may seem strange, but they are well-defined by the Taylor series for 

their scalar function sibling (matrix powers are well-defined) 

•  Of particular importance for us is the matrix exponential etA  
•  The scalar t representing time 
•  Occurs frequently in linear dynamical systems as the natural response 
•  Defined according to Taylor series 

•  Show etA is well defined for all A ∈ Rn×n given that ea is well defined for all a ∈ R  

•  Say A is diagonalizable where A = TΛT-1 
•  Show that etA = TetΛT-1    
•  The exponential etΛ is easy to compute, etΛ = diag{etλ1,…, etλn} 
•  Jacobi identity 
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Control Theory 
 A Preview  
Given a system (a “plant”) G, control theory starts with the basic questions:  
Is the system… 

•  Stable: is the output y bounded for bounded inputs u?   
•  Is ||y||<∞ for ||u||<∞ ? 

 
•  Observable: can we deduce internal state x by observing the inputs u and outputs y? 

 
•  Controllable: can we steer the system to any arbitrary output y?  

•  (There exists a u(t) to do so?) 
 

Then we can ask how to stabilize, how to observe, how to control 
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Linear Beam Optics 
A Preview 

Linear systems and the matrix exponential 
play a crucial part in linear beam optics 
and, consequently, the XAL online model 
 
•  In linear beam optics beamline elements are 

modeled by matrices Φ ∈ Sp(6). 
•  Sp(6) is The group of 6x6 symplectic matrices. 

•  These matrices are formed from the 
exponential of another matrix G  
 

•  The matrix G represents the equations of 
motion 
 

•  The XAL online model is based upon these 
ideas 
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Linear Algebra 
Summary 

•  Matrices can be treated as linear operators between finite 
dimensional vector spaces, in particular, the spaces Rn  

•  A square matrix A often has eigenvalues and eigenvectors that 
characterize the action of A upon vector space Rn  

•  If a matrix A can be diagonalized as A = TΛT-1 then its action can 
be completely decoupled 

•  Any matrix A ∈ Rm×n may be factored according to A = UDVT 
where D is the matrix of singular values 
•  This factorization, although not as straightforward, also characterizes the 

action of A upon Rn  (and domain Rm) 
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Supplementary Material 

• More details on Linear Algebra 
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Matrix Diagonalization 
Factoring into Natural Modes 

Sometimes a square matrix A in Rn×n can be factored as  
 
 

Where T is in GL(n,R) and Λ = diag{λ1,…,λn} in Rn×n.  
•  Λ is called the spectral matrix (with spectrum {λ1,…,λn}) 
•  T is called the modal matrix 
•  When this condition is satisfied, i.e., when A = TΛT-1, we say A is 

diagonalizable 
 
Fact: If a square matrix A in Rn×n has n unique eigenvalues {λ1,

…,λn} then it can be factored as above 

•  In fact, a suitable T can be formed by augmenting all the 
eigenvectors as columns.  Specifically, 
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Matrix Diagonalization 
Interpretation 

Matrix diagonalization decouples Rn into the natural modes of 
A  
•  Instead of working in Rn, we work in the space T-1Rn ! 

 
•  To make this less abstract consider equation y = Ax and, for example, 

•  Think of A as a multiple-input, multiple-output, coupled amplifier. 
•  Instead of using parameters x and y, use ξ ≡ T-1x and η ≡ T-1y  
•  Everything decouples as ξi = λiηi   (transform back when you’re  done) 

1/27/14 USPAS 31 

Λξη
xΛTyT

xTTy

=

=

Λ=
−−

−

11

1
x1 

x2 

xn 

y2 

y1 

yn 

λ1 

λ2 

λn 

T-1 T x y Λ ξ η

T-1 
n n1−T n

λ2
-1 



Matrix Diagonalization 
Special Case: Symmetric, Positive Definite Matrix 

Fact: A positive-definite (λi > 0, for each i), symmetric (A = AT), 
square matrix A in Rn×n can always be diagonalized as 

 
 Where R is in the special orthogonal group SO(n) in Rn×n.   

 
 For any element R of SO(n) in Rn×n  

•  RRT = I where I is the identity matrix 
•  From the above, R-1 = RT, e.g., just like a rotation in 3-space 
•  det R = 1  
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Singular Value Decomposition 
Generalizing Diagonalization 

Any matrix A ∈ Rm×n may be factored as follows: 
 

 A = UDVT  
 
where U ∈ Rm×n, D = diag{σ1,…,σn}, V ∈ SO(n) ∈ Rn×n  

 
•  The numbers {σ1,…,σn} are the singular values of A  

•  They may be any (complex) number, including zero! 
•  They are generalizations of eigenvalues for square matrices 

•  Matrix U has the special property that it is “partially orthogonal” 
•  UTU = I ∈ Rn×n  
•  Note that VTV = I ∈ Rn×n because V ∈ SO(n) 
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Singular Value Decomposition 
Generalizing Diagonalization 

•  The columns of V are called the right singular vectors of A  
•  The columns of U are called the left singular vectors of A  

Again consider the matrix-vector equation 
 

 y = Ax =  UDVT x  
 
and perform the substitutions 
•  ξ = VTx  
•  η = UTy  

 We then have the (almost) equivalent equation   
 

 η = Dξ                                                     ηi = σiξi 
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Vector Space: Basis Sets 
•  A basis for vector space V is a (possibly infinite) subset {e1, e2, e3, …} of V such that 

any v ∈ V can be expressed as a linear combination of basis vectors. 
•  If v ∈ V then ∃ r1, r2, r3, … ∈ R such that v = r1e1 + r2e2 + r3e3 + … 

•  All basis sets of V have the same cardinality, called the dimension of V 
•  dim V = |{e1, e2, e3, …}| 

•  Examples: 
•  (1,…,0), (0, 1, …,0), …, (0, 0, …,1) form the standard basis for Rn. 

 
•  {1, x, x2, …, xn-1} is a basis for the vector subspace {f ∈ C∞([0,1]) | dnf/dxn = 0} 

•  {1, cos 2πft, cos 4πft, …, cos (n-1)πft} is a basis for the set of all even, band-limited 
functions with period 1/f, and cutoff frequency nf. 

•  The eigenvectors of any symmetric, pos. def. matrix A ∈ Rn×n form a basis of Rn. 
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All these 
vector 

spaces are 
isomorphic! 


