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Linear Beam Optics

Overview

+ Accelerator systems employ a full complement of magnetic and RF
devices for their operation

- The RF devices are used for acceleration
- The magnetic devices are used for transport and containment

- Here we focus on magnets, modeling acceleration is beyond scope

+ Motion of charged particles through these magnets is analogous to the
behavior of light rays through optical devices

+ Consider only the 1%t order forces of magnetic fields
« The resulting equations of motion are /inear — Matrices!

- Some magnets are specifically 2" order and higher
- We shall not consider these in /inear beam optics



Motivation

When designing an accelerator, the first step is to define a reference
trajectory. Only the ideal, or synchronous, particle actually follows this
trajectory. All other beam particles follow trajectories about the design
trajectory.

What we really need is a model describing particle deviations from the
reference trajectory.

The idea 1s to subtract the
reference trajectory from the
actual trajectory, and then take the
linear approximation by
discarding all higher order
terms...

This gives us equations for “x, y,
and z”’, which are the particle
coordinates about the reference Po, ¢, 1

tfrajectory. SR
4 USPAS R 1/27/14
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Implementing the Beamline

Beamline Elements

 Once the reference trajectory i1s
agreed upon we employ a
series of magnets to define the
physical beamline
- These magnets are typically
“multi-pole” structures which
produce the simplest type of fields
possible
+ Simplifies analysis
+ Reduces beam degradation

- The fields, in turn, produce the
required forces on the beam
particles




Magnet Families

We name magnet types by the number n of pole faces from which it is
composed.

n=1: Dipole n=2: Quadrupole n=3: Sextupole n=4: Octupole
S N

N S
180° between 90° between poles 60° between 45° between
poles poles poles

* In general, poles are equally space and 360°/2n apart.
*The pole faces and their spacing determine the magnetic field pattern
» The “skewed” version of the magnet is obtained by rotating magnet by 180°/2n.

*The field patterns determine the forces applied on the beam particles.
6 USPAS 1/27/14
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Multi-pole Magnet Applications for Beamlines

ol

Dipoles ‘-

\/

Bending (following reference
trajectory)

Focusing the beam

“Chromatic compensation”



SNS ring dipole

Magnet Photos

Dipole

Sextupole
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Quadrupole
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Magnet Forces

From Physics to Engineering: Designing the Particle Forces

- Magnets produce magnetic field B(x,y,z)
+ For field-free region of multi- pole, field equations are Laplace’s Eq.

2 2 2
=a¢+a¢+a¢=0

Vig
ax* gyt 9z’
B-Vp- g d¢p I¢
ox dy oz

- Fields create a force F on particle with velocity V at position (x,),z) from
the Lorentz force law

F(x,y,z) =qVxB(x,y,z2), V= (x y Z')

- Forces then affect the motion of the particles through Newton’s equations
of motion (or Hamiltonian dynamics)

% _F(xy,7), P=mV

Design fields to confine beam about ref. trajectory
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Magnetic Forces

Designing the Beamline

- It is up to the skill of the designer to
1. Create a magnet with high-quality fields using the field equations

2. Align the magnet to produce the correct force on the particle using the
Lorentz force law

3. Ensure that the particles are deflected appropriately using the
equations of motion
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Modeling the Reference Trajectory

Beam Frame Coordinates
- Now consider a special coordinate system (x,y,z) that follows the
synchronous particle along the design orbit parameterized by
path length s. We call it the beam frame.
+ Synchronous particle located at origin (x,y,z) = (0,0,0)
+ Coordinates x and y are horizontal and vertical offsets, resp.
+ Coordinate z represents longitudinal offset from origin.

bunch centroid Y * Sometimes use phase 0 w.r.t. the RF

synchronous particle

Synchronous particle
 Haspositionx=y=z=0

*  No momentum offset x’=y’=z"=0
e Travels at velocity v, = pB,c

e Has design momentum p, = B,y,mc




Modeling the Reference Trajectory

The “Beam Frame”

- The beam frame 1s not an inertial frame
- A laboratory frame that follows synchronous particle
- All beam particles are identified by their coordinates in this frame

- We can Lorentz transform to the stationary beam frame if necessary
+ (This is done for space charge calculations)

X PP T
ds  py
Synchronous ________________Z
particle at Ry(s) yr _ ﬂ ~ Py “Mo:ir}en:um”
- coordinates
z ds  po
dz 1 A
RO(S /,,/ Z’ = d— = _2_p
. o7 S
Beam particleat .- (x(s), ¥(s), z(s) ) Yo Po
r=(x)2) -7

s(?)

Reference trajectory
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Longitudinal Coordinate

Longitudinal Coordinate Conventions (Open XAL Longitudinal Coordinate)

- Phase space coordinate z’ 1s different than commonly used
momentum offset parameter 0

« Coordinate z’ represents positional drift away from origin
- Coordinate 0 represents the fractional deviation from design momentum
- They are related according to

5 = Ap — p_pO
Po Po
=757

* ¥,° is the relativistic factor
(length contraction and time dilation)

- Note finally total longitudinal velocity v is

d d d ,
V=E(S+Z)=E(S+Z)Ej=(1+Z)ﬁoc
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Longitudinal Coordinate
Special Relativity

ONCE AGAIN:

Longitudinal coordinate is special because it points in
direction of propagation

- Special Relativity must be considered, ergo the relation

=752

- Alternate representations longitudinal “momentum’

- Longitudinal divergence angle z’ = dz/ds
+ Off-momentum parameter 0 = (p - p,)/p,
- Energy difference parameter AW = W - W,

XAL uses z’
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Longitudinal Momentum

Comparison

Longitudinal Divergence z’ Momentum difference o

z’—=0asy,—~»(@asv—rc) 0 can remain finite even if y, — o

Symmetric dynamics equations Asymmetric dynamics equations

- Convenient for space charge Convenient for dispersion

Numerically sensitive at high energy Numerically stable at high energy

Probably better suited for protons Probably better suited for elections
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Modeling the Beamline

Transfer Matrix Approach to Linear Beam Optics

- Because we only consider linear forces we - Beam Particle Coordinates

can use linear algebra - Bach particle will be represented as a
point in the six-dimension phase space

- We represent each beamline element 7 as a
(transfer) matrix ®,(u,) with element

control parameters u, identifying + Follows from the three spatial coordinates

* Magnet strength and the three corresponding momentum
- Magnet length coordinates required for a solution to
- FBtc. equations of motion

cz=Mxyyzz)

+ Particle dynamics

zn+l = (I)n (un )zn

Our task then, is to start from the equations of motion and derive a matrix
for each element which includes the effects of motion in a curva-linear
coordinate system
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Motivation

Modeling the Entire Beamline
+ Once we have each beamline element n represented (mathematically) as a

transfer matrix ® , the entire beamline can be modeled as a cascade of these
elements; multiplication of the {®, } being the dynamics

- We can propagate forward or backward through the network using the {®,}

DD, ..D,
P, ..P, Note that each beamline
" element may also have
—— D, ,...9, 4‘ a control parameter u
) ) associated with it.
@, — @, .. B, —

; q)O — q)m-l q)m q)m+1 T q)n T

0 Z, 7, Z, Z+1 Z,+2 2y Z,11

i bbb

u 1 um—l um um-i-l un
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Modeling the Beamline

Strategy for Transfer Matrix Model Derivation

- The computational details for determining each beamline element
matrix can be found in many excellent texts in accelerator physics.

- We will not present these derivations here

« We focus on a (somewhat nonstandard) high-level picture of how
these computation follow

- In some global coordinate system (where the beamline is defned) we define
the design trajectory as the spatial curve R(s)

- We form a moving coordinate frame (x,),z) with origin at R, (s) about which
beam particles have coordinates r = (x,y,z) within that frame

- We write the equations of motion in the global frame, then take only first-
order terms of the forces

- We then translate the forces into the new moving frame

- From there, the matrices for individual elements can be derived without
regard to the original (global) beamline
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Modeling the Beamline Elements

Equations of Motion (cont.)

After some manipulation, the equations of motion for a beam
particle can be put into the matrix form

7' =G(s)z-T(s)z

where

V4

(r) r(s)=(ﬂ(s) 0) GOy 10 11
v/ 0 Qs)/ Gep (S)Gr(s) fepo(®) G,(s)

z 1s the phase coordinate vector in the moving frame (re-ordered coordinates)

I' 1s the effect of the rotating frame (a gauge or connection, Coriolis, etc.)
G is the 1% order force matrix in the moving frame

In linear accelerators (linacs) I' = 0 since the frame (x,),z) does not rotate

Note here we have separated the position coordinate r = (x,y,z) from the
momentum coordinates v=(x",y’,z")
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Modeling the Beamline Elements

Transfer Matrices

- Typically the matrices I'(s) and G(s) are constant within a beamline
element (e.g., magnet)

- Thus, the solution to
z' = (G — F)z

is given by the matrix exponential z(s) = (6D z, where z, = z(0)

« For particle motion within a beamline element » we have
() =®,()2y B, ()= G
where

G, 1s the generator matrix for element n (the applied forces)
I' 1s the coordinate connection for element n (inertial forces)

®, 1s the transfer matrix for element n
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Modeling the Beamline and Elements

Summary

+ The beamline is designed according to a reference orbit Ry(s) and
synchronous velocity V (s) for distance s along the beamline.

+ The quantities R(s) and V(s) are the position and velocity of the
synchronous particle in the global coordinates (X,Y,7) at a distance s.

- All other particles will propagate down the beamline in the vicinity
of the synchronous particle. To model this motion, we...

 Construct a moving, local coordinate system (x,y,z) about the synchronous
particle to describing the relative position of the beam particles.

« Translate the 1% order forces of the magnets to this frame and also account
for the internal forces of the moving frame with the connection T.

- Express the equation of motion in the local frame. The result is...
A matrix-vector equation for the generalized particle coordinates r and
momentum v (or phase coordinates z = (r,v) ).
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Modeling the Beamline

Practical Considerations

- In general we let the theoreticians and engineers compute the
transfer matrices and connections for the beamline.

« Then we use the results for our model reference control and other high-
level applications

- However, there are some cases that are simple to compute and,
consequently, instructive for observing the process.
- Drift space — a field free region in a straight section of beamline
+ Quadrupole magnet — a magnet in a straight section of beamline
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Beamline Element Transfer Matrices

Example: Drift Space

+ The beamline is straight; therefore I'(s) = 0
- No fields are present, thus, G, and G, are both zero so the matrix G 1s

Sle, 6) (o o

» The solution for @ ,,,4(s) 18

) 3 However, the matrix G is
D, () = eC cT1+5G+G2+2 @3 4+...  idempotent, that is,G> = 0. Thus
' e*C is easy to compute.

» Thus, the solution is @, (s) = I + sG, or explicitly
1 00 s 00

0O 1 0 0 s O This form differs slightly from others
0010 0 in the literature because we have taken
— = § z=(r,v) = (x,y,z,x ",y ,z’) rather than z =
Pap@)=1+sG=10 06 1 0 0 (o' y'zz)
O 0001 O
0O 0 0 0 0 1
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Beamline Element Transfer Matrices

Example: Drift Space (cont.)

The single particle phase trajectory through a field free region (drift space) is then
given by the matrix-vector equation

2(s) = (I)driﬁ (8)z

where z, 1s the phase coordinate at the entrance of the drift and

(I)dry‘t (s)=

is the transfer matrix for the drift space.

S O O O O =

S O O o = O

S O O = O O

S O = O O @

0

S = O O W

0

—_ O O . O

N =

~

N =

~

~
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Beamline Element Transfer Matrices

Example: Quadrupole Lens
- Ideal quadrupole magnets have fields B at position R defined by

BR)-( B, B, B |-(sr-¥) gx-X,) 0|
(in global coordinates) where g is the field gradient 0B/0x, 0B/0y of the quadrupole
- The beamline is straight, thus I'(s) = 0

- Computing the force differentials yields

-1 0 O
Gr=aF(R0,V0)= d q( Vv Vy 4 )X( gY gX 0 ) =gPcg| 0 1 O
oR oR V=V,
O 0 O
oF(R,,V,) 0
G, =L Rl (vvv)x(yxo) -0
’ oV qu YT &5 8 R-R,
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Beamline Element Transfer Matrices

Example: Quadrupole Lens (cont.)

+ The external force generator matrix is then

0 0
0 0

G(S)=(0 1)= 02 0
G, G,] |-k* 0

0 k?

0 0

0

oS o o O O

- where k? = gg/p, is the focusing constant

S O O O O =

- The transfer matrix is given by ®@_,,,(s) = *¢

o O O O = O

o O O = O O
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Beamline Element Transfer Matrices

Example: Quadrupole Lens (cont.)

- The transfer matrix is then

cos ks 0 0 S“;{’“ 0 0

0 coshks 0 0 szk‘g 0

D,.q(5)=€C = 0 o 1 0 0 s
—ksin ks 0 0 cosks 0 0

0 ksinhks O 0 coshks 0

0 0O 0 0 0o 1

Once again this form differs slightly
from others in the literature because
we have taken z=(x,y,z,x’,y",z") rather
than z = (x,x 1,y ",2,2")
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Beamline Element Transfer Matrices

Example: Quadrupole Lens (cont.)

- In the conventional phase space coordinate z = (x,x ),y ’,z,z”), ordering the
quadrupole transfer matrix appears as

cosks LK 0 00

—ksinks cosks 0 0 0 0

®y)=| O 0 coshks A 4 g
0 0 ksinhks coshks 0 0

0 0 0 0 1 s

0 0 0 0 0 1

where k = (¢G/p,)'"?

- NOTE: For straight beamlines it is also possible to compute this result directly
using standard ODE techniques
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Modeling the Beamline

Putting It Together - Transfer Matrix Equations

« The transfer matrix @ (s) for element n describes the element’s effects
upon the state vector z of the beam particle through the length of the
element.

If the element has length / then ® (/) 1s the effect of passing completely
through the element.

We can cascade each beamline element passing the beam state from the exit of
one to the entrance of the next to simulate the effects of the entire beamline.

The resulting modeling equations are
z,,,=P,z,

where z, is the beam state at the entrance to element n and ®, is shorthand for ®,(/ ).

This formula describes the internal workings of the XAL online model
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Modeling the Entire Beamline

Multi-stage control network

- In controls parlance we call such a configuration a multi-stage
control network

+ We can propagate forward or backward through the network using the {® }

DD, ..,
D,..D, Note that each beamline
element may also have
D1 Py a control parameter u

— ®, —-| D, +1'1 ,,,@n-l — associated with it.
; q)O — q)m-l q)m (I)m+1 I q)n T

0 Z, 7, Z, Z+1 Z,+2 2, Zyv

u, u, u

m um-i-l un
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Modeling the Entire Beamline

Applications: Model Reference Control

- If we have model of the beamline, that we can compare actual measurements
from the machine to simulated ones from the online model.

- We can use the differences in these values to make inference about the
operation of the machine.

> Output y

Input u —_— CITor €

Model G .
- (simulator) > Estimate §
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Beamline Modeling

Beam Steering from a Control Theoretic Perspective

- Say we have Beam Position Monitors (BPMs) as our sensors,
then our observables are the coordinates (x,),z); that is, we do
not have access to the full state vector — no momentum

components 0, ‘jl_ O, D, 0, sz 0,
y=( » 2 ALY

- Set 0 0

- Then Yn=C2a0) o

uqh (ushl’usvl) uq" (ush2’usv2)

1 0 0 0 0 O
where C=|0 01 0 0 O
O 0 001 0

- Our modeling equations are then These are in the form of the discrete
D 7 state space representation we have

7z = . .
n+l n*n seen in linear systems

y, =Cz,
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Summary

- We have a convenient method of modeling the beamline to 15 order

- This model provides a convenient reference for model reference
control applications

« The model can be extended 1n a straightforward manner to handle the
RMS statistics for a beam bunch.

- We can also treat the 1% order effects of space charge using this
extension.

- Later we demonstrate how to instantiate an XAL online model that
configures itself automatically for a selected Acceleratorseq object.
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Supplemental Material

- More details on Linear Beam Optics
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Modeling the Beamline

Modeling the Particle Forces

- Let the global coordinates be (X, Y,2)

- The design trajectory is represented by
Ry(s) = (X(s). Y(5),4(s))

- Let r = (x,),z) be the position of an
arbitrary particle in the beam frame.

- The position R(s) of the beam particle in
the global coordinates 1s then

R(s) = Ry(s) + O(s)r

Y

where O(s) in SO(3) is an orthogonal matr

z%)%e%:ntmg the orientation of (x,y,z) with design trajector};

* (Recall that SO(3) is the set of 3D rotations)
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Beamline Modeling

Example: Local to Global Coordinate Transform

- For example, for a bend in the horizontal direction the matrix
O(s) in SO(3) in R3*3 appears as
cosd 0 sind

0(s)=0,@6H=| 0 1 0

—sinfd 0 cosé

where 6(s) 1s the angle between the x and X axes (or z and Z
axes). A A
« Here O(s) 1s simply a clockwise rotation of (x,y,£) about the y axis.

/ N}>Z
z
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Beamline Modeling

Velocity vector in beam coordinates: Covariant Formulation

To find the velocity component V(s) first note that

V(s) = dR/dt = dR(s)/ds- ds/dt = R’(s) - pc

To find the divergence R’(s) we
differentiate R(s) with respect to s

R'(s) =Ry (s) +O'(s)r + O(s)r’
=R} (s) + O(S)(OT (5)O'(s)r + r')

Y
- Let V(s) = BcR,’(s) be the velocity of th
synchronous particle
- Let v = cO’(s)O’(s)r + Ber’ be the '
particle velocity w.r.t. the moving frame design trajectory
- Define Q(s) = O7(s)O’(s) then

v = BcC(s)r + Per’
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Modeling Beam Dynamics

The Covariant Formulation

- The matrix Q(s) is known as a connection and contains the
inertial effects of the moving frame (e.g., centripetal forces,
Coriolis forces)

- Since we know O(s) from the design trajectory R,(s), we can always
compute Q(s) = O(s)O’(s) a priori.

« This is the called the covariant formulation.

* Within the beam frame we can replace the differentiation operator d/ds
with Q(s) + d/ds to obtain the frame-invariant equations of motion.

- For example, we can find the acceleration vector A(s) in the global
coordinates using the same procedure...
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Modeling the Beamline

Acceleration Vector: Covariant Formulation
- Starting from the velocity vector V(s) given by
V(s) = fcR'(s) = Vo (5) + O(s)v

we have

A(s) = BeV'(s) = BV (s) + O(s)(BeQs)V + fev')

- Collecting everything

Global Local Connection

R=(X,Y,7)
R(s) =Ry (s)+O(s)r,
V(s)=V,(s)+O(s)v, V,=pcR
A(s)=A,(s)+O0(s)a, A, =pcV,

r=(x,yz)"

v = BeQ(s)r + fer’ Q(s) =0 (5)0'(s)
a = FcQ(s)v+ fev’
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Beamline Modeling

Example: Horizontal Bend

R, (s) = plcosB(s) 0 sinb(s)) where @(s)=sh=s/p
cosd 0 sinéd 0O 0 1
Os)=| 0 1 0 [=¢™, where L,=0(0)=|0 0 0
-sind 0 cosé -1 0 O
Q(S) OT(S)O ( ) \- —shLL l skL J hL e—shL ShLy _ hLy

r=(x,y,2)
v = fchL x + fer’

a = fchL v+ fcv’
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Modeling the Beamline Elements

First-Order Forces

- The global particle force F is a function of particle position R
and particle velocity V; that 1s

F=F(R,V)=F(R,+ Or,V, + Ov)

Expanding

Ov + 0Q1~|2 )+ OQV|2)

F(R,V)=F(R,,V,)+ IFR) or + aF;::O)
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Modeling the Beamline Elements

Equations of Motion

* The mechanical momentum P = (P,,P,,P )for a beam particle
(in global coordinates) 1s

P = ymV

where
If there 1s no

-~ acceleration, then 3” and
m 1s particle mass 7y are zero

V =(V,V,V,) is particle velocity

y 1s the relativistic factor

- The equationsgpf motion for a beam particle wgth momentum P

are F=E=WV/3’c=ﬁMncA=/3’)4ncAo+Oa
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Modeling the Beamline Elements

Equations of Motion (cont.)

- Combining the previous equation with the force
expansion out to first order ]Produces

Bymc(A, +0a)=F(R,,V,)+ TRy, V + R Vo) g,

- Note that BymcA(s) = F[R(s),V,(s)] 1s the equation of the
synchronous particle, that 1s, this equation defines the design
trajectory R(s) and the design velocity V(s).

+ We may remove it from the above since it is already known

1. . 7 0F(R,,V,) . dF\R,,V, : i
- ThearemaniOg Ot 1 0de ) ations of motion
pyme R IV
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Modeling the Beamline Elements

Equations of Motion (cont.)

- To make the previous equation more transparent define the
following:
F(RO(S)aVO(S)>
R

F(R(5),V,(s))
A%

G, (5)=0" (s) 0(s)

G,(5)=0" (5)"

O(s)

- These matrices are the 15t order force differentials about the design
trajectory in the beam frame coordinates (x,y,z).
(Usually we have these explicitly.)

- The equations of motion are then
1 a= /)Qcﬂ%?v + V'az b G, (s)r+ !
ymc ymc

G, (s)v
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Modeling the Beamline Elements

Equations of Motion (cont.)

- The previous equation, along with the definition for v provides
a complete set for the description of beam-particle 15 order

motion
OHo r'=-Q(s)r+Iv

G, (s)r+ ! G,(s)v

vV =-Q(s)v+
pepo(s) pep

« where py(s) = B(s)y (s)mc 1s the design particle momentum.

- We can T;A)t’}n_m m)atriﬂ-vj(:ijr rmfregogmze this {orﬁl‘?) r
V) L0 @O ey T e (V)
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Modeling the Beamline Elements

Equations of Motion (cont.)

- Even more compactly
z' =G(s)z-T'(s)z

where

y/

Bepo(s) 7 Bepo(s)

z 1s the phase coordinate vector in the moving frame (re-ordered coordinates)
I' is the connection for the moving frame

) (260 Y !
(v)’ (S)=( 0 9@} (s) = G, (s) G,(s)

G is the 1% order force in the moving frame

In linear accelerators (linacs) I' = 0 since the frame (x,),z) does not rotate
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Modeling the Beamline Elements

Transfer Matrices

- Typically the matrices I'(s) and G(s) are constant within a beamline
element (e.g., magnet)

- Thus, the solution to

is given by the ma;l(@ mlppnential 2(s) = e¢D z, where z, = z(0)

« For particle motion within a beamline element » we have

where S(G,-r )
2(5)=®,(5)zy @, (s)=e"

G, 1s the generator matrix for element n (the applied forces)
I' 1s the coordinate connection for element n (inertial forces)

®, 1s the transfer matrix for element n



