CONTROL ROOM ACCELERATOR PHYSICS

Day 3
High-Level Application Design

1/29/14

Outline

1. High-Level Software
1. Introduction
2. Commonality

2. Application Frameworks

1. Use Cases
2. Design

Shallow foundation of a house versus
the deep foundation of a building

3. Applications within the Framework

4. Open XAL: A Case Study

1/29/14

High-Level Control of Accelerators

Accelerator systems are extremely complex machines. Moreover
- Operation requirements change

- Configuration changes “Muon area-
- Designs change on the fly s
- Constant upgrade projects

Accelerator control systems require a
lot of software. Moreover they req.

- Maintenance

- Upgrades

It 1s worthwhile to invest significant
design time for robust controls
software that can adapt gracefully to
this changing environment

1/29/14

High-Level Control Applications

Definition

Software applications needed for the commissioning, tune-
up, diagnosis, operation, automation, and optimization of

accelerator systems

For Example,

O Machine state diagnostic
e Save/Compare/Restore

O PV scans

O Orbit Display

O Orbit Difference

O O O O

Orbit Bump
Orbit Correction
Transverse matching

RF Phase and amplitude
matching

Ring closed orbit

1/29/14

High-Level Control Applications

Commonality

Notice there are many qualities/tasks/requirements common to
most high-level control applications

- Data-centric operations
« Machine configuration
- Data acquisition and correlation
- Data presentation, analysis, and interpretation

- Data analysis
- Signal processing
- Computation
+ Linear Algebra
* Optimization
- Modeling and simulation

- High level of user interaction (GUIs)

Rather than letting each application implement each of these features (in a
potentially inconsistent manner), we provide them within a framework.

1/29/14

High-Level Application Frameworks

Definition and Objectives

Application Frameworks offer consistent solutions to
problems and tasks common to a set of related
applications

- The framework is centralized, any changes in framework
are seen by every application

- Consistent interface to hardware
- Configures to hardware (on the fly)

If implemented well - framework can provide a Rapid Application
Development environment (RAD)
*Subject matter experts (SME) tend to be physicists and research
engineers
[f SMEs can test ideas/algorithms within the framework — they can then
be easily implemented in a robust fashion by software personnel

Software Engineering

High-Level Application Framework
A Control System Design Strategy

A framework for high-level control application is a
sound design strategy for creating a robust control
software system that can respond gracefully to
changes in the accelerator system itself.

- Immediately recognizes changes in machine configurations
- Trivial scaling to machine upgrades
- Centralized management of control applications

The cost of this flexibility is a front-loaded design
and implementation strategy — That is, there is
significant initial overhead to this approach.

WARNING: Front-loaded strategies tend to scare (traditional) management since no
code is being written in the initial phase of the project

1/29/14 USPAS

High-Level Application Framework

Architecture Comparison With and Without a Framework
Which system would you rather

.)
Tesjt. _ Consider a hardware failure at H2
Back-loaded design *Maintain? .
*Upgrade? Front-loaded design

GUI

GUI -----—

1/29/14

High-Level Applications Framework
Design

Designing the suite

- Want to provide common set of features, tools,
for...

- Machine configuration
- Database queries
- Machine connection

- Data Analysis
- Plotting
- Linear algebra/mathematical manipulation
- Signal processing

- Application implementation
- “GUI Application Framework” in the traditional software sense

But how to start? Use Cases!!

1/29/14

-High-Level Application Framewor

Design: UML Use Case Diagram
«extends»

Save/Compare/Restore
Machine State

Working out use cases N wexiendss
provides a good method for - Plot Data
visualize potential software \ S R
structures to support your S N . Machine >
scenarios ~_ «include» Connection
—_— 1 7
Orbit Difference g N - _o_blf‘ff e
: Rincu\ude» AN

We organize our use cases by «mc{de» N

Exgacj[mg common Commissioner - common
ehaviors — common OrbK Dlsplay

behavior implies common Orbit Bump

software

«InCI)Ide»

. /
/=
The 1mpqﬂance of a common Orbit Correction)< — =
scenario is demonstrated by N

) , N «include»~~ _~
the number of incoming DY -7 7
cq. . . N - include» Det i
edges — indicates critical ,mude» e ermine
Set Phase and -7 Current Hardware

software Amplitude ‘ .

\

«lMude» ~ \

- \ 4
Transverse include
— S -”—> Important!

1/29/14 USPAS

Application Framework Use Cases

Observations

- The “Machine Connection” collaboration is a realization of
the low-level hardware connection

- We assume this exists, for example take EPICS as our subsystem

- Implementation of high-level hardware connection is critical
- Any shortcomings here adversely affect all applications
- But, future improvements and upgrades benefit every application

- Implementation for hardware configuration is also critical

- It may be called at any time as an extension point of the hardware
connection use case

1/29/14 USPAS

Application Framework Use Cases

Observations (Continued)

- Choosing accelerator sectors to work on is also important
and common

- Design for a robust generic technique

- There are common scenarios that can be coalesced
- Orbit display
- Online model (used less often - less critical - possibly deferred?)

- Use cases suggest they may be implemented as independent
components

- All applications use a GUI interface
- We should provide a consistent framework for rapid creation

1/29/14 USPAS 13

Application Framework Use Cases

NOTE: Sub-dividing Use Cases

Save/Compare/Restore Use Case
Note that it is possible, and

wise, to further divide up _9Q
. Define configuration
1mportant use cases. /\

«incl/u

- XAL

Engineer Select Process <- _«extends» |
)) Variables (AccelerSeq)
This action helps to elaborate ,

the user interactions and o k<includes>>

anticipate needed software T Save current
capabilities / \ machine state /== == — -~ —>{ Database

Physicist
The use cases drivethe /| Restoreprevious - —————— >
. machine state
software designs ...

PVLogger

Operator

1/29/14

Common Scenarios

More Evidence for a Framework

- The use case diagram demonstrates that there are
many common scenarios in our high-level control
environment
- GUI
- Orbit Display
- Online Model
- Hardware configuration and connection

- Let’s try to provide some example designs for software
components which could realize these scenarios...

1/29/14

Application Framework Design

Hardware Connection Component

- Software components

- Recall software
components implement
natural design solutions to
shared scenarios

- Consider the hardware commissioner
connection scenario
Common scenario
- Extensions
Critical

«extends»
s X

sxwds»

Save/ComparelRestore
Machine State
N
AN
@ N Plot Data
N

N e
-

\

py 2 Machme o~ k
«lﬁQude» \ Connection !
g Object .7
Orbit Difference AN g T -
«m@de» N |
dinclude» N \
“‘{ ~. !
|
|
Orbit Bump Orbit Dlsplay
\V;
«mcl);de»
s «includen-
R,
Orbit Correction)< =~ ~
AN «include»
~ N _ -
_winclude» «include» Determine
Set Phase and) - N Current Hardware
Amplitude SN ~. onfiguratiop

~, /d/ N
Spaigder "~

- ~ g
Transverse Y\ includey - Run Model
Matching /~ -~ 7"~~~ >

«ind} BS»

1/29/14 USPAS 16

High-Level Application Frame

Implementing the Hardware Connection Scenario

components

The hardware connection
component is further divided
into subcomponents with
simple user interface

r

Standard Machine
Format Abstrac@nel E
(SMF) CAJ _—COC—A g
T EPIC

Accelerator { Uuser T —
getAccelerator() interface i : ,
} - ! // \\
Hwar);':lc-mﬁg D %I IO(C' ’ \\ C
Interfaces and components | oy, Devey) Ab.CAPRRY deﬁgate»
* Allows independent phiccelpammoter !
development of /I\ \[/
Subcomponents B Mechn. provides machine RLER
. . configuration from central
* Wholesale substitutions of database but also isolation Deployment
from database errors «epics»
subcomponents e
* Facilities testing of Drivers

subcomponents

1/29/14

Application Framework Design

Orbit Display Component

- Consider the orbi
CO S d © t © O b t Save/Compare/Restore I 22"?«“"8"
dISpIay scenario Machine State__/._ | -1lice

'«ex@ds»
~

- Requires callbacks *~Protoaa D

-— -

- Requires plotting display . o iaatine
fOI' data \\\\ «include» '\ Connection /\;
\\mm@de» h Pt

——— -

~,
«include»
~
~

~

Commissioner

—_———

S -
Orbit Correction)< — =~ _
~ N . - -

~

AN ~=" ‘ -~
_dincliide» «include»
Set Phase and ™. - N -
Amplitude S o S
~

. _~ -
//«Nuie» _\ «Ind}

- ~ ¢
Transverse) include» =C Run Model
Matching /~ -~ 7"~~~ >

Sed
KON

~
4

Determine
Current Hardware
onfiguratiop

1/29/14 USPAS

High-Level Application Framework
Implementing the Orbit Display Component

«Graphics» BpmBuffer up- rate
i PI?AQDI) | | - refreshRate : double / St
o . ardware Acceleration -mapBpmPos: HashMap ’
*Have CXpllClt use of VectorData -mapBpmVal : HashMap > ’1_1 BpmList
callbacks or “monitors” Responsibilities setRefreshRate(double) SidSectior)
: --Provide 2D data format monitor()
signal new BPM value stop() Q
. Responsibilities
then held n a buffer Plot(VectorData) --Target for channel monitors
Responsibilities -- Buffer changing BPM values
*Display is updated -~ Quickly plot 2D data
accor dl ng to user -- Provide buffering for animation monitors
. . 0l.n
specified repetition rate / . —
«thread» «thread»
BPM Change plOttlIlg ey updateValue(bpm, val) 1 1 {BPM Signal}
2D plotting performed | |
oy b oD class £] g] g]
actually a facade for this - _ _
e Swing:Plot AWT:Plot SWT:Plot
capability.

9

2D Plotting arises in several other scenarios, thus, it is a common ‘“‘sub scenario.’
It may be wise to implement a robust software subcomponent for it.

1/29/14

Application Framework Design

Online Model Component

m Od e I Machine State

- Consider the online
Save/Compare/Restore includ E}.ngle,nds"

'«ex@ds»
~

AN
\\ = Plot Data
N

N
N o

- Must produce simulation

data for the machine in

~
~
~
~

its current running state, Y \«‘mql.de» { Connection
. - . \\ \\ \\\ Object ,//
past states, and design etk S N e

-— -

~, N |
. . «include» N |
~ N
|
Conflguratlon Commissioner \\- \\‘\ \\\ |
~ AN
) Orbit Display)~ SN I
Orbit Bump = - = Tirclude» SO0
7 wk
/ N vd
o Z dnclyde
& o , , PR
e 4 % sincludex. — — -
Orbit Correction)< = =~~~ LT
. dincluger= "~ _ -~ «oxfhs>
~ N - ’ P
_dinclide» «include» Determine
Set Pha'se and \. - S - - Current Hardware
Amplitude e - o= i onfiguratiop
«ipefide» ~ Y «lnd} eS»
-~

~
~

- - -
Transverse) include» =C Run Model
Matching /~ -~ 7"~~~ >

1/29/14 USPAS 20

Application Framework Design

A Note on Implementing the Online Model

There are significant differences between accelerator design codes and the
requirements for an online model which might make such use brittle

o

Design Code Online Model
- Used for machine design and | - Used for Model Reference
data analysis Control (MRC)
- Produce design parameters - Estimation of actual parameters
- Runs off-line - Runs in real time —fast!
- Static input from “deck” - Dynamic input from running
- Static configuration is OK machine
(“deck”) - Dynamic configuration a must
- Must predict fine structure - Only data that sensors can

detect

1/29/14 USPAS pA |

Application Framework Design

Implementing the Online Model

Hardware Network

sync1t.o> erng
Here is the “Traditional” Approach 0)

«device» «device»
O cato-ASCH ASCll-to-CA
Any comments?

of.*
Input "Deck”D Output "Dec@
ol 0
W
«execution environment»

FORTRAN

d

q
0,

el
% Design Code XXXXX

M
n

1/29/14

Modern Design
‘ C>_“-:.m“r‘e"ﬁlement E [H:bynchronize E B devicer

Hardware
(represent hardware)

Hardware component is

built as a sequence of =] e
modeling elements expost Probe Trajectory
(represent beam aspects) (maintains simulation data)

the TElement interface.
Any object exposing this

interface represents some 'E'\e]"/ent 'P\rﬁe)| acader
cenario

type of hardware. 0
Algorithm | | |
IProbe Lattice SynchMgr
Beam component is based 1?.1

upon the IProbe interface. Tracker I A

; . ; propagate(IProbe,IElement) «dnterface»
ObJ ects CXposing this Responsibilities IElement
interface represent aspects of | - Propagate probes through elements
the particle beam, e.g.,
centroid, RMS envelopes,

ensembles

The entire model is encapsulated by the
Scenario class which manages the components

1/29/14

IElement O— elem: ElementSeq «interface»
+add(in elem : IElement) >—> IElement
+concatenate(in seq : ElementSeq) 1 = +getlLength() : double

{ordered) |*getld() : String
+energyGain(in probe : IProbe) : double

We can get as detailed as we need in +transferMap(in probe - IProbe) : PhaseMap
out designs to elaborate point of : ?
. Lattice |
concern. However, attempting to +resync() . =
. . +propagate(in probe : IProbe «implementation class»
model the code in every detail elemElement
. . . +energyGain(in probe : IProbe) : double

usually constitutes over-engineering. +transieriap(n probe :IProbe) : PhaseMap

JaY

The XAL Online mOdel iS bUllt U—Pon |elem:i|VIarker| Ielem:idlealDrid |e|em:idealll\llagDipoIe| ____>
the Element/Algorithm/Probe design

pattern developed by N. Malitsky interface» ey
|gov/sns/xa|/smf:'AcceleratorNod‘;l ' gov/sns/xal/model:IElemen +g ot Ene . +getType() : String
o getKineticEnergy() : double : :
+machine | +model . 3 . 1 = |+validProbe(in probe : IProbe) : boolean

(él +getAlgorithm() : IAlgorithm : . : .

: +update() +propagate(in elem : IElement, in probe : IProbeg
|

Synchronization 4

m_nodeMachine : AcceleratorNode I
m_elemModel : IElement |

resync() I

«implementation class»
é Probe

-m_dblPosition : double

e % Electromagne! L «interface»
—||mp|. Electromagne‘ romagnetSync elem:iElectromagnet |-M_dblEnergy : double
*resync() -m_ifcAlgorithm : IAlgorithm
impl:RfGap RfGapSync || «interface»
Fresync() elem:iRfGap

ParticleProbe EnvelopeProbe EnsembleProbe
-m_vecState : PhaseVectol [-m_matState : PhaseMatri§ [-m_ensState : Ensemblq

XAL

A Case Study in the High-Level Application Framework

XAL is the progenitor of Open XAL

XAL was designed and built at SNS with the intent that it
be general accelerator application framework

Discussed and designed from the beginning

Commonality of high-level applications was noted from previous
accelerator projects

Many possible design implementation were discussed, at length,
on paper, before any code was written.

Extensive analysis of existing systems and data formats

The following are several early design illustrations (some
in UML, most not)

Example: Software Engineering a Framework

XAL A Framework for Portable High-Level
Control of Charged Particle Accelerators

Conceptual (Pre-Design) XAL Mechanism Diagram
Use cases at the highest level

<<framework=>
XAL
,1""’ ' _ R ,/"" . e
/ Machine Representation “} { High-Level ‘)
% and Configuration / ‘. Connection Management 2
A) - —————— - -~
S 9 [Element T S =
,,,,,,,,,,,,,, " Algorithm : SSE o
e | Probe [
{ Machine Modeling and)
o Simulation s
1M""'--- u-'"’
------- /J"—#-—___—~‘~~--‘\
S
,/' \\
{ High-Level Controls Toolbox)
\\ ’/
\\‘ ’,r

Example: Software Engineering

XAL A Framework for Portable High-Level
Control of Charged Particle Accelerators

Conceptual (Pre-Design) Deployment Diagram

Application level

XAL "device"

programming layer ‘\\\\\

|

EPICS Channel Access

TCP/IP

network | |
100 100 Accelerator
hardware

Real Time Data Link
(RTDL)

Global
Database

1/29/14

XAL in the Control System Hierarchy

System Engineering and XAL

control | App *|| App*|| App*|| App*|| App* | App'
Applications

Scripting/tools Matlab * ' Python *

Device ' {
Abstraction XAL

Hardware EPICS 1 ABeans ! SCiP 1

Abstraction

T T

1/29/14

XAL Architecture

Subsystem Diagrams

o

High-Level Control System foﬁ

1 SNS Accelerator
«system»
gov:isns
[
«importy [] «import» 1
«framework» k- _| «suite» | -3 «suite»
xal apps tools
«import» [_1
«subsystem» | | «subsystem» | _________ Y tools:- «framework» «framework»
xal::model xal::smf ools::ca tools::agent | |tools::application
jx
«facade»

Model representation

Machine representation

1

Third Party::JCA

«uses»
|

A4

«system»
Third Party::EPICS

1/29/14

XAL Architecture

Class Diagrams

Modeling Accelerator Hardware — Sector Tree

snsLinac : Accelerator

L

dtll : AcceleratorSeq dtl2 : AcceleratorSeq dtl3 : AcceleratorSeq cedtll : AcceleratorSeq
4

pmqH1 ; impl:HorzPermQuad | [smH1 ; impl:HDipoleCorr | [pmqV1 ; impl:VertPermQuad | [rfel : impl:RfGap

1/29/14

XAL Architecture

Deployment Diagram

«executable» «executable»
apps::High-Level Application SNS Start Map

i ']
! Console
Physics Control
Server Computer
Cnsole
A — =
: Console
«library»
xal::xal.jar
Local Network
IoCc || -----——- 10C

1oC

1oC

1/29/14 USPAS

XAL Architecture

Interaction Diagrams

(Here we are focusing on the online model)

Accelerator Lattice
. External
Database sequences + devices Generator lattice
gov.sns.xal.smf > gov.sns.xal.slg > _
generation
4 2
Machine data i]
L) Scenario
gov.sns.xal.model.scenario
" A
User tuning
J .
) 4 Probe: 7 Online Model
- initial conditions gov.sns.xal.model
- type (single particle, l
envelope, multi-
particle) Trajectory
_ / - Twiss

output

1/29/14

GUI Component

GUI Application Framework

The GUI Application Framework was based upon the
Document/View/Controller design pattern
- Provides a consistent “look and feel for all XAL applications”
- Avoid “re-learning” common operations in separate applications

- Upgrades available to all applications simultaneously Standard menu

1tems
{0 Edit Accelerator Orbits View Window Help (< £ ® Thul12:56:52PM t6p Q
Yo Yo . DNC’W xN T .2
[Blaln]X|a[8]@]l_awe.
Open Recent »

file:/Users/t6p/Projects/xal/documents/Orbit Correction/MEBT.orbcor
file:/Users/t6p/Projects/xal/docum...it Correction/bad_accelerator.orbcor
file:/Users/t6p/Projects /xal/documents/Orbit Correction/bump.orbcor

Close W
Trace Filter Close All

™ Horizontal M Vertical ¥ Amplitude| (v

4 file:/Users/t6p/Projects/xal/documents/Orbit Correction/Test.orbcor
M % Save As... file:/Users/t6p/Projects/xal/documents/Orbit Correction/Ring.orbcor

1.00:0‘ file:/Users/t6p/Projects/xal/docum...Orbit Correction/MEBT Bump.orbcor
E 1 I | | B Save All
EB8.00E-11 1 Revert To Saved Clear
g 3 == T
E6.006-14 o B print. ®P
L ! —— Page Setup...
84.00€-1 =
= Quit
5 2.00€E-1 4

0.00€0,} ; . :

0.00E0 2.50E-1 5.00E-1 7.50E-1

Position from sequence start (m)

1/29/14

GUI Component

GUI Application Framework

Additional features
available to all
applications

iew RUGHLTE Help

A O - - T * ‘Capture as PNC
Show Event Log |
Hl E}‘l6 |E]| x Ilb I . i'l Cascade Windows
Bl show Memory Console [orbit “80ws) ﬂ:::v ‘a:l
— —— Use BPM | Position (m) | X Average (mm) 'Y Average (® Documents »

E MEBT _Diag BPMO4

v 0.6 0.7 . m_

154 MEBT_Diag BPMOS 1.4 . V! MEBY_D@Q:BPMOA 0.6 0.7

™ MEBT_Diag:BPM10 2.1 0.1 -0.2 0.7 MEBT_Diag BPMOS 1.4 L0.4

™ MEBT_Diag:BPM11 2.9 0.3 -0.3 0.2 ME::_D“O BPM10 2.; g. ; -g‘i 3.7
MEBT_Diag:BPM14 34 o o @ MEBT_Diag:BPM11 2. -0. -0. .2

" - W MEBT_Diag BPM14 3.4 o Py Py

1/29/14

Application Framework

Summary

- Application frameworks are a front-loaded approach to high-level
control application implementation

- They require substantial effort to build, but easy to maintain and
upgrade, i.e., they are robust

- A major advantage to application frameworks is their dynamic
configuration capability

- Adapt quickly to hardware changes

- Use cases can help you visualize the needs of your high-level
control software to design your framework

- Common scenarios warrant implementation by single software
components

« The number of incoming edges of a scenario indicates its criticality — a
failure in this scenario could be devastating to your system

