
CONTROL ROOM ACCELERATOR PHYSICS

Day 3
High-Level Application Design

Outline
1.  High-Level Software

1.  Introduction
2.  Commonality

2.  Application Frameworks

1.  Use Cases
2.  Design

3.  Applications within the Framework

4.  Open XAL: A Case Study

1/29/14 USPAS 2

Shallow foundation of a house versus
the deep foundation of a building

High-Level Control of Accelerators

Accelerator systems are extremely complex machines. Moreover
•  Operation requirements change
•  Configuration changes
•  Designs change on the fly
•  Constant upgrade projects

1/29/14 USPAS 3

Accelerator control systems require a
lot of software. Moreover they req.

•  Maintenance
•  Upgrades

It is worthwhile to invest significant
design time for robust controls
software that can adapt gracefully to
this changing environment

High-Level Control Applications
Definition
Software applications needed for the commissioning, tune-

up, diagnosis, operation, automation, and optimization of
accelerator systems

1/29/14 USPAS 4

¡  Machine state diagnostic
l  Save/Compare/Restore

¡  PV scans
¡  Orbit Display
¡  Orbit Difference

¡  Orbit Bump
¡  Orbit Correction
¡  Transverse matching
¡  RF Phase and amplitude

matching
¡  Ring closed orbit

For Example,

High-Level Control Applications
Commonality

Notice there are many qualities/tasks/requirements common to
most high-level control applications
•  Data-centric operations

•  Machine configuration
•  Data acquisition and correlation
•  Data presentation, analysis, and interpretation

•  Data analysis
•  Signal processing
•  Computation

•  Linear Algebra
•  Optimization

•  Modeling and simulation

•  High level of user interaction (GUIs)

1/29/14 USPAS 5

Rather than letting each application implement each of these features (in a
potentially inconsistent manner), we provide them within a framework.

High-Level Application Frameworks
Definition and Objectives

Application Frameworks offer consistent solutions to
problems and tasks common to a set of related
applications
•  The framework is centralized, any changes in framework

are seen by every application
•  Consistent interface to hardware
•  Configures to hardware (on the fly)

1/29/14 USPAS 6

If implemented well - framework can provide a Rapid Application
Development environment (RAD)

• Subject matter experts (SME) tend to be physicists and research
engineers
• If SMEs can test ideas/algorithms within the framework – they can then
be easily implemented in a robust fashion by software personnel

High-Level Application Framework
A Control System Design Strategy

A framework for high-level control application is a
sound design strategy for creating a robust control
software system that can respond gracefully to
changes in the accelerator system itself.
•  Immediately recognizes changes in machine configurations
•  Trivial scaling to machine upgrades
•  Centralized management of control applications

The cost of this flexibility is a front-loaded design
and implementation strategy – That is, there is
significant initial overhead to this approach.

1/29/14 USPAS 7 Software Engineering

WARNING: Front-loaded strategies tend to scare (traditional) management since no
code is being written in the initial phase of the project

High-Level Application Framework
Architecture Comparison With and Without a Framework

1/29/14 USPAS 8

Back-loaded design
Front-loaded design

H0 App1

H1

 H2

H3

H4

H5

H6

H7

GUI

App2

App3

App4

GUI

GUI

Plot

GUI

GUI

App2

App3

App4

GUI Plot

config.

Frmwk

H0

H1

H3

H4

H5

H6

H7

H2

App1

Which system would you rather
• Test?
• Maintain?
• Upgrade?

Plot

Consider a hardware failure at H2

High-Level Applications Framework
 Design

Designing the suite
• Want to provide common set of features, tools,

for…
•  Machine configuration

•  Database queries
•  Machine connection

•  Data Analysis
•  Plotting
•  Linear algebra/mathematical manipulation
•  Signal processing

•  Application implementation
•  “GUI Application Framework” in the traditional software sense

1/29/14 USPAS 9

But how to start? ….. Use Cases!!

High-Level Application Framework
Design: UML Use Case Diagram

1/29/14 USPAS 10

 Important!

Working out use cases
provides a good method for
visualize potential software
structures to support your
scenarios

We organize our use cases by
extracting common
behaviors – common
behavior implies common
software

The importance of a common
scenario is demonstrated by
the number of incoming
edges – indicates critical
software

common

Application Framework Use Cases
Observations

•  The “Machine Connection” collaboration is a realization of
the low-level hardware connection
•  We assume this exists, for example take EPICS as our subsystem

•  Implementation of high-level hardware connection is critical

•  Any shortcomings here adversely affect all applications
•  But, future improvements and upgrades benefit every application

•  Implementation for hardware configuration is also critical

•  It may be called at any time as an extension point of the hardware
connection use case

1/29/14 USPAS 11

Application Framework Use Cases
Observations (Continued)

• Choosing accelerator sectors to work on is also important
and common
•  Design for a robust generic technique

•  There are common scenarios that can be coalesced

•  Orbit display
•  Online model (used less often - less critical - possibly deferred?)
•  Use cases suggest they may be implemented as independent

components

• All applications use a GUI interface
•  We should provide a consistent framework for rapid creation

1/29/14 USPAS 12

Application Framework Use Cases
NOTE: Sub-dividing Use Cases

1/29/14 USPAS 13

Note that it is possible, and
wise, to further divide up
important use cases.	

This action helps to elaborate
the user interactions and
anticipate needed software
capabilities

<<includes>>

Save/Compare/Restore Use Case

The use cases drive the
software designs …

PVLogger

Common Scenarios
More Evidence for a Framework

•  The use case diagram demonstrates that there are
many common scenarios in our high-level control
environment
•  GUI
•  Orbit Display
•  Online Model
•  Hardware configuration and connection

•  Let’s try to provide some example designs for software
components which could realize these scenarios…

1/29/14 USPAS 14

Application Framework Design
Hardware Connection Component

•  Software components
•  Recall software

components implement
natural design solutions to
shared scenarios

•  Consider the hardware
connection scenario
•  Common scenario
•  Extensions
•  Critical

1/29/14 USPAS 15

N
ext

page

High-Level Application Frame
Implementing the Hardware Connection Scenario

1/29/14 USPAS 16

The hardware connection
component is further divided
into subcomponents with
simple user interface

Accelerator	 {	
	 	 	 	 getAccelerator()	
}	

Interfaces and components
•  Allows independent
development of
subcomponents
•  Wholesale substitutions of
subcomponents
•  Facilities testing of
subcomponents

components

user
interface

Application Framework Design
Orbit Display Component

•  Consider the orbit
display scenario
•  Requires callbacks
•  Requires plotting display

for data

1/29/14 USPAS 17

N
ext

Page

High-Level Application Framework
Implementing the Orbit Display Component

1/29/14 USPAS 18

• Have explicit use of
callbacks or “monitors”
signal new BPM value
then held in a buffer

2D Plotting arises in several other scenarios, thus, it is a common “sub scenario.”
It may be wise to implement a robust software subcomponent for it.

• Display is updated
according to user
specified repetition rate
rather than by when
BPM change

• 2D plotting performed
by “Plot2D” class,
actually a façade for this
capability.

monitors

up. rate

plotting

Application Framework Design
Online Model Component

•  Consider the online
model
•  Must produce simulation

data for the machine in
its current running state,
past states, and design
configuration

1/29/14 USPAS 19

N
ext

Page

Application Framework Design
A Note on Implementing the Online Model

Design Code

•  Used for machine design and
data analysis

•  Produce design parameters
•  Runs off-line
•  Static input from “deck”
•  Static configuration is OK

(“deck”)
•  Must predict fine structure

Online Model

•  Used for Model Reference
Control (MRC)

•  Estimation of actual parameters
•  Runs in real time –fast!
•  Dynamic input from running

machine
•  Dynamic configuration a must
•  Only data that sensors can

detect

1/29/14 USPAS 20

There are significant differences between accelerator design codes and the
requirements for an online model which might make such use brittle

Application Framework Design
Implementing the Online Model

1/29/14 USPAS

Here is the “Traditional” Approach

Any comments?

21

1/29/14 USPAS 22

Online Model Design
Modern Design

Hardware component is
built as a sequence of
modeling elements exposing
the IElement interface.
Any object exposing this
interface represents some
type of hardware.

Beam component is based
upon the IProbe interface.
Objects exposing this
interface represent aspects of
the particle beam, e.g.,
centroid, RMS envelopes,
ensembles The entire model is encapsulated by the

Scenario class which manages the components

1/29/14 USPAS 23

Online Model Design

We can get as detailed as we need in
out designs to elaborate point of
concern. However, attempting to
model the code in every detail
usually constitutes over-engineering.

The XAL online model is built upon
the Element/Algorithm/Probe design
pattern developed by N. Malitsky

XAL
A Case Study in the High-Level Application Framework

• XAL is the progenitor of Open XAL
• XAL was designed and built at SNS with the intent that it

be general accelerator application framework
• Discussed and designed from the beginning

•  Commonality of high-level applications was noted from previous
accelerator projects

•  Many possible design implementation were discussed, at length,
on paper, before any code was written.

•  Extensive analysis of existing systems and data formats

•  The following are several early design illustrations (some
in UML, most not)

1/29/14 USPAS 24

XAL

1/29/14 USPAS 25

A Framework for Portable High-Level
Control of Charged Particle Accelerators

Conceptual (Pre-Design) XAL Mechanism Diagram

Use cases at the highest level

Example: Software Engineering a Framework

XAL

1/29/14 USPAS 26

A Framework for Portable High-Level
Control of Charged Particle Accelerators

Conceptual (Pre-Design) Deployment Diagram

Example: Software Engineering

XAL in the Control System Hierarchy

1/29/14 USPAS 27

Hardware

 EPICS 1 ABeans 1 SCiP 1 Hardware
Abstraction

 XAL 1

 Matlab * Python *

Device
Abstraction

Control
Applications

 App * App * App * App 1 App * App *

GUI

1. Overview

Scripting/tools

System Engineering and XAL

XAL Architecture
Subsystem Diagrams

High-Level Control System for
 SNS Accelerator

«system»
gov::sns

«framework»
xal

tools::ca

«facade»
Third Party::JCA

«system»
Third Party::EPICS

«suite»
tools

«suite»
apps

«subsystem»
xal::model

«subsystem»
xal::smf

«import»«import»

«framework»
tools::agent

«framework»
tools::application

«import»

«uses»

1/29/14 USPAS 28

Model representation

Machine representation

XAL Architecture
Class Diagrams

1/29/14 USPAS 29

Modeling Accelerator Hardware – Sector Tree

XAL Architecture
Deployment Diagram

IOC

«executable»
apps::High-Level Application

Physics
Server

«executable»
SNS Start Map

Control
Computer

Console

Local Network

«library»
xal::xal.jar

XML...
...........
...........
...........

Console

Console

IOCIOCIOC

1/29/14 USPAS 30

XAL Architecture
Interaction Diagrams

Probe:
- initial conditions
- type (single particle,

envelope, multi-
particle)

Accelerator
sequences + devices

gov.sns.xal.smf

Lattice
Generator

gov.sns.xal.slg

External
lattice

generation
Database

User tuning

Machine data

Online Model
gov.sns.xal.model

 Trajectory
- Twiss
output

Scenario
gov.sns.xal.model.scenario

1/29/14 USPAS 31

(Here we are focusing on the online model)

GUI Component
GUI Application Framework

The GUI Application Framework was based upon the
Document/View/Controller design pattern
•  Provides a consistent “look and feel for all XAL applications”
•  Avoid “re-learning” common operations in separate applications
•  Upgrades available to all applications simultaneously

1/29/14 USPAS 32

Standard menu
items

GUI Component
GUI Application Framework

1/29/14 USPAS 33

Additional features
available to all

applications

Application Framework
Summary

•  Application frameworks are a front-loaded approach to high-level
control application implementation
•  They require substantial effort to build, but easy to maintain and

upgrade, i.e., they are robust

•  A major advantage to application frameworks is their dynamic
configuration capability
•  Adapt quickly to hardware changes

•  Use cases can help you visualize the needs of your high-level

control software to design your framework
•  Common scenarios warrant implementation by single software

components
•  The number of incoming edges of a scenario indicates its criticality – a

failure in this scenario could be devastating to your system

1/29/14 USPAS 34

