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Part I: Bending and Focusing 



Beam optics: The process of guiding a charged particle beam from A 

to B using magnets.  

An array of magnets which accomplishes this is a transport system, or 

magnetic  lattice.  

Recall the Lorentz Force on a particle:  

F = ma = e(E + v  B) = m0v
2/, where m0 is the relativistic mass. 

In magnetic transport systems, typically we have E=0.  So,  

F = ma = e(v  B) = m0v
2/ 

Definition of Beam Optics 



The simplest type of magnetic field is a constant field. A charged 

particle in a constant field executes a circular orbit, with radius  and 

frequency .  
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v 

 

To find the direction of the 

force on the particle, use 

the right-hand-rule. 
 

Force on a Particle in a Magnetic Field 

What would happen if the initial velocity had a component in the 

direction of the field? 



A dipole magnet gives us a constant field, B. 

The field lines in a magnet run from 

North to South. The field shown at right is 

positive in the vertical direction. 

 

Symbol convention:   

 x - traveling into the page,  

  - traveling out of the page. 

 

In the field shown, for a positively charged 

particle traveling into the page, the force is to 

the right. 

  
In an accelerator lattice, dipoles are used to bend the beam trajectory. The set of 

dipoles in a lattice defines the reference trajectory: 
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Dipole Magnets 



Let’s consider the dipole field force in more detail.  

Field Equations for a Dipole 

Br =
p

e
(Weidemann 2.6) 
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Recognizing the relationship between energy and momentum:  

Gives the “magnetic rigidity”:  

evB =
gmov
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  where p = gmov

Assuming a uniform B field:  

(**Derivations**) 



For a particle of mass m, energy E, and momentum p: 

  

1) The bending radius of the motion of the particle in the dipole field 
       

 

 

 

 

 

2) The total angle of deflection along a path length s: 

 

 

 

 

  

    If the field is uniform over the length l,  

 
 

 

Field Equations for a Dipole 

   

q =
ds

r
ò

1

r
(m-1) = 0.2998

B(T )

bE(GeV )
(Weidemann 2.8) 

(Weidemann 2.9) 

q =
l

r

θ 
ρ 

l 



Recall that a current in a wire generates a magnetic field B which curls 

around the wire: 

I 

B 

Or, by winding many turns on a coil we can create a strong uniform  

magnetic field. 

B 

The field strength is given by 

one of Maxwell’s equations: 

 

 

Generating a B Field from a Current 
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In an accelerator dipole magnet, we use current-carrying wires and metal 

cores of high  to set up a strong dipole field: 

N turns of current I generate a 

field perpendicular to the pole 

tip surface.  

Using Maxwell’s equation for B, we can derive the relationship between B 

in the gap, and I in the wires: 

The Dipole Current-to-Field Relationship 

(Wiedemann 2.13) 
Icoil = NIwire =

G(m)B^(T )

m0
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≈ 0 since μiron  is large 

Ienc = 2Icoil

Begin with Ampere’s Law: 

where 

Icoil = NIwire =
GBy

m0

(Wiedemann 2.13) 

Dipole Current-to-Field Derivation 

(**Derivations**) 



We have seen that a dipole produces a constant field that can be used to 

bend a beam. 

  

Now we need something that can focus a beam. Without focusing, a 

beam will naturally diverge. 

 

Consider the optical analogy of focusing a ray of light through a lens: 

r θ 

f 

The rays come to a focus at 

the focal point, f. The 

focusing angle depends on 

the distance from center, r. 

tanq =
x

f

q »
x

f
,  for small x

The farther off axis, the stronger the 

focusing effect! The dependence is 

linear for small x. 

Optical Analogy for Focusing 



Now consider a magnetic lens. This magnet has a field which increases 

in strength with distance from the axis. 

For a field which increases 

linearly with r, the resulting 

kick will also increase linearly 

with r. 

We can solve for the focal length and focusing strength of this system: 
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k[m-2 ] =
1

fl
=

0.2998g(T/m)

bE(GeV)
= focusing strength where  g =

dBy

dx

Focusing Particles with Magnets 

(Wiedemann 2.23) 

(**Derivations**) 



1

r
(m-1) = 2.998

B(T)

bE(GeV)
q =

l

r
,  and

Recall from earlier the relations for bend angle and radius:  
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Assume the field increases 

linearly with radius then: 

q =
l

r
= 2.998

g(T/m)rl

bE(GeV)

q »
r

f

Consider our field like a optical lens of focal 

length f.  Then, 

And relating, we get the focal length of the magnet:  

1

f
= 2.998

g(T/m)l

bE(GeV)

Derivation: Focal length of a Focusing Magnet 

(**Derivations**) 



A quadrupole magnet imparts a force proportional to distance from the 

center. This magnet has 4 poles: 

X 

Consider a positive particle traveling into 

the page (into the magnet field). 

 

According to the right hand rule, the force 

on a particle on the right side of the 

magnet is to the right, and the force on a 

similar particle on left side is to the left.    

This magnet is horizontally defocusing. A distribution of particles in 

x would be defocused! 

What about the vertical direction? 

-> A quadrupole which defocuses in one plane focuses in the other. 

F 

Quadrupole Magnets 



  
  

As with a dipole, in an accelerator we use current-carrying wires wrapped 

around metal cores to create a quadrupole magnet: 

The field lines are denser near the 

edges of the magnet, meaning the 

field is stronger there. 

 

The strength of By is a function of x, 

and visa-versa. The field at the 

center is zero! 

Using Maxwell’s equation for B, we can derive the relationship between B 

in the gap, and I in the wires: 

Icoil =
1

2mo
g(T/m)R2(m)

Quadrupole Current-to-Field Equations 

(Wiedemann 3.23) 



Quadrupole Current-to-Field Derivation 
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Recall that for quadrupole field 

increases linearly with radius: 
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(Wiedemann 3.23) 

(**Derivations**) 



Quadrupoles focus in one plane while defocusing in the other. So, how 

can this be used to provide net focusing in an accelerator? 

Consider again the optical analogy of two lenses, with focal lengths f1 

and f2, separated by a distance d: 

d 

f1 f2 

The combined f is: 

212

1

1
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ff
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fffcombined



What if f1 = -f2? 

The net effect is focusing (positive), 1/f = d/(f1f2) 

Focusing Using Arrays of Quadrupoles 



Many other types of magnets are used in an accelerator. For instance, 

gradient magnets are a type of “combined function” magnet which 

bend and focus simultaneously: 

The B field in this magnet has both quadrupole and dipole components. 

 

Another type of magnet is the solenoid, shown previously, which focuses 

in the radial direction. 

Other Types of Magnets 



Part II: Arbitrary Order Magnets and 

Material Properties 



Electromagnets are composed of ferromagnetic poles surrounded by 

current carrying wires that set up the B field in the material. 

 

Below saturation of iron or similar material, the field lines on the 

vacuum side are always perpendicular to the pole tip surface: 

Magnetic lines may have both 

|| and  path inside the 

material, but outside, only the 

field   to the surface survives. 

To get as strong of a field in the 

gap as possible, we should try 

to make the  piece inside as 

large as possible. 

Below saturation, we can add the B field any way we want inside the 

material. By setting the pole tip geometry perpendicular to the B field 

components at any location, we can get any of the desired multipoles. 

B 

Iron Core 

B-Fields at the Pole Tips 



1. What should the pole shape of a dipole look like? 

2. What should the pole shape of a quadrupole look like? 

We know that the B field will be perpendicular to the pole tip surface. 

 

We can draw these out before we do any math…  

 

Magnet design concepts 



So far we have derived the B fields for two types of magnets (dipole and 

quadrupole). It would be very useful for us to have a general expression 

to represent the B field and for the pole tip of an arbitrary order magnet.   

Assumptions for a general accelerator magnet:  

1) There is a material-free region for passage of particles. 

2) The magnet is long enough that we can ignore components of B 

in the z direction, and treat only the (x,y) plane. 

3) Fields are calculated in a current-free region (                ), so 

there is a scalar potential V such that            

Putting these together with                 , we arrive at Laplace’s equation in 

free space: 

0V

0 B
VB 

Laplace’s Equation  

0 B
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What does a solution to Laplace’s equation provide? 

  

1) Any electromagnetic potential, V, which satisfies Laplace’s 

equation can be visualized using a set of equipotential lines (in 2D) 

or equipotential surfaces (in 3D). 

 

1) The B field can easily be derived by taking the gradient of V: 

 

 

1) This is mathematically equivalent to the problem of electrostatics 

for E fields in charge-free regions. 

0V

),( yxVB B

Properties of Solutions to Laplace’s Equation 



If we initially adopt a cylindrical coordinate system (r,ϕ,z) for the solution, V, 

then we can guess a solution for the potential in the form of a Taylor 

expansion.  

Consider features of the magnets we have seen so far (dipole and 

quadrupole):  

1. The factor of p/e is always present. 

2. The dependence of field on position increases with magnet order. So B 

goes as rn . 

3. The angular repetition of poles increases with magnet order.  

   

V (r,j,z) =
-p

e

rn

n!
An (z)e

inf

n>0

å

Solution to Laplace’s Equation 

A general solution which meets these requirements: 

An are coefficients to 

be found.  

(Wiedemann 3.3) 

(**Derivations**) 



Example: Expand the potential for the n=1 case, imaginary 

component. Then find the field from the potential. 

 
(**Derivations**) 

We find that n=1 gives a dipole field. The coefficient A1-B1 is the dipole 

strength found earlier (=1/). Note that for the normal case, only the vertical 

field (horizontal bending) is present.  

 

Example: The Dipole Field 

y 

x 

V 

B 



Another Example: Now expand the n=2 case: 

 (**Derivations**) 

   

V2 =
-p

e
A11xy

Bx = -
dV2

dx
=
p

e
A11y;   By = -

dV2

dy
=
p

e
A11x

A11 =
e

p

dBy

dx
= k

These are the equations for a normal quadrupole, which we derived earlier. 

We can associate the coefficient A2-B2 with the quadrupole strength, k.  

Example: The Quadrupole Field 

y 

x 

Equipotential lines 

of constant xy. 

V 

B 



How do we design a real magnet for a specific multipole component? 

As seen earlier, our solution to Laplace’s equation, V, gives us the 

equipotential lines for any particular multipole. Since             , the field is 

perpendicular to the equipotential surfaces. Because B is also 

perpendicular to the surface of a ferromagnetic material, such as iron, the 

surface is an equipotential surface. Therefore, we design the 

ferromagnetic “pole tip” to match the equipotential surface of the desired 

multipole. 

V(x,y)=const 

Iron 
(**Examples** - Dipole 

and Quadrupole) 

Magnet Design – Pole Tip Geometry 

VB 

 

The equation for the equipotential surface becomes the equation for 

the pole tip geometry. 

 



In practice, it will be more convenient to rewrite the solution in Cartesian 

coordinates, and to separate the real and imaginary pieces.  

Re[Vn (x, y)] =
-p

e
An-2m,2m

xn-2m

(n- 2m)!

y2m

(2m)!
m=0

n/2

å

Im[Vn(x, y)] =
-p

e
An-2m+1,2m-1

xn-2m+1

(n- 2m+1)!

y2m-1

(2m-1)!
m=1

(n+1)/2

å

The real and imaginary pieces correspond to different physical 

orientations of the magnets – “skew” (real) and “normal” (imaginary). We 

are usually more interested in the “normal” magnets, because they 

decouple the linear motion in x and y. 

The Solution in Cartesian Coordinates 

Skew n-pole 

Normal n-pole 

(Wiedemann 3.28) 



Example – Octupole Pole Tip Profile 

(Weidemann problem 3.10)  Derive the equation for the pole profile of an iron 

dominated upright octupole with a bore radius R=3 cm.  

R=3cm 

θ 



Lowest the orders for normal B field from expansion.   

(For more, see Tables 3.3 and 3.4, Wiedemann.) 

 

A general expression for the normal “strength parameters”, (κ, k, m, etc…) 

   

sn =
e

p

¶n-1By

¶x n-1
x=0
y=0

sn =
0.2999

bE

¶n-1By

¶x n-1
x=0
y=0

Normal (Upright) Magnetic Fields 

Dipole: 
e

p
Bx = 0 ; 

e

p
By = k x

Quadrupole:
e

p
Bx = ky ; 

e

p
By = kx   

Sextupole: 
e

p
Bx =mxy ; 

e

p
By =

1

2
m(x2 - y2 )

(Wiedemann 3.32, 3.33) 



The general equation for B allows us to write the field for any n-pole 

magnet. Examples of upright magnets: 

180 between 

poles 

90 between 

poles 
60 between 

poles 

n=1: Dipole  n=2: Quadrupole n=3: Sextupole n=4: Octupole 

45 between 

poles 

• In general, poles are 360/2n apart. 

• The skew version of the magnet is obtained by rotating the upright 

magnet by 180/2n. 

Other n-Pole Magnets 



n-Pole Uses 

N 

S 

N 

S 

S 

N 

N 

S S 

S 

N N 

Bending (following 

reference trajectory) 

Focusing the beam 

“Chromatic 

compensation” 



Magnet examples 

Dipole Quadrupole 

Sextupole 



However, there is no such thing as a perfect n-pole magnet!  All 

magnets have at least small contributions from other multipoles 

besides the main multipole.  

 

For separate function magnets, we desire the field strength 

parameters, sn, of the unwanted components to be on the level of 

10-4 or less. 

In a “separated function” accelerator lattice, the magnets are designed 

to fulfill specific duties: Dipoles bend the beam, quadrupoles focus the 

beam, etc.   

Realistic Magnetic Fields 



In a non-saturated field, the relationship between field strength, B, and 

driving current, I, is linear. Above saturation, an increase in current does 

not generate a corresponding increase in field: 

I 

H=B 

1 

2 

3 

• Different materials saturate at different levels. The saturation phenomenon limits 

iron-dominated magnets to ~2T.  

• Superconducting magnets can give fields up to 6 – 10T.  

Saturation of Magnetic Materials 



Hysteresis and Magnet Cycling 

An external B-field, created by a current I, creates a B-field in iron by aligning 

tiny internal dipoles (electron spins) in the material. Saturation occurs when 

all dipoles are already aligned. 

 

However, if the current and external field are dropped to zero, the material 

remains partially magnetized. This gives rise to “hysteresis” and the need for 

magnet cycling. 

a - start point 

b - saturation 

c - residual magnetization 

d - B=0 

e – saturation with –B I a 

b 

e 

c 

d 

B 



Summary: 

1) First, we found the equations for dipole and quadrupole magnets, 

and analyzed the resulting force on the particle: We found that 

dipoles are used to bend particles along the “reference trajectory”, 

and quadrupoles are used to focus particles. 

2) Second, we found the current to field equations for dipoles and 

quadrupoles. 

3) Third, we found that we could derive the equations for the B fields 

for any accelerator magnet from a general form. 

4) Finally, we discussed the basic principles of magnet design.  

Now we have the complete equations for B. We also have the equation 

for the force on a particle due to these fields: F=q(v x B) 

 

We can now write the equation of motion for a particle in an accelerator! 

Summary 


