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Assumptions in 1D FEL Theory

Charge density and fields do not depend on the transverse coordinates (x, y),
i.e., the electron beam radius is large.

The electron bunch is long and end effects can be ignored.

The radiation amplitude grows slowly with z (ignoring 2" derivative).
Diffraction of the FEL light is negligible over a gain length.

The effects of electron beam emittance and energy spread can be ignored.

3D effects (diffraction, emittance, and energy spread) can be added later as
corrections to the gain length and saturated power.
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The Bessell }J) Factor

We mentioned earlier that the oscillatory axial motion of the electrons in a
planar undulator causes a reduction in the interaction strength. The reduction is
expressed in terms of the difference between J, and J; Bessel functions of an
argument & that depends on K (see textbook for explanation of J,- J,).

KZ
T 4+ 2K?

JJ is unity for a helical undulator (no reduction). For a planar undulator, JJ
becomes less than unity at large K. For K< 1 52 ¢

JJ(§)N1—7—§

The modified undulator parameter, K-hat, is used in calculations that involve the
interaction strength, but not for wavelength calculation.

K=K-JJ

3J(&)=3,(£)-3,(¢) £
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Evolution of Electron Phase

Ponderomotive phase

Taking the derivative
with respect to z

Expressing k. in term of k,
using resonance condition

2

kr:k 27/R2
K

1+ —
2

For small energy deviations

Y+ Ve ®2)k

:(kr +ku)z_a)rt+€00

dy

= (k. +k, )2
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Evolution of Energy Deviation

Transverse velocity cK
=" cos(k,z)
/4

Transverse current Transverse electric field of radiation

) = €U, E,(z,t)= E, cos(k,z— at)

Rate of energy transfer

W = —e UxEr = _%COS(kUZ)COS(er — a)rt + ¢)
Y

v

X

: eckKE
7(m,c?)=- O (cosy +cos )
2y
Rewrite in term of relative energy d_77 _ eKE, COS
deviation, 7 dt 2y§mec
Rate of change of 7 with respect to z dr eI{EO
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Coupled 1st-order DE Equations

Rate of change of the jt" electron’s phase with respect to t (left) and z (right)

dy, dy,
=2ck 7. =2k,
dt u77] dZ 77]
Rate of change of the jt" electron’s energy deviation w.r.t. to t (left) and z (right)
dn. —eKE dp. —eKE
T _ —-COSY/, =i 5 COSY/ |
dt 2y m. dz  2y;m.

These two coupled equations can be used to model the phase-space motion of
N electrons at a constant radiation field amplitude. This applies to the case
where a seed laser is used to induce the energy and density modulations, such
as the seeded amplifier or the final few passes of an oscillator. In a high-gain
FEL, the radiation intensity (and E,) changes with t and z.
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FEL Pendulum Equation

Shift the phase variable by /2 and call it ¢

d¢

FEL pendulum equation

— =2k C
dt ’ 77 d 2¢

. —Z +Q°sing=0
dyp  eE,K dt? ¢
— = ~SIN ¢
dt 2m.Cyy

where Q) is the synchrotron oscillation frequency.
o eE, KKk,
YR

At one-quarter of the synchrotron period, the electrons have sinusoidal
energy modulations. At one-half of the period, FEL bunching is maximum.
Electrons become over-bunched after one-half of the synchrotron period.
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Motions in Phase Space
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The initial distribution (blue line) depicts mono-energetic electrons at time = 0. At ¥4 of the
synchrotron period, the electron distribution develops energy modulations (black line).
Electrons trapped inside the separatrix (red) execute close-orbit motions. Electrons outside
the separatrix flow over and under the separatrix. These electrons also provide gain (linear
regime) until the separatrix grows in height and capture the untrapped electrons, causing
them to execute trapped electron phase-space motions (nonlinear regime).
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Separatrix

The separatrix or bucket (blue) separates the trapped (closed) orbits from the
untrapped (open) orbits. Electrons with energy above the resonant energy
move lower and provide FEL gain. Electrons below j; absorb FEL radiation power.

0.015[

i Gain function in a low-gain FEL
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0.015: i \/ |
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Equation for the FEL separatrix (r=ve)/ Vs
+—Q COS ¢
Tls (W ) =+ "
k,C 2
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FEL Small-signal Gain

The small-signal gain is calculated from the energy gained by the radiation (also
equal to the energy lost by the electrons) in each pass divided by the radiation
energy. The small-signal gain as function of the initial energy detuning A is
derived using second-order perturbation theory.

#(t)= g (t)+ s (t)+ &7, (1) + ..
77(t) = 770(t)+ 5771(t)+ ‘92772(t)+
Start with zerot"-order solutions
1,(t)= A = const.
¢ (t)=2ck A+,
To the first-order ! the equations are
él(t) =2¢ck,m,
m(t)=-Q%sing, = -Q%sin(2ck A+ 9,)
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2"d-order Perturbation Theory

Solutions to the 1%t order equations
2

Q
n(t)= o [cos(2ck A -t)—cos ]

u

Q7 sin(2ck,A-t)-sin 4,
¢(t)= A { 2ok A tcos&o}

The phase-averaged energy deviation is zero for the 1%t order.
n(t)=A+0+&,(t)+...
To the first-order €2 the equations are
¢52 (t) = 2¢k, 7,
1, (t) = —Q%¢ (t)cos(2ck A+ 9,)
For the 2" order, the phase-averaged energy deviation is

Qck, T? (2ck,A-T) .
= : 2Ck A-T - 2ck A-T)-1
(10)., = o g | costeeka )+ EHATsintook 2.7)-1]
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Madey Theorem

Spontaneous Emission Stimulated Emission

1.0f ; — .
0.8f 5 0.4} | Max=0528

: ] 0.20 |atx=227
0.6¢ ;

f 0.0} —
041 ] ~0.2}
0'2;' ] —0.4f
T IS T 10 -5 o0 5 10

Small-signal gain (stimulated emission) function of a low-gain FEL
4 3 t A 2
G(x)=— Q'ck,T® d (sin 2(5)
4 d\ ¢

Madey theorem: the line shape of the small-signal gain of a low-gain FEL is the
negative derivative of the spontaneous emission curve, a sinc-square function.
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Wave Equation in 1D Theory

One-dimension approximation of the wave equation driven by a transverse complex
current of electrons oscillating along the x direction in the undulator

o° 1 0% )= %]
— E(z,t) =u,—
7 2ot |FEV=H

Assume a trial solution to the wave equation in the complex form

E,(z,t)=E, (2)explik.z—,t)]

We also assume the seed radiation is polarized in the x direction, the same as the
electron oscillatory motion in a planar undulator. The x component of the radiation
field interacts with the complex transverse current due to electrons’ velocity in x. This
interaction causes the radiation amplitude to vary with z, especially in a high-gain FEL
where the amplitude grows exponentially with z.

We must now find the rate of change of radiation field amplitude with respect to z,
unlike the situation in slide 7 where the radiation field amplitude is constant.
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Slowly Varying Amplitude (SVA)

Plugging the trial solution into the wave equation

{7“;/+ 2ikrI§'(Z)+ En(Z)Jr/Z)ZZ}eXD[i (krz _a)rt):l = 1, %

The complex amplitude varies slowly with z so we can drop the 2" derivative
dEx — _ 'zuo . ajx
dz 2k, ot

Transverse current density is related to the longitudinal current density by

exp|—i(k.z— )]

i cd K
J, =], —cos(k,z
~cos(k2)

Rate of change of field amplitude with respect to z
dE,  ig,K .
= MR s yil-ik 2 - wt)]cos(k,2)

dz 2k y ot
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Field Amplitude & j, Current

The longitudinal current density has two components, the static (DC)
and time-varying (AC) components.

I, = o+ h(2)exp(i0)
i, =Jo+ 1 (2)expli(k +k,)z—at |

Taking the partial derivative with respect to time

6]2
ot

=—iw, j,(z)exp|i(k, +k,)z-at ]

Rate of change of the field amplitude with z is proportional to the j, current,
i.e., the first harmonic Fourier component of the AC current.

dEX _ /,IOCK . 'j'
dz 4y '

LA-UR 14-23595




Longitudinal Distribution

N

Electron longitudinal distribution S(w)z Z5(w —wn)

n=1

Complex Fourier coefficients 2
Ck =— | S(w)exp(-iky Xy
7T 0

Expanding the distribution in

complex Fourier coefficients 2
P S(t//):%o+ Re(ch exp(ikz//)j
k=1
Fourier coefficient of the 15t 1 N _
harmonic G =— ZeXp(_ ' Wn)
T n=1
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Evolution of Current Density
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Universal Coupled First-order
Differential Equations

Rate of change of the ponderomotive phase of the nt" electron

d
d‘”” = 2K,17,
Z
Rate of change of the relative energy deviation of the nt" electron
d e I KE | C2 ~ ] i
dnn = — > Re - — Ho ) Jl eXp(l l//n)
Z MyC 7 i 27 @, |
dEX IUOCK ~
Rate of change of radiation field amplitude = — 1
dz 4y,
Rate of change of the j t amplitud T 2N |
ate of change of the j, current amplitude JlZJO_Zexp(—Iwn)

n=1
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Third-order Equation

Follow the discussion on pp. 52 — 56 of the 2" edition of the textbook.

Third-order equation

Em _ 77 Err _kz 77 2 Er ~
—% 4+ 2i X 4| 2| L | | =2—iE, =0

3 2 2 X
I Prer 1 _F Prer ) | I’
Growth rate FEL rho parameter , .
Ar ¢ )3 3
' =— pPre, — 1 K I_pk ;
A, PreL
2y | ko, |,

Plasma wave-number .
Plasma frequency in beam frame

_ Zﬂ’r a)* * n ez

e
p 0
Z“ ¢ VrE0 me

K
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Third-order Equation without
Plasma Oscillation

Plasma oscillation is important in long-wavelength FELs (Raman regime).
In many of today’s high-gain FEL, the plasma wavenumber is much smaller
than the growth rate, and thus can be ignored.

In FEL where —~ <<1 we can rewrite the 3™ order equation as

Special case: mono-energetic electron beam at resonant energy, i.e., 7 =0
E"—il*E, =0
X X

We have arrived at a simple third-order differential equation.
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FEL Cubic Equation

Using the trial solution of the form E (Z)= A- eXp[ocZ]
X

one obtains the cubic equation ol =il"

Three roots of the cubic equation:

1+:6)

oy = I"  Growing mode

o, = I" Decaying mode

o, =—II Oscillatory mode
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Lethargy Region

In the first 2-3 gain lengths, the growing, decaying and oscillating modes
compete with one another. The sum of three electric fields grows slowly with z.

£ (1) En. I:expE(i u fV z) . exp[(‘ - f)f zj +expl in)}

3

2
E (Z)rz‘Em‘ | 4cosh? ﬁ[’z +4cosh ﬁ[‘z CoS E1‘2 +1
" 9 2 2 2

At z > 3 gain lengths, the exponentially growing mode dominates and the
radiation field and intensity as functions of z can be written as

Ex(z){ < Ei -exp{? z}

= : |Ein|2
EX(Z)( R 5 -eXp[\Efz]

3
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Long Undulator, High-gain FEL

. . Fundamental power
FEL power grows exponentially with z - Pow

I I I I I I I I I
P Z Saturation
P(Z) ~ o EXpl T — //\\_
9 Leo 7
—_ I ///// |
Power gain length if no 3D effects % Exponential gain ~_/~
a I // 7
ﬂ“u > //
LGO — 3 B /// 7
Ar~3 o, /
- //// -
FEL power at saturation (no 3D effects) ——
Letha{gy | | | | | | | |
IOI X Eb 0 04 07 11 14 18 22 25 29 32 36
Psat — Undulator length
e

At saturation, the electrons have undergone one-half of the synchrotron period. The
electrons begin to absorb the FEL radiation, but the electrons’ phase space becomes
chaotic so the FEL power is not significantly reduced but oscillates about an average non-
zero value. The synchrotron oscillation period is a measure of the FEL bucket height.
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Optical Diffraction

The rms radius of a focused electron beam is determined by its un-normalized
(geometric) emittance and the average £ function of the focusing optics (S is
the electron beam’s property analogous to the photon beam’s Rayleigh length.
One needs to match the average focusing £ to the electron beam’s /).

2
_%p

ﬁave _
u

Optical diffraction is measured by the radiation Rayleigh length, which is given
by the square of the electron beam’s rms radius in the undulators divided by
the photon beam’s emittance, A/4m.

B dro?

Z, = P
For diffraction 3D effect to be small, the gain length must be shorter than the
Rayleigh length

Lo <7
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Electron Beam Emittance

x and z momenta at low energy

—P, oo P b e (R
px p 0:4 e
Z 0.2

x and z momenta at high energy

TTTTTITrT T TITT LILRLE AL L L
[RRRE RARN L R S Sl RN R
. R _; ) ._-_I

4.2
K > pz a4 IR T
Px wE .
Acceleration reduces x’ by boosting p, 0 W0 A A0 S, W0 T

Normalized emittance is the phase space area of the beam in its rest frame.
Un-normalized (geometric) emittance is the phase space area in Lab frame,

g =2n

S Py

where £~ 1 for highly relativistic beams.
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Required Transverse Emittance

Converging ' Diverging

4 4

X X

Photon beam emittance i
A
A

Un-normalized emittance &, < —

4

For emittance 3D effect to be small, the electron beam’s geometric
emittance must be smaller than the photon beam emittance.
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Required Energy Spread

Electrons must maintain the same axial velocity during the coherence length

I
. = N.A 4>‘ C’H
1
N, ~——
Ao
where N. = # of wavelengths in a coherence length

= V3 times the # of periods in one gain length

For 3D effect due to energy spread to be small, the relative rms energy spread
must be less than p
67 < 1 > &
y  4aN 4

c

<p
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Ming-Xie Parameterization

Diffraction Ming-Xie parameters

LlDSZR —_— Xd:i

g
Emittance P 4
g, <— — X = by 475,
472- ﬂave ﬂ“l’
Energy spread
O'y 1 X _ 472-"1D 07/
S — 4 o ﬁ,
/4 47Z'NC u 7/

Ming-Xie parameters should be less than 1 to minimize 3D effects.
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3D Gain Length

3D gain length

LG=QDF[

L, L, 4rs 4xzujay}
Zp Bu A AV
Increase in gain length due to diffraction, emittance and energy spread
F(Xg, X,, X, )=14a,X2 +a,X ™ +a,X ™
Fa XX b a XX 2 g X3 X% g, X3 X X

Fitted coefficients
a,=0.45 a,=0.57 a,=0.55 a,=1.6

as;=3 ag=2 a;=0.35 ag=2.9
ag=2.4 a,0=91 a1=0.95 a,=3
a;;=5.4 a,=0.7 a;5=1.9 a,=1140
a;=2.2 a3=2.9 a,0=3.2
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Comparison with Experiments

GL=2854-0.06m, Und: 11033,0CGeV, Xeorr-Yap X, GainLeng th--2009-08 12-03254 1 mat

Y 26,615 of .
0.4
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10 | 7

o, /v 0.0001 i :

L, 3.4 kA T A

. 3cm %ﬁ% /- ]
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K

P 20m DR
L A

- SRR L e e

- = e e S e e
B4 -——— - hsE TR Er RS e TES T

60 80 ulm
z{m)

bl EE
= .

Mo .097 0

Ne 151 Measured gain length = 2.85 m

n, 101 Good agreement with MX parameterization
Lss 2.9m
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Summary

1D theory involves N first-order equations for N electrons coupled with two
first-order equations for radiation field amplitude and 1%t harmonic current.

Electron phase d Vi — 2kuc;7n

dt

°E i, (2

Electron energy A __ ez Re {KEX _IAE -jl}exp(i v, )

dz MyC 7r 2Yr @,
Radiation field amplitude  0E, _ ,UOCK T

dz 47/R '
Harmonic current

— JO Zexp IWn)

The third-order FEL equation leads to the cublc equation that has three roots
corresponding to the growing, decaying and oscillating modes.

3D effects (diffraction, emittance, and energy spread) can be included as
modifications to the 1D theory via Ming-Xie parameterization.
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