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• Charge density and fields do not depend on the transverse coordinates (x, y), 
i.e., the electron beam radius is large. 

 

• The electron bunch is long and end effects can be ignored. 

 

• The radiation amplitude grows slowly with z (ignoring 2nd derivative). 

 

• Diffraction of the FEL light is negligible over a gain length. 

 

• The effects of electron beam emittance and energy spread can be ignored. 

 

• 3D effects (diffraction, emittance, and energy spread) can be added later as 
corrections to the gain length and saturated power. 
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We mentioned earlier that the oscillatory axial motion of the electrons in a 
planar undulator causes a reduction in the interaction strength. The reduction is 
expressed in terms of the difference between J0 and J1 Bessel functions of an 
argument x that depends on K (see textbook for explanation of J0 - J1). 

 

 

 

JJ is unity for a helical undulator (no reduction). For a planar undulator, JJ 
becomes less than unity at large K. For K ≤ 1 

 

 

The modified undulator parameter, K-hat, is used in calculations that involve the 
interaction strength, but not for wavelength calculation. 
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Ponderomotive phase 

Taking the derivative 
with respect to z 

Expressing kr in term of ku 
using resonance condition 
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E = Type equation here. 

Transverse velocity 

Transverse current 
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Rate of change of the jth electron’s phase with respect to t (left) and z (right) 
 
 
 
 
Rate of change of the jth electron’s energy deviation w.r.t. to t (left) and z (right) 
 
 
 
 
 
These two coupled equations can be used to model the phase-space motion of 
N electrons at a constant radiation field amplitude. This applies to the case 
where a seed laser is used to induce the energy and density modulations, such 
as the seeded amplifier or the final few passes of an oscillator. In a high-gain 
FEL, the radiation intensity (and E0) changes with t and z. 
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Shift the phase variable by p/2 and call it  
 
     FEL pendulum equation 
 
 
 
 
 
 
where W is the synchrotron oscillation frequency. 
 
 
 
 
At one-quarter of the synchrotron period, the electrons have sinusoidal 
energy modulations. At one-half of the period, FEL bunching is maximum. 
Electrons become over-bunched after one-half of the synchrotron period. 
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The initial distribution (blue line) depicts mono-energetic electrons at time = 0. At ⅟4 of the 
synchrotron period, the electron distribution develops energy modulations (black line). 
Electrons trapped inside the separatrix (red) execute close-orbit motions. Electrons outside 
the separatrix flow over and under the separatrix. These electrons also provide gain (linear 
regime) until the separatrix grows in height and capture the untrapped electrons, causing 
them to execute trapped electron phase-space motions (nonlinear regime). 

trapped 

untrapped 

separatrix 

untrapped 
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The separatrix or bucket (blue) separates the trapped (closed) orbits from the 
untrapped (open) orbits. Electrons with energy above the resonant energy R  
move lower and provide FEL gain. Electrons below R absorb FEL radiation power. 

  






W


2
cos




cku

S

Equation for the FEL separatrix 

Gain function in a low-gain FEL 

0 

(R/R 

Gain 

Absorption 



LA-UR 14-23595 11 

The small-signal gain is calculated from the energy gained by the radiation (also 
equal to the energy lost by the electrons) in each pass divided by the radiation 
energy. The small-signal gain as function of the initial energy detuning D is 
derived using second-order perturbation theory. 
 
 
 
 
Start with zeroth-order solutions 
 
 
 
 
To the first-order e1 the equations are 
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Solutions to the 1st order equations 
 
 
 
 
 
 
The phase-averaged energy deviation is zero for the 1st order. 
 
 
To the first-order e2 the equations are 
 
 
 
 
For the 2nd order, the phase-averaged energy deviation is 
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Madey theorem: the line shape of the small-signal gain of a low-gain FEL is the 
negative derivative of the spontaneous emission curve, a sinc-square function. 
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We also assume the seed radiation is polarized in the x direction, the same as the 
electron oscillatory motion in a planar undulator. The x component of the radiation 
field interacts with the complex transverse current due to electrons’ velocity in x. This 
interaction causes the radiation amplitude to vary with z, especially in a high-gain FEL 
where the amplitude grows exponentially with z. 
 
We must now find the rate of change of radiation field amplitude with respect to z, 
unlike the situation in slide 7 where the radiation field amplitude is constant. 

One-dimension approximation of the wave equation driven by a transverse complex 
current of electrons oscillating along the x direction in the undulator 

Assume a trial solution to the wave equation in the complex form 
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Plugging the trial solution into the wave equation 

The complex amplitude varies slowly with z so we can drop the 2nd derivative 
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The longitudinal current density has two components, the static (DC) 
and time-varying (AC) components. 

   

   

0 1

0 1

exp

exp

z

z r u r

j j j z i

j j j z i k k z t





 

     

Taking the partial derivative with respect to time 

   1 expz
r r u r

j
i j z i k k z t

t
 


     

Rate of change of the field amplitude with z is proportional to the j1 current, 
i.e., the first harmonic Fourier component of the AC current. 

1
0 ~

4

ˆ~

j
Kc

dz

Ed

R

x 






LA-UR 14-23595 17 

Electron longitudinal distribution    
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Initial DC current density 
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Rate of change of the ponderomotive phase of the nth electron  
 
 
 
 
Rate of change of the relative energy deviation of the nth electron  
 
 
 
 
 
Rate of change of radiation field amplitude 
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Follow the discussion on pp. 52 – 56 of the 2nd edition of the textbook. 
 

Third-order equation 
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Plasma oscillation is important in long-wavelength FELs (Raman regime). 
In many of today’s high-gain FEL, the plasma wavenumber is much smaller 
than the growth rate, and thus can be ignored. 

We have arrived at a simple third-order differential equation. 
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Using the trial solution of the form 
 
 

one obtains the cubic equation  

Three roots of the cubic equation: 
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In the first 2-3 gain lengths, the growing, decaying and oscillating modes 
compete with one another. The sum of three electric fields grows slowly with z. 

 

 

 

 
 

 

At z > 3 gain lengths, the exponentially growing mode dominates and the 
radiation field and intensity as functions of z can be written as  
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At saturation, the electrons have undergone one-half of the synchrotron period. The 
electrons begin to absorb the FEL radiation, but the electrons’ phase space becomes 
chaotic so the FEL power is not significantly reduced but oscillates about an average non-
zero value. The synchrotron oscillation period is a measure of the FEL bucket height. 
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The rms radius of a focused electron beam is determined by its un-normalized 
(geometric) emittance and the average b function of the focusing optics (b is 
the electron beam’s property analogous to the photon beam’s Rayleigh length. 
One needs to match the average focusing b to the electron beam’s b). 

 

 

Optical diffraction is measured by the radiation Rayleigh length, which is given 
by the square of the electron beam’s rms radius in the undulators divided by 
the photon beam’s emittance, /4p. 

 

 

For diffraction 3D effect to be small, the gain length must be shorter than the 
Rayleigh length 
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Normalized emittance is the phase space area of the beam in its rest frame. 
Un-normalized (geometric) emittance is the phase space area in Lab frame, 
 
 
 
where b ~ 1 for highly relativistic beams. 
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 For emittance 3D effect to be small, the electron beam’s geometric 

emittance must be smaller than the photon beam emittance. 
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where  Nc      =   # of wavelengths in a coherence length 

           =  √3 times the # of periods in one gain length 

For 3D effect due to energy spread to be small, the relative rms energy spread 
must be less than  
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Electrons must maintain the same axial velocity during the coherence length 
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Diffraction    Ming-Xie parameters 

 

 

Emittance 

 

 

Energy spread 

 

 

 

Ming-Xie parameters should be less than 1 to minimize 3D effects. 
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• 1D theory involves N first-order equations for N electrons coupled with two 
first-order equations for radiation field amplitude and 1st harmonic current. 

 Electron phase 

 

 Electron energy 

 

 Radiation field amplitude 

 

 Harmonic current 

 

• The third-order FEL equation leads to the cubic equation that has three roots 
corresponding to the growing, decaying and oscillating modes. 

 

• 3D effects (diffraction, emittance, and energy spread) can be included as 
modifications to the 1D theory via Ming-Xie parameterization. 
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