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Hamiltonian of particle motion in quadrupole focusing channel

Hamiltonian of charged particle

H=cN m2c? + (Py- gAyY + (Py- gAY + (P2 - gAY + q U

Vector potential A =Xmagn + Xb

is a combination of that of magnetic lenses, Xmagn, and of that of the beam, A5,

Scalar potential U=U. + Up

is a combination of the scalar potential of the electrostatic focusing field, U,,, and of

the space charge potential of the beam, U,.



(a) Magnetic quadrupole and (b) electric quadrupole.

Vector - potential of an ideal magnetic quadrupole lens with gradient G,,.,, inside the
lens is given by

Az magn = Gmagn (XZ -y 2)

Electrostatic quadrupole with gradient G.,, creates the field with electrostatic potential

Uel:'Gzel(xz' yz)

Transversal components of mechanical momentum are equal to that of canonical
momentum, p, = P,, p, = P,, and Hamiltonian can be written as:

K= cﬂ/m2c2+p)%+py2+(PZ- qA) +qU



In the moving system of coordinates, particles are static, therefore, vector potential of

the beam equals to zero, Xb —0. According to Lorentz transformations, components
of vector potential of the beam are converted into laboratory system of coordinates

as follow

A =0 A =0, Azb=ﬁl£b

Total vector-potential of the structure is therefore

A

I
|
=

Kinetic energy of the beam is typically much larger than the potential energy of
focusing elements and than the potential energy of the beam. Therefore, P, >> ¢A.,
and we can substitute canonical momentum by the mechanical momentum:

(P:- gAY =P2-2P.qA.~p2-2p.qA:

It corresponds to the case when longitudinal particle motion is not affected by the
transverse motion, which is typical for beam transport.



Hamiltonian can be rewritten as

2 2+ 2
K=mc*A/ (1+-£= )+px Py _2qpA; + qUe + qUp
2.2 2.2
m-c m-c m-c
2

The term in brackets is close to square of reduced particle energy: 1+ IZZ ~ = yZ

Taking that term out of square root gives for Hamiltonian:

2 2
+
K= mczyv1+px p)27_2quA2Z + qUe + qUp
(yme)”  (yme)

After expansion of small terms V1+x =1+ x/ 2, the Hamiltonian becomes:

2 2 ﬁ
K:mg2}/+px + Py ] 2qp-(A; magn"‘c Up)

+ qUe + qUp
2mcy 2mcy

Removing the constant mczyresults in the general form of Hamiltonian in a focusing
channel:
pi + Py U
H="—2+4q(Ue - BcA; magn) + q—lz’
2my Y

Both U, and 4. ... can be a combination of that of multipole lenses of an arbitrary
order.



Kapckinsky-Vladimirsky (KV) beam envelope equations

Consider now dynamics of the beam in focusing q uadrupole channel including space
charge forces of the beam. All particles move with the same longitudinal velocity f3c, and
the longitudinal space charge forces are equal to zero. Hamiltonian of particle motion in
qudrupole channel with space charge is given by

2+ 2
H=PETPY 4 00 2y 1 g U (2.96)
2my 2 Y

Assume that transverse space charge forces are linear functions of coordinates .
Correctness of this assumption will be checked later. Linear equation of motion are

d*x .

d—Z2+kx(Z)x=0 ’ (2.97)
d? ,
dzzy +ky(z) y=0 (2.98)

where k(2), ky(z) are modified focusing strengths including space charge. Equations of
motion (2.97), (2.98) are linear, therefore, invariant of Courant-Snyder, is valid i n both
planes (x, x'), (y, y') for space charge regime as well.



Self-consistent solution can be obtained when distribution function is expressed as a function
of integrals of motion. Due to equations of motion in linear field are uncoupled, Courant-
Snyder invariants are conserved at every phase plane:

1 1 2
(x Oy - Oy X)z + x—2= dx (299)
Ox
| ) y2
(y oy- 0Oy y) t =3y, (2.100)
Oy
: v'
A
(G- oo x) + A =3, ' 2Ly
o2 (yoy-0yy) +===3,
X O
Y
> —>
X y

Courant-Snyder invariants.



Values of 3x, 3y are areas of ellipses at phase planes (beam emittances), which are the
constants of motion during beam transport. Let us express beam distribution function as a

function of values 3x, 3y:

f=fo 6« +23y-Fo) (2.101)
where f,, F,, v are constants defined below and 6 (&) is the Dirac delta -function:
5@ ={ ©,6=0 (2.102)
0, £&#0
kK 0, X<a, X>b,
f&8(EX)dé={ 12fiX), X=a or X=b, (2.103)
fa fX), a<X<b

In the selected distribution, Eq. (2.101), particles are placed at the surface of four-
dimensional ellipsoid:

1 1 ! 2 1 2 2
Flx,x y.y)=(X0s- Oux) + %+ (O'0y - Oy) + y—2 -F, =0, (2.104)
Ox oy



Boundary of (x,y) Projection of Beam Distribution

Let us find boundary of projection of the surface F(x,x',y,y)=0 on the plane (x, y).
Boundary of projection of the four-dimensional surface F(x,x,y,y )=0 on arbitrary two-
dimensional plane is obtained by equating to zero the partial derivatives of function
F(x,x,y,y') over the rest of variables:

oF(x, X, v, ) 0 oF(x, X, v, ) -0

ox dy’

, (2.105)

and substitution of the solutions of equations (2.105) into equation F(x, x ,y,y')=0. Actually,
for every fixed value of x, the point at the boundary of projection corresponds to maximum
possible value of y:

9
N _g, Y=o, (2.106)
0x ady

or, according to differentiation of implicit functions,

oF oF
dy __ox dy _ 9y (2.107)
ax  OF dy  IF’

dy dy

which coincides with Eq. (2.105).

10



Partial derivatives over variables x', y' in equation of four-dimensional ellipsoid are:

oF

=2 (x 0x- Oxx)0x =0, (2.108)
ox'
(‘:F =2 (y'0,-0,y)0, =0 . (2.109)
y

Substitution of solution of equations dF/dx' =0, dF/dy'=0 into equation F(x, X Y,y =0 gives
the expression for the boundary of particle projection on plane (x, y):

2
x2 Y oF, (2.110)
o of

Therefore, particles of beam distribution, Eq. (2.101), are surrounded by ellipse, Eq.

(2.110),with semi-axes R, = o\ F, , Ry =0,VF, and the area of ellipse S=7 0x 0yFo.

y
A

N
N

Boundary of projection of KV beam on (x,y).
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Space Charge Density of the Beam

Space charge density of the beam is an integral of distribution function over the rest variables
x',y'"

o OO o OO

2
p(x,y)=fo’ ’ o{(x O - o;x)2+% +(y' oy - o;,y)2+y_2 -F,Ydx'dy'. (2.111)
J-oo oo Ox O'y

To find particle density, Eq.(2.111), let us make substitution of the new variables, ¢, €2, for
old variables, x', y', according to transformation:

(XOx - O D=0 cosQ2 , (2.112)

(y'Oy - 0y Y= sin€2 (2.113)

Inverse transformation is

=1 (acosQ + xoy) (2.114)
y'=L (o sinQ + yoy) - (2.115)
O'y
ox ax
- : ., | da 0Q dot dO
Phase-space element is transformed according to: dx dy = dodQ =xaass () 116)
oy oy 00
dor 082

12



With introduced transformation, Egs. (2.112), (2.113), the space charge density of the beam is

2w oo )
’ S2+X + Y _F ) adodQ=
0 JO O-Xz 032

T ; o 2 2
_ %J5(062+§_—§+§—F0)d062 (2.117)

X7y o y

Let us use one more transformation: o =u, (2.118)

2
o Fy=-u,, (2.119)
i Oy

With new transformation, space charge density is  p(x, y) =Tl | Su-u)du. (2.120)
Ox Oy

J O

As far as the value of u, 1s always positive inside the ellipse, Eq. (2.110), the integral over
delta function in Eq. (2.120) is equal to unity and space charge density is equal to constant:

P, y)=;”%:po. (2.121)
X Yy

KV distribution gives projection on plane (x, y) as uniformly populated ellipse, Eq. (2.110).

13



Space charge density of elliptical beam with current /, semi-axis R,, R,, and longitudinal
velocity Bis

S | (2.122)
P BcRR

Projection of KV beam on (x,y).
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Projections of beam distribution on (x,x’)

Consider particle distribution at phase plane (x, x'). Follow the method described above and
put the following derivatives over variables y, y' to zero

OF(x, X, 3, ) _ OF(x, X, y, y) _

0. (2.123)
dy dy

Substitution of the solution of Egs. (2.123) into Eq. (2.101) gives us the boundary of particle
distribution at phase plane (x, x'):

' 2 2
(0 -0ex) + 2 =F, (2.124)
Ox

which is also the ellipse. To find an area of ellipse, let us change the variables:

X =y, cos 0

{ o (2.125)

XOy-X Oy=rysin6
Transformation, Eq. (2.125), in explicit form is

X=ry Oy cOs 0O

, ) (2.126)

X =ry Oy cos0 -1 s5in6
Ox 15



Phase space element is transformed analogously to Eq. (2.116) as
dxdx =rydry dO . (2.127)

With the new variables, equation for the ellipse boundary, Eq. (2.124), is r# =F,. Area of the
ellipse, occupied by the particles, is:
2n [ Fy

S= redry d0=mF, (2.128)

4O JO

Therefore, parameter F, =3, is equal to beam emittance at phase plane (x, x').

Boundary of KV beam projection on (x,x’).
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Distribution of particles at phase plane, p, (x,x), is obtained via integration of distribution
function, Eq. (2.101), over remaining variables y, y"

p (x.x ‘ Y=o
for; o7

. | | ) |
I o{(x oy - Gxx)2+ "22 +(y oy - O'yy)2+ Y -FoYdydy . (2.129)

Let us make transformation from variables y, y' to new variables T, y in Eq. (2.129):

, o2

(v'0y-0yy) =T cosy (2.130)
y? :
= T siny (2.131)
G),’

Phase space element dy dy' is transformed analogously to (2.116):

dydy =TdT dy . (2.132)

Integration of Eq. (2.129) gives distribution in phase plane py(x, X) =py(?):

prd)=nf, I S@2+T?-F,) TdT dy =nrf,. (2.133)

JOo

JOo

Integral, Eq. (2.133), is evaluated in the same way as that in Eq. (2.117). Therefore,
distribution of particles at phase plane (x, x') is uniform inside the ellipse, Eq. (2.124).

17



Analogously, distribution of particles in phase plane (y, y') is uniform inside the ellipse

, C 2y
(' 0y -01y) +2=F. (2.134)

Oy

Finally, KV distribution provides two-dimensional elliptical projections at every pair of
phase-space coordinates with uniform particle distribution within each ellipse.

21073

21073
11073

11073
= :

>

0
-1-1073

-1-1078
21 0—3

—21073

Projection of KV beam on (y, y')

Projection of KV beam on (x, x) 18



Potential of the beam, U,, is to be found from Poisson’s equation:

U , #Us __p(2)

o ay P (2.136)
where space charge density
2
1 , x4V <
BcRRy  R? R}
pR) = { PO (2.137)
0, x_2+ y—zz 1
Rx Ry

Solution of Eq. (2.136) for potential of elliptical charged cylinder with current / and beam
envelopes R, R, is:

R: - Ry
Up(x, y, 29)=- d [2+y?-————(x2-y2)] (2.138)
AreoBcRiRy R. +R,
and field components E = -gradU, are:
Ec = [ X 2.139
neBcRy(R + Ry) ( )
E, = [ v (2.140)
reoBcRy(R: + Ry)

Uniformly populated beam with elliptical cross section provides linear space charge forces.
Therefore, initial suggestion about linearity of particle equations of motion in presence of
space charge forces is correct.

19



Hamiltonian of particle motion within the beam with elliptical cross section is:

H

_Px py+qG(z) (x*-y%) ql
2my 2 4me,y*BcRiRy Re + Ry

Equations of particle motion in presence of space charge forces are:

2
d°X 4 [ky(z)- 3 41 1x=0
dz? I. B’YR.(R. + R))
d2
B L 1y=0
dz? LBV Ry(R: + Ry)

b

Characteristic current: mc’
I, =4me,
q

=3.13-10’ %[Ampere]

Ri-R
[x2+y? - = (x2-y2)].

(2.141)

(2.142)

(2.143)

Eqgs. (2.142), (2.143) are similar to that without space ¢ harge forces, where instead of

functions k.(z), ky(z) the modified functions k(z), l;y(z) are used:

k(@ =k@ - ,
I. B°7°R(R: + R))

Ry YO p— |
I By °Ry(R: + Ry)

(2.144)

(2.145)

20



Substitution of expressions (2.144), (2.145) instead of kx(z), ky(z) into envelope equations
(2.56), (2.57) gives us the KV envelope equations for the beam with space charge forces:

2 2
di;_%+ k(@ Ry -— 41 =0 | (2.146)
dZ Rx Icﬁ y3(RX +Ry)
d*Ry, >3
T2t @Ry -4 =0, (2.147)
dz® R; 1By (R +Ry)

Equations (2.146), (2.147) are non-linear differential equations of the second order. They
can be formally derived from Hamiltonian:

' 2 1 2 2 2
) 2
HZ(RX) + (Ry) + kx(Z)&+ ky(Z)Ry+ 2P2In 1 + x +i R (2.148)
2 2 2 2 RetRy 2R 2R?

where parameter P’ is called the generalized perveance

P’ =2—31. (2.149)
LBy’

21



In general case, solution of the set of envelope equations, Egs. (2.146), (2.147) are non-
periodic functions, which corresponds to envelopes of unmatched beam. However, if
functions k..(z), k,(z) are periodic, there is a periodic solution of envelope equations.
Envelope equations can be solved numerically at the p eriod of structure via varying the initial

conditions Ry(0),R.(0),R,(0),Ry(0) unless the solution at the end of period coinsides with
initial conditions R,(L)=R.(0) Rx(L)=Rx(0), Ry(L)=Ry(0), Ry(L)=Ry(0). Again, as in case of
beam with negligible current, this beam is called the matched beam. It occupies the smallest
fraction of aperture of the channel.

3

Effective beam emittance.

The envelope of unmatched beam
in @ quadrupole channel

22



Matched Beam Focusing

LB S

0.0539
0,nze
00519
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0. 0689
0,.0re
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0. 043
0.0z
0. 0n1

.08
0.0393

Plottype Beta
Sample ( S/29)
Time 1.001e+000 ns
Particles 0

Matched beam in RF linear accelerator (Courtesy of Sergey 23
Kurennoy).



Averaged Beam Envelopes

For focusing channels, where phase advance per period is small, i,/2wr <<, one can use
smooth approximation to beam envelopes. Analogously to particle trajectories in smoothed
approximation, solution for beam envelopes can be represented as:

Re(2)=R: (2) + &c(2), (2.150)
Ry()=Ry () + &(2), (2.151)

where R: (z), Ry (z) are smoothed envelopes, and &(z), ¢(z) are small fast oscillating
functions. The following approximations can be used:

121 (.35 (2.152)
R} R} R:

1 ~ 1 ) 1 g _ 1 g
~ = = "T_ _ XTI Y, (2.153)
Re+ Ry R+Ry R +R)  (Re+R)

24



Egs. (2.146), (2.147) formally can be considered as single body osci llations in the alternating-
gradient field with addition of potential function describing “emittance” and “current” terms.
Averaged values of that terms in the envelope equations are

2 2
2 2 3 N
92(1-3@)92, S (1-32)== (2.154)
Ry Re Ry Ry roR
2P2 2P? 2P? __2P°
- & - Gy =—=— (2.156)

R, + Ry (ﬁx + Ey)Z (gx + ﬁy)z R, + Ry .
The resulting field is a combination of effective field and potential field . Finally, envelope
equations in smoothed approximation are

2§x )26 o 2
d : -i3+(‘£)Rx- 3 4l -0 2.157)
dz Rx 1B 7/3(Rx+Ry)
d*R, 35 =
, O R =0, (2.158)
dz® R, I.B7’(R: + Ry)

Small fast components are the same as that onr single particle, becauzse they are defined by fast
oscillating functions only: £ =& _ sin an &y = =& a SIN 27:2

Beam envelopes: |R@=R @+ e

R, (2)=R,(2)+&,(2)




Each of equations (2.157), (2.158) contain two defocusing terms: one is proportional to
square of beam emittance and another one is proportional to beam current. Consider beam

with the values of envelopes close to each other, R, =R, = R, and with equal emittances in

both planes 3, =3, =¢/(By). Ratio of that two terms gives us estimation, which factor
dominates in beam transport:

p= 2 IR*
By) I £2°

Transport with & >> 1 corresponds to space-charge dominated regime, while b << 1
corresponds to emittance- dominated regime. The value of b is the ratio of beam brightness,

(2.159)

B=1/€?, to normalization value of I./R>. It is reasonable to call parameter b the
dimensionless beam brightness. Additional factor of 2/ (fBy) indicates that significance of the

space charge forces drops with increasing of beam energy. Beam with high value of beam
brightness, B, can be both in space charge dominated regime, and in emittance-dominated

regime, depending on particles energy.

26



Acceptance of the Channel Estimated from Beam Envelopes

In the limit of negligible current, / = 0, KV envelope equations are decoupled. Consider

matched beam, R, =R, =0, with equal emittances in both planes 3, =3, =3:

Equations (2.190), (2.191) have the common solution:

R2=2L
,uo

Beam envelopes for negligible current:
R(z)=R +& sin 27%

. Z
Ry(Z) = RO — gmax Sin 277:2

(2.190)

(2.191)

(2.192)

For FD structure:

gmax = RO

o

443
3

T

27



It defines the averaged b eam radius in quadrupole channel for the beam with negligible
space charge forces. Acceptance of the channel, A, is the maximum emittance of the
beam, which could be transported through the channel without beam losses. I n
quadrupole channel, beam envelopes are oscillating functions, Egs. (2.150), (2.151).

Aperture, a, is reached by particles with R, + Enax =a. From Eq. (2.192), acceptance of
the channel in smooth approximation is

I o
A _L (1 + 5m )2 , where 5max = R (2193)
The value of §,,. in FD channel was estimated as Omax =@ Wo |
T
P
Acceptance: L(1+0447u )

. 20— 7T T 1
Normalized acceptance of the channels: &, = 37A 1.6- Aperture a=R (1+ % )
Compare with FODO acceptance TP aNIAN 7
obtained from matrix method: 5 \/ \R/ \/

208 / \/ o
a’  siny, et
A= u 04
(1 + sin—%) I
2 0.0

0 25 50 75 100 125 150 175 200 225 250
For a matched beam, the maximum and minimum z (cm)
beam envelopes are  R..=R(+0,,) R,=R(1-96,,) 28



Beam Radius in Space-Charge Dominated Regime

When space charge forces are not negligible, smoothed KV equations for matched beam,

_n

Rx :R?y" :0, are

2 2 __
2y HoyR,- 4L =0
R L LBYRH+R)

2 2 —
Ry ICB 7/3(Rx+Ry)

Egs. (2.196), (2.197), have common solution R. =Ey = R defined by:

2 2
Sy HoyR- 21 g
R L L.By’R

(2.196)

(2.197)

(2.198)

29



Combination of Eq. (2.192) and Eq. (2.198) gives:

__21IR,  _y
I. B3R5 '

(2.199)

From the last equation, the averaged beam radius in space — charge regime is expressed via
beam radius with negligible space charge forces as

R=R,,\/b0+ V1+02 (2.200)

where b, is the space charge parameter:

b()= 1 LR()

_ (2.201)
(By) I g’

Equation (2.201) indicates that matched beam radius increases with beam current.

In averaging method, small function < is defined by fast oscillating term only. Function
Omax = Emax / R dO€s not depend on beam current and beam emittance, therefore

Rmax =R (1 + 5max)
max )

R.~R(1-6

30



Matched Beam Envelopes Versus Beam Current

1=0 [ =9mA
1.6 1.6 s
1.4- \ 4 1_4- R(1+5max)ﬂ
1ol R0(1+5max) | 1_2\ //\\ //\ /\\ 1/\\ A /
N NIAWANVANAND N2 B A ARVARY ALY/ YA WA
MBVAR AR s i va s B ANV AVAVAVAVANS
06/ s X/ \ N AN 06| il -
oal  R(1-5_) 1 sl R0
0.2 0.2
0.0 ' _

N T NPRNS N P N NP SR SR Yy o ) SRR SN IR S S | Y S S S
0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250

z (cm) Z (cm)

Envelopes of the proton beam with energy of £ = 150 keV, and normalized emittance of € =
0.1788 m cm mrad, propagating in a quadrupole FODO channel with magnetic lenses of length
of D =10 cm, field gradient of G,, = 1.6 Tesla/m, and period of the structure of L = 80 cm.
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Matched beam: 1 =0
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Transverse Oscillation Frequency in Space-Charge Dominated Regime

Egs. (2.142), (2.143) define particle trajectory in quadrupole channel in presence of space
charge field of the uniformly populated beam with elliptical cross-section. Taking

Rx =Ry = R, equation for single particle trajectory in smoothed approximation is

2 2
d°X LMoy .21 j1x=0, (2.202)
d 72 L I By3R?

and similar for y - direction. Expression (2.202) can be re-written as

2 2
;’7)2( +()X=0 (2.203)

where  is the averaged betatron frequency in presence of space charge forces, which is also

called the depressed betaron tune:

=l - 2! (5)2 2.204
0 Ic(ﬁ’)/)?’ R . ( . )

Eq. (2.204) indicates that space charge forces result in depression of transverse oscillations.
Substitution of expression for beam radius in space charge dominated regime, Eq. (2.200),

and expression for space charge parameter, Eq. (2.201), into Eq. (2.204) gives for u

u=u,V1+ boz - by) . (2.205)
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Transverse oscillation frequency drops with increase of beam current, but remains non-zero.
Therefore, beam stability can be provided at any value of beam current. However, increase of
beam current requires increase of aperture of the channel, and stability of transverse
oscillations can be provided at arbitrary high value of beam current, but in the channel with
infinitely large aperture.

) /

Averaged beam radius and transverse oscillation frequency as functions of
space charge parameter b,.
34



Connection between 4 b

()2

Let us rewrite equation (2.204): Ho = 1o+ ([3 7R

o =1+ I(/By)3 Tz R Ly

Substitute beam emittance: s
L

21 R
Connection between phase advance Ho =1+ VoA 'l

per period H,, U, and dimensionless
space charge parameter b
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Beam Current Limit

Maximum beam current corresponds to the beam, which fills in all available
aperture, a =R(1 + Omax), Or, taking into account Egs. (2.192), (2.200):

a:\/?ﬂ/bo + m (1+ Omax) " (2.206) 2.0 —

For b,= 0, equation (2.206) describes the beam with maximum
possible emittance in the channel, equal to acceptance of the
channel, > = A:

>
<
)
3
N
=
)
Q
Il
=
~
[E—
_|_
2]
N’

T
N
)
D
N

a= AL (1 + 5max) . (2207)

0

Enovelope
B
C
N
<
N
/i(,

©
I

Ratio of last two equations gives us the relationship between
acceptanceof the channel and the maximum emittance of the
beam with non-zero current, which fills in all aperture of the 000255075 700 125 150 175 200 225 250
channel:

s=— A o 3=AN1+b2-b0). (2.208)
bo+ V1462

Substitution of the expression for space charge parameter b, Eq. (2.201),
into Eq. (2.208) gives for maximum transported beam current:

z (cm)

32

I u
I ==<ByYAZeq-20|.
max 2(ﬁaf) L( AZ)

(2.209)

Approximation of the value of limited beam current by Eq. (2.209)

becomes better with increase of beam current, because in this case the

transverse oscillation frequency (/27 <<1 drops and smooth approximation 36
is improved.



Rms Beam Envelopes (F.Sacherer, P.Lapostolle, PAC 1971)

Rms envelope equations

2-rms beam envelopes

4-rms beam emittances

it 2 ~
d°X 3% 4 ko X-— 4L =
dz? LB y3X+7Y)

~ 2
2 ~3 3 o
dz= y LBy’ (X+7Y)

R.=X=2V<x2>
R, —y=2 V <y 2>

3, =4J<x® ><x? > — < xx' >

3, =4\/<y2 ><yP>—<yy'>T g



Beam Drift in Free Space

Important case is propagation of the beam in the
area without any external fields. Consider transport

of a round beam R =R =R in drift space,

described by envelope equation

-—-—=0. D-1
d R’ R ®-1) ‘ .
' |
| [ "
1 |
Equation (D-1) has the first integral: : f t

dR 2 _ d_R2 iz _R_f 2 £2 _ :
(d—z) —(dz>(,+<RU> (1-—25)+P 1n<R0> (D-2) e l i
! | 7 j 2 5[ \

which determines divergence of the beam as a a
function of initial beam parameters, beam current,
and beam emittance. Eq. (D-2) can be further
integrated to determine distance, where beam with
initial radius of R, and initial divergence R, is

Drift of the beam with finite value of phase space (a)

evolved up the radius R beam envelope, (b) phase space deformation.

(D-3)

\/[1 +( R, ")] +( ”) slns—1

Eq. (D-3) can be 1ntegrated in case of negligible
current, P = 0:

R _ Ro ;Y 4 (32,2
R, V(I+R(, ) +(R3) 4 (D-4) 38



Drift of Space-Charge Dominated Beam

Another case 1is drift of the beam with
negligible beam emittance, but non-zero beam

current. Eq. (D-2) has the form

dRr
—rR
| s
dR ) dR 2 2 R , R 1,2} A/
—) ' =(—)+P ln — D-S ! 6 7
(dz) (dz L (RO) (D-5) dR/dZ~ /
10} 5
To determine expansion of the beam from waist o ,——/ . /
point, let us put initial beam divergence R, =0, - - / R
then Eq. (D-5) becomes l‘ o z Obr3 / 4
04t 2 /TZ
(d_R)2 = p? ln(i)z (D-6) Gzr1
dz R, ol

Eq. (D-6) has an approximate solution

R£z1+0.25Z2—0.01723 (D-7)

w

z=2= { ! 3 (D-8)
R\ 1.(By)

where z is counted from the waist point. Eq.
(D-7) gives good results for for 0 < Z < 3.2 and
1<R/R,, < 3.

Envelope of an axial-symmetric beam in drift space
(Molokovsky, Sushkov, 2005).
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Maximum Beam Current Transported Through the Tube

In practical applications, it is important to know the maximum beam current which can be transported through the
tube of length L and radius R,,,. From symmetry point, it is clear that beam should have a waist size R = R,, and
zero divergence in the middle of the tube z = z,. Thus, equation (D-6) can be integrated in this case to determine
beam expansion from minimal size R = R,, to max size of R = R,,,,:

(22,) R=R/R, (D-9)

!\/ﬁ_fp

The left hand side of Eq. (D-9) has a maximum value of 1.082 for R__ = R,/ R, = 2.35. The maximum radius is
achieved at z—z, =L/2, which in turn yields P L/ (v2R..)=1.082. From this expression, the maximum

max

transported current through the tube is
I, = 1.171(.(/37/)3(%)2 : (D-10)

Required beam slope at the entrance of the tube can be determined from Eq. (D-6):

dR 41, R R
= [ Sy < Do D-11
dz \/ 1.(By)’ "R (O-1D)

w

On maximum current transported through the tube 40



Optimization of Beam Drift Space
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Normalized Axial Distance, Z =|74f|z_r°_ Figure 11: The position of the minimum beam radius as a function of dRo/dZ. From A.S.
Gilmour, Jr.5

Beam radius at waist point, R = R,,, can be determined from Eq. (D-5) as a function of beam radius R, and initial beam
convergence R, assuming in waist point dR/dz = 0:

R, =R, exp[—( \/%’P)Q] (D-12)

To determine distance, where the beam reaches it’s waist, let us rewrite Eq. (D-5) including notations, Eq. (D-8):

dR

z=['—= (D-13)
' JInR+(dR, /dZ)’
Using substitution u = \/ InR +(dR, / dZ)* , Eq. (D-15) for waist point, where R= 1, is reduced to
Z = e Ry j"m"’dz exp(u®) du 41 (D-14)



Envelope Instability

Averaging procedure (smooth approximation) was based on assumption that
solution of envelope equations are stable

2 2 2
Envelope Equations d’R, 3, +k(2)R _Lzo
dz> R * (R,+R)
d’R.  >° 2P?
2y - y3 _k(Z)Ry_ =0
dz’ R (R.+R))

Let us represent solution as a combination of R, (2)= R (2)+&.(2)
periodic solutions R (z), R,(z) and R (2)=R.(2)+E (2)

T y y y
deviations from that ¢ (), £ (2)

Equations for deviations from periodic S +6.a4(2)+6,a,(2)=0

solution: .
éy + gyaZ (Z)+ gxao(z) - O
2P° ¥ 2P )
a,(z)=—=—= a,(2)=k(2)+3=r+—=—= = —k(z)+3=2 +———
D= T k) @=KDBFHEEE @@=k TR AR



Envelope Oscillations Modes

In smooth approximation R R — R and E +&a, +&a,=0
equations for deviations from perlodlc "
solution, where coefficients S, +&a+6a,=0
P’ Ho o2, P
a0=2E2 a1=a2=L2+3_4+2E2
o . 22 p2 L
Taking into account expression for phase w=p,-P (E)
advances (depressed and undepressed), u R2
as well as expression for unnormalized 3= 2
beam emittance, we get equations for
oscillations of two envelope modes
. 62
Symmetric envelope mode (€ +E)"+ L2 (E+E)=0] 0O, = \/2('“3 RN
2
Anti-symmetric envelope mode (6, — &))"+ %(@ -£)=0 O =1+ 3

43
Envelope Instability: o.,., =180° or o©,, =180°
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Multipole KV Beam Instability Modes (l.Hofmann, L.Laslett,
L.Smith, 1983, .Hofmann , 1998)

even modes

FIG. 1. Beam cross sections for second, third and fourth order
even and odd modes (schematic, with x horizontal and y vertical

coordinates).

odd modes
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FIG. 19. Instability bands in the phase advance ¢ for a FODO channel (5 = 1) and dif-
ferent ¢, : (a) “‘third-order” modes and (b) “*fourth-order™ modes.

45



Experiments on Stability of
Transport Beam at LBNL (1985 )
and University of Maryland (1995)

single beam transport channel was constructed at Lawrence Berkeley National
Laboratory using 82 electrostatic quadrupole lenses in a FODO configuration,
using a cesium beam, as part of the heavy-ion inertial-fusion program.
Systematic experiments were conducted by Tiefenback and Keefe, [40] where
the beam was matched in both transverse planes, and both o and /oo were
varied. The envelope instability predicted by K-V periodic-focusing beam-
transport theory for a phase advance per period of oy > 90° led to major
beam degradation with beam loss. No instability modes predicted by K-V
theory, below the oy = 90° envelope instability were observed. Similarly, in
a systematic experimental study carried out in a solenoid focusing lattice at
University of Maryland, [41] the envelope instability was also observed with
major beam loss. This was investigated systematically by varying o /0y and
changing oy from below to above 90°. Below 90°, no other instability predicted
by the theory, including the third-order (sextupole) mode for oy > 60°, was
found. The conclusion is that for real beams in periodic-focusing channels,
the envelope instability predicted by theory for a phase advance per period of
0o > 90° is the only instability of this theory that leads to emittance growth.

180

150

120

90

60

30

g. 4.

30 60 80 120 160 180
(70

XCG 865-233

Plotted are calculated ¢ values for stable and
apparently stable beams for various o.. Filled-in
symbols represent beams with the same current
and emittance at the beginning and end of the
lattice. Hollow symbols mark o values derived
from beams reproducing ¢ and current over at least
the last 10 periods, as illustrated in Fig. 3 for o,
=100°. Circles mark o values derived using Ffull
beam distribution RMS emittance. Triangles mark
calculations using central 95% current of the phase
space distribution. The shaded region marks the
calculated instability of the envelope equations.
Curve A marks the region of equivalent o
attainable at injection with our limited source
emittance.
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Solenoid Focusing
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Solenoidal magnetic lens (Humphries, 1999).
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Dynamics in Axial-Symmetric Magnetic Field

Equation of radial particle motion:

2 2
Fe Bl Po 9By aBr_
mcy m2y?r’ 2my my

An area of special interest in beam dynamics 1s an axially-symmetric
static field, £,= 0, B,= 0, which is common in beam transport. In this

case, all partial derivatives over the azimuth angle are equal to zero,
0/06 = 0, and the canonical angular momentum is a constant of
motion:

Po=my r252f+rqA9:const. (1,87)
The angular component of the vector — potential is given by

Ap=_T
0= (1.88)

where ¥is the magnetic flux

‘r
Y=| B, 2xnr dr

J O

(1.89)



Substitution of Eq. (1.88) into Eq. (1.87) gives:

2 ddf + q27r.{n117/ = const. (1.90)

If we denote the initial conditions as 6,, r,, ¥, Eq. (1.90) can be rewritten as

rPo—r0 =——1 _(w_p )
2rmy : (1.91)

which 1s known as Busch's theorem. It states that change in angular
momentum of a particle in a static magnetic field 1s defined by the change in
magnetic flux comprised by the particle trajectory.

Busch's theorem can be represented as

h_ P
0= 05 - oL (1.93)

my r? ’
where @; is the Larmor frequency of particle oscillations in a longitudinal
magnetic field
qB
2my -

WL = (1.94)
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On Busch'’s theorem for particle in axial-
symmetric magnetic field.
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Typical particle trajectories in magnetic field with beam space charge
(from G. Brewer, 1967).
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Vi

Phase space trajectories in magnetic field.
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KV Equations in Longitudinal Magnetic Field

Consider the beam propagating in a focusing channel with longitudinal magnetic field B, =
B(z). This field can be created by solenoids or permanent magnets. Like in quadrupole
channel, we assume that all particles have the same value of longitudinal velocity 3, which is

not affected by variation of magnetic field. Vector potential has only azimuthal field
component:

Ag magn=1— BZﬂfl"vd}”'=B—r‘ (2210)
2nr |, 2
Components of vector potential in Cartesian coordinates are:
Ax magn =-A 6 magn Sin® =- B)zi, 2.211)
Ay magn =Ag magn cosO= ng . (2212)

Hamiltonian of particle motion in presence of longitudinal magnetic field is given by

K=c \/ m2e 2+ (Py + qz%)2 (P, qu)2 +(P;-qBUPY +qUy. (2213)

Taking into account that, P,>>q U, /c and repeating all derivations, resulted in Eq. (2.27),
the Hamiltonian becomes
Y\2 2
(Py+gB—)" (Py-gBY)
H= i 2 + ! 2 + 1 Us
2my 2my y?

(2.214)
53



In longitudinal magnetic field, the canonical - conjugate variables are position and canonical
momentum (x, P,), (y, P,), where

Py =px-qB)—), (2.215)
2
2
Emittances of the beam have to be defined at the phase planes of canonical variables (x, P,),
(y, P,), in contrast with quadrupole channel, where canonical variables are (x, p,), (3, p,).

Hamiltonian, Eq. (2.214), contains cross term (xP, - yP ). Equations of motion in

longitudinal magnetic field are coupled: equation in x -direction depends on P, and that in y -
direction depend on P,. To avoid coupling, let us make a canonical transformation to new

variables ;x, /}\;, 1/3\) according to generating function
F,(x,P.,y,P,t)=(xP, + yP,)cos0(z) + (xP, — yP,)sin(z) . @)= ja)L(z)dz 2.217)

B . : :
_q2 @) i1s the Larmor frequency. Transformation from old variables to new
my

variables are given by

where o, (z)=

X =xcosf—ysinf, (2.218)
y=xsinf+ ycos0, (2.219)
P =P cosf—P,sin6, (2.220)
P, =P cos+ P sinf. (Z.fol)



New Hamiltonian, H = H +

o0F>

, 1s given by
ot
I/)\2+I/)\2 ~2 A2
-~ X 2(xX +
= Yy E Y ) U (2.222)
2my 2 V2

Hamiltonian, Eq. (2.222), is similar to that for quadrupole channel, Eq. (2.96). Analysis
resulted in KV envelope equations, can be applied here as well. Because of the axial
symmetry of the beam propagating in magnetic field, there will be only one envelope

equation instead of two in quadrupole channel. Repeating the same derivations, which
resulted in Egs. (2.146), (2.147), we can obtain KV envelope equation for round beam in

Larmor frame:

where

R -

~2

2 4 k@R-—2L =0 2223

R’ I.B’7°R (2229
2

k@) = (4B (2.224)

2mc

By
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In KV distribution, particles occupy surface of four-dimensional ellipsoid:

A AN AA! A AN /\’2 A AAN! /\‘2
FRLEDI) =Yk + 200X % +Bo X +70) " +20,3 Y +Boy -Fo=0. (2.225)

Here parameters [, and 7, are ellipse parameters, not the particle velocity and energy.
Projections of the distribution at every phase plane are uniformly populated ellipses:

A AA /\'2 ~
YoxZ +2 0oxx + X =3 (2.226)
/\2 A A /\'2 A
Yoy +200yy +fy =3 (2.227)
where Y= (2.228)
my B.c
A ﬁ\y
5 = (2.229)
my [ c
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Substitution of Eqgs. (2.218) - (2.221) into Eq. (2.225) gives for the boundary of the four-
dimensional ellipsoid occupied by the beam in laboratory frame:

F(ox 9,9)=Yox2+ 200x X +Bo x “+70y 2+ 2000y ¥ +B0 y - Fo =0 (2.230)

Boundaries of projections of the four-dimensional beam ellipsoid and of their projections at
phase planes are the same both in laboratory frame, and in Larmor frame. From Egs. (2.218) -

(2.221), transformation of phase space elements and area element in real space are

dxd Py =dxdP, | (2.231)
dy d Py =dy dPy, (2.232)
dxdy =dxdy. (2.233)

Therefore, distribution of particles within projections in both frames are also the same, and
uniformly populated ellipses in Larmor frame remain the uniformly populated in laboratory

frame. Finally, beam emittance and beam radius are the same in both frames, 3 =3, R=R.
Therefore, we can write KV envelope equation in the laboratory frame as well:

. 2
R -2 4+k(R-—21L =0 (2.234)
R’ I.ByR
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Beam Equilibrium in Magnetic Field

Important case is the beam transport in a constant magnetic field B(z) = B, which is a uniform
focusing structure. Matched beam corresponds to transport with constant envelope, R =0:

2 B 2
2y (1P R 2L =0, (2.235)
R} 2mc By 1. By3R.

where R, is the equilibrium beam radius. Acceptance of the channel, 4, and normalized

acceptance, &, are obtained from Eq. (2.235) taking the value of beam current / = 0, and
equilibrium beam radius equal to aperture of the channel, R, = a:

A=, | (2.236)
g, =9Ba’ (2.237)
2mc

Let us note, that normalize acceptance of the channel with constant longitudinal magnetic
field is energy - independent. In the equilibrium, beam envelope does not perform any

oscillations and beam occupies the smallest possible area. From Eq. (2.235), the required
magnetic field to keep in equilibrium the beam with radius R,, emittance 3, and current 7, is

2 2
p=2mchr [ 5y, 21 (2.238)
qRe Re Icﬁ3,}/3
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Maximum Transported Beam Current in Uniform Magnetic Field

Taking R, = a, and expressing explicitly the value of beam current from the last equation
gives for maximum transported beam current:

Ba ’* 2
Inax =1 (B 24y (1-25). (2.239)
2 2mc A?
Equation (2.239) can be re-written as
2 2
Inax =1 (By) Eeby (1- €7 (2.240)
2 a gch2
[#£0,3< A
rl
o
Be

Matched beam in uniform magnetic field for zero current

mode, and for space charge dominated mode. 5o



Brillouin Flow

Important specific case 1s the equilibrium of the beam with negligible emittance > = 0, which

1s called the Brillouin flow:
BR. =22mc [ I (2.241)
q By I.

As far as beam with zero emittance cannot be achieved when particle source is inserted in
magnetic field, Brillouin flow is realized for the beam born outside magnetic field. If particles
are born with zero beam emittance, the transverse mechanical momentum of all particles at
the source are equal to zero. Due to conservation of azimuthal canonical particle momentum,
all particles obtain azimuthal rotation after entering magnetic field

po=-¢B, or O=- L. (2.242)
2
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Oscillations Around Equilibrium Radius

Realistic beams usually are not in equilibrium with focusing magnetic field. Consider small
deviation of beam radius from equilibrium condition, R = R, + &, where << R,. In this case

118y, (2.243)
R R R
1.1 (38 (2.244)
R® R R

Then, envelope equation becomes

dzé 5’ S Wr\? 21 §
€6 3" (135 + @y (R+E)-— 2L _(1-5)=0
de Re3 R, ﬁC 5 I ﬁ3’}/3Re R, . (2245)

Taking into account equilibrium condition, Eq (2.235), the equation for small deviation of the
beam from equilibrium is

d? 2 2
46133 pr(@yey 21 =g (2.246)
dz2  R: B LByR?

Beam equilibrium condition, Eq. (2.235), can be written as

> (@) 1 (2.247)
R4 Bc 1+b .

e

where b is the dimensionless beam brightness, Eq. (2.159)

R?
p=-—2 LR (2.248)

By e 5
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Last term in Eq. (2.246) can be also expressed through parameter b:

21 gzibg
L.Bv3R2 R}

Substitution of Egs. (2.247), (2.249) into Eq. (2.246) gives for small derivation:

dzé ®0\2 2 +b
— 2+ 2(FH) (-T2 ¢ =0.
dz2+ (Bc)(1+b)§

Solution of Eq. (2.250) can be written as

E=&, cos(1] 2 (ﬁ) Z)_CL 2+ W)

(2.249)

(2.250)

(2.251)

From Eq. (2.251) it follows that in emittance-dominated regime, b — 0, envelope oscillates

with double Larmor frequency:

E=¢&, cos QOL ) |
Be

(2.252)

while in space-charge dominated regime, b — %, frequency of oscillation is V2 smaller:

E=&, cos(29L 74+ ).
Be

(2.253)
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Beam Transport in Periodic Structure of Axial-Symmetric Lenses

Periodic axial-symmetric magnetic field is often used in focusing of particle beams. Most
existing ion Low Energy Beam Transport lines are based on solenoid focusing. Modern
accelerator projects utilize superconducting solenoids in combination with superconducting
accelerating cavities for acceleration of high-intensity particle beams.

Particle trajectory and matched beam envelope
in a periodic thin lens array (Reiser, 1994).
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Linear Transfer Matrix of Solenoid (S.Y. Lee, Accelerator Physics, (1999) p.180)

2. Linear transfer Matriz of a Solenoid: The particle equation of motion in an ideal
solenoidal field is

" +2g2' + ¢’z =0, 2" — 29z’ — ¢'z =0,

eB”(s)

where the solenoidal field strength is ¢ = %

(a) Show that the coupled equation of motion becomes

y' =529y - jg'y = 0,
where y = = + jz, and j is the complex imaginary number.

(b) Transforming coordinates into rotating frame with

. 5
j=ye %) where 6= / gds,
0

show that the system is decoupled, and the equation of motion becomes
i +9°5=0.

Thus both horizontal and vertical planes are focused by the solenoid.

(c) Show that the transfer matrix in the rotating frame is

cos @ é sin 6 0 0
ire= | —9 sin@ cosf 0 0
0 0 cos @ é sin6 1*
0 0 —gsinf cosf

64
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Matrix Method for Periodic Structure of Axial-Symmetric Lenses

D !
o >« P>

» L >

N

Periodic structure of focusing solenoids.

The transformation matrix in a rotating frame through a period of the structure
between centers of solenoids

COSQ Bsing 1 I cosg Qsing cosG—LQSinO 23in9+lcos2g
2 6 2 2 6 2 2D

—gsing cosg 0 1 —gsing cosg - —gsin6+l(g)2 sinzg cosG—LOSinG
D 2 2 D 2 2 D D

Rotational angle of particle trajectory in a _4B.D
solenoid 2mcBy
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Matched Beam with / = 0 in Periodic Focusing Structure

From the matrices, the value of betatron tune shift per period, u,, is determined by cosu, =cos6@—0sin6(L—D)/(2D) .
Adopting the expansions cosE=1-&/2+&"/24 and sin& = E-E’ /6, the value of betatron tune shift per period reads:

L 6’ 1 D L
“0‘9\/5\/1_?[1_5(?7)]‘ (1.4)

Thus, the maximum and minimum values of the beta-function 3

=m,, /sin it in the channel are given by:

max/min

_ D\ : 0 D tan@ /2
(L-D)cos— L=V 0 G g pSin0 Leos® 2[1-—(1- )
B - 4D 0 5 - 2 L 6/2

sin U, sin 1, (1.5)

Egs. (1.5) determine the maximum R, =./B,. > and minimum R__=./B..3 matched envelope of the beam with
unnormalized emittance, 5 and negligible beam current, / = 0. Acceptance of the channel with aperture radius, a, is

givenby A=a’/f__ :

max °

a’siny,
A== ez Lo U9
L[l-—(1- )] cos” — R
L @/2) 2 A max

min
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Thin Lens Analysis of Periodic Focusing Circle Lenses
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Acceptance and Stability Criteria

2 2

a Ald
Acceptance of the channel A= 3 =g Sk,
max
2
Maximum acceptance 4 =4 U = T cosp =0 [S=2f
max o 2 o
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Single particle stability criteria: cos i |<1 577
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Figure 3.25. Particle trajectory and beam envelope in a periodic thin-lens array with focal length 68

f = 02468, slightly below the stability threshold ( f = 0.255). The particle motion is unstable in
this case.



Matching of the Beam with Negligible Current

\/ _ \/_ 4(§)2 1/4
Max beam radius s sing, | B =V [—5—1
4(Ly-1
S
Min beam radius Roin = N Bpin3 S
R. =R 1——

For max acceptance S=2f

|

g
SS: ° Rmax — \/E
R

min

0 1 2 3 4 5
z/S

Matched beam with zero current in periodic structure of axial-symmetric lenses.
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Dynamics of Space-Charge Dominated Beam in Periodic
Solenoid Structure

d’R 2 p 3°(Bey 21
Envelope Equation g O Ty RBy
Fourier Expansion of Magnetics Field B*(z)= 302[_ 2 Sm(””D)COS(Z””Z)]

n= 1

Envelope Equation with Expansion of Magnetic Field

d’R R nD 2nnPBct.  RD g 3°(Be
A >Z—sm< D, s ZEBet) _RD 4B, 3 (o) |
dt 27r my  ‘on L 4L my R IR/S'y

Envelope equation describes oscillations in combination of fast oscillating field and slow varying field:

R= iFn(R)cos(wnt) — ag;f) , (3.4)
where :
___ R D _ 2nnfc
F (R)= > n (m}/) sin(zTn L) o, . 3.5)

OU(R) _RD B, , 3'(Bc)® 2Ic’
oR 4L  my R’ I.R By’ 70

(3.6)



According to the averaging method, such motion can be approximated by combination of slow variable R, (¢) and small

aver

amplitude fast oscillations &(7):

R(t)=R,., O+ (3.7)

Averaging method gives the same value for betatron tune shift as matrix method. Eq. (3.4) gives the equation for slow
envelope variable

d’R 3 P’
— e+ 2R - =0 3.18
de ijer L2 - Raver ( )
Fast oscillation component of the beam envelope is determined by
q F; (Raver ) 92 L 2 . D <
)=—————4 coswt =R, —)~ sin(r —)cos(2w — 3.20
&(2) o =Ry, 27r3(D) ( L) ( L) (3.20)
Finally, solution of envelope equation can be expressed as
Z 0> L, . D
R(z)=R,,, (2)(1+ ¥, cos2r—), Ve = —) sin(mr— 3.21
(z) =R, (2)( max L) 27r3(D) ( L) (3.21)

Matched beam corresponds to constant value of average beam envelope R, (z)=R, . and can be determined from

envelope equation assuming R, (z)=0: R, =R, (0)nb, +1+b (3.22)

where R (0) is the matched average beam size with negligible space charge, R, .(0)= 2L (3.23)

aver

o

b, = 1 gi Roer Oy (3.24)
(By)" 1, 3 71

and b, is the space charge parameter:



The minimum and maximum matched beam envelope in presence of space charge forces are given by:

=R, (70 (3.25)

max/min max ) ’

Maximum beam current is achieved when maximum beam size is equal to aperture of the channel R, =a, which is
determined from Egs. (3.22) - (3.25) as

a= 2L b, + ixbr 10 ) (3.26)

ILt()

For negligible beam intensity, b, =0, Eq. (3.26) determines the beam with maximum possible emittance (acceptance of
the channel) approximated by envelope equation 3= A

env *

A
a= |2ty

max) (3.27)
Aapproximation to acceptance of the channel U
A, = ﬁ : (3.28)
The maximum beam current is:
max Li Bon, Byl - (01, (3.29)
2 L A

env
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Applicability of Smooth Approximation to Beam Envelope
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N
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Fig. 3. Minimum and maximum beam sizes in periodic solenoid structure with D/L = 0.034: (sol
line) solution from matrix analysis, (dotted line) smooth approximation to beam envelope.

73



Smooth Approximation in Space-Charge Dominated Regime

— 0.04 A e . .
0.04}
0.03 | _
. 0.03F _
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o fIE
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B (Tesla) B (Tesla)

Fig. 4. Minimum and maximum beam sizes in periodic solenoid structure with D/L = 0.034 {
space-charge dominated proton beam with energy of W = 35 keV, beam current / = 3.5 mA ai

beam emittance 3> =9.262 w ¢m mrad : (solid line) exact solution of envelope equation, Eq. (3.]
(dotted line) smooth approximation to beam envelope, Eq. (3.25).
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Maximum Transported Beam Current

Maximum beam current

R
3 max \2
. Ly, =1.171 (By)( 3 )
|
. Ii ‘ —L i’ Beam slope after lens
On maximum current transported through the tube R _ | 4Ly, In( R ) ~ 2&
dz \NI.(By) R, L

Rmin _ 1 4

Required focal length L
< o R, 235
iy

z/S

Matched beam with maximum current in periodic structure of axial-symmetric lenses.



Stationary beam equilibrium in linear focusing channel

In general case, the Hamiltonian is not a constant of motion, because
potentials can depend on time, A A(t), U= U(r). Note that even if the
potentials of the external field, Aex,, U.x, are time-independent, the beam field

potentials, A», Us, might still depend on time, and the Hamiltonian remains
time-dependent. If an additional condition of matching the beam with the
channel (where the beam distribution remains stationary) is applied, explicit
dependence on time disappears from the beam potentials. In this case, the
Hamiltonian becomes time-independent, and therefore, is an integral of
motion. The Hamiltonian, can then be used to find the unknown distribution
function of the beam via the expression /= f(H) and the subsequent solution
of equation for space charge potential (Kapchinsky, 1985).

Hamiltonian corresponding to the motion in averaged linear focusing
field is given by

2 2 2

pi+p QF
T Y (2 vy g Ul (4.26)
2my 2 y?

H=

where €2, is the frequency of smoothed particle oscillations. If the
beam is matched with the continuous channel, space charge potential
U, 1s constant, and Hamiltonian is a constant of motion.
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Let us transform Hamiltonian, Eq. (4.26), to another one,
multiplying Eq. (4.26) by a constant:

K:—L2 H 4
my (Bc)’ 3

It corresponds to changing of independent time variable ¢ for
dimensionless time 7 =¢fc¢/ L. New Hamiltonian is given by

EXsh
2

qu Up

K
>, (4.40)

2
+Ho (x24+y2)+
2 mc2y3p
where X=dx/dt, y=dy/dt. Let us use particle radius

2 : .
R”=x?+y? and total transverse momentum P> = x° + y* , where

x=Pcos 0,y=P sin0 (4.41)

Hamiltonian, Eq. (4.40), is now

2
K=ﬁ+/’L‘%R2+—ql‘ Ue

s o ey B (4.42)
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Consider the following distribution:

0 KS K()
f ={ J ) (4.43)
0, K>K,

According to transformation, Eq. (4.41), space charge density of the
beam is expressed as

* Pmax(R)
PR =27 q fo PdP =1 q fy Prax(R), (4.44)

JO

For each value of R, the maximum value of transverse momentum
P,... (R) 1s achieved for K = K,. From Eq. (4.40)

2qL*U,
Piiax (R)=2K, - U5R? - q—bz : (4.45)
mc2y’p
Therefore, space charge density, Eq. (4.44), is
2qL*U,
p(R=mqfo (2K, -u2R*- 4= =0y (4.46)

mc? }/3ﬁ2

Poisson’s equation for unknown space charge potential of the beam
Ub 1S

2qL* U
— ). (4.47)

1.d gdUs)_ Tl oo, 2R2 -
R dR dR 0 mcz}/3ﬁ2
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Let us introduce notation:

2
Ro=80mczﬁ y3 S=i
, , (4.48)
2w q?f, L? Ro
Then, Poisson’s equation, Eq. (4.47) 1S
2 '52R5

Sds  ds gL? 2

Solution of differential equation (4.49) is a combination of general
u)
solution of the homogeneous equation Uy =Co Io($) and of a

. . . (n)
particular solution of non-homogeneous equation U, = =C1 5% + C2

2
Uy = ”"quy[(zu 2RZ - Ko)lo(s) - 1)- “(’SZR"] 4.57)

Space charge density profile

L(s, £
(55 K= 2‘;" [1-— Ro_j
b -2l o(sp) (4.74)
sp Lo(sp)
where the following notation is used: s, =Rb. (4.60)

Ro
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Density profile, Eq. (4.74), for different values of parameter s,

1.0
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Projection of the volume at the phase plane (x, x):

2
sz_*_ 1 I()(Sb L):l . (465)

iRy Aol R

Eq. (4.65) describes the boundary of phase space of the beam at the
plane (x, x).

P <

Boundary phase space trajectories of particles, Eq.
(4.65), for different values of parameter s,,.

81



Similar results can be obtained for another distribution function

H
=1 eXP(—Fo)

P/P

R/R;

Space charge density for different distributions:
(solid) f=f,H<H,
(dotted) f= f exp(—-H /H,)
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Performed anlysis shows, that for small values of space charge
forces, particle phase space trajectories are close to elliptical, and
beam profile density is essentially nonlinear. With increase of space
charge forces, boundary particle trajectories become more close to
rectangular, and density beam profile becomes more uniform. In
space charge dominated regime, stationary beam profile tend to be

uniform, and space charge field of the beam compensates for external
field.

83



Non-Uniform Beam Equilibrium

Non-uniform beam in general case is intrinsically mismatched with linear focusing channel.
Meanwhile, it is possible to find matched solution for non-uniform beam without emittance growth, if
we refuse from linearity of focusing field.

Assume that the beam is propagating in continuously focusing channel, and is matched with the
channel. Hence, the Hamiltonian is a constant of motion:

px+ Dy
2my

H= +q U(x,y) = const . (4.3)

The total potential of the structure is a combination of the external focusing potential, U, _, and the

space charge potential U, of the beam, U=U,y+ Upy 2 The time-independent distribution

function of a matched beam obeys Vlasov's equation, where the partial derivative of the distribution
function over time is equal to zero due to assumption of a matched beam:

L& pes U py-qL0U, o U

)=0 (4.4)
my dx ady dpy 0x  dpy dy
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Eq. (4.4) can be solved to find the total potential of the structure, U, as a function of beam
distribution function f (x, p,, y, p,). The distribution function of the beam is supposed to be
given. Therefore, the self - potential of the beam U, is also a known function derived from
Poisson's equation:
L9 (00 P (4.5)
For ar €

Combining solutions of Vlasov's equation for total potential of the structure, U, and space

charge potential of the beam, obtained from Poisson's equation, U,, the external potential of the
focusing structure can be found
U
Uexi=U-=L.. (4.6)

),2

The solution of this problem is unique for every specific particle distribution.
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Consider a z - uniform beam with Gaussian distribution function in four - dimensional phase space:

x24 2

X Pz +Dp§ )
R? P

J=Jo exp(-2 (4.7)

This distribution has an elliptical phase space projection at every phase plane with normalized root-
mean-square beam emittance:

g=4 A <x2> <pi2>-<xp>? =R Po_ (4.8)
mc mc

Substituting the distribution function, Eq. (4.7), into Vlasov's equation yields an expression for the
total unknown potential of the structure:

2 4
me= 1 (xp. + yp,) =B= (p, aU"‘pyaU). (4.9)
g v g2 ox dy

Vlasov's equation can be se parated into two independent parts for x- and y- coordinates
respectively:

2
U _mc?¢ ¥ aUzmcz'szy. (4.10)

b

ox qu4 dy qu4
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Combining solutions of Eq. (4.10), the total potential of the structure is a quadratic function of
coordinates which creates linear focusing field £,

2 2 2
Ulxy) =me2 1 e” (XTI (4.11)
q YV R* 2
Ep=-mc> 18 (4.12)
Y R4

The appearance of quadratic terms in the total potential of the structure is quite clear because phase
space projections of the beam have elliptical shape which is conserved in linear field. The space
charge field of the beam, E,, is calculated from Poisson's equation using a known space charge

density function of the beam p,:

2
po=po exp(-21-), (4.13)
R2
Ep=-0Ub I 1[|_exp-27%Y), (4.14)
or 2me, fe T R?2

2
where p =21/(rcfSR ) is the space charge density at the axis.

87



Subtraction of the space charge field from the total field of the structure gives the expression for the
external focusing field of the structure which is required for conservation of the beam:

2

Eoy =-mc> [ €21 Lo 1 R(1 exp (<212, (4.15)
qRY R3 I.By " R2

The relevant potential of the focusing field is given by the expression:

~ k+1 Ak 2%
Upe (=M€ (€2 420 2y 20 ot 270 CDT20 Py (g 6
vV 2R* I.ByR? IcBy 2R* 9RO 2k k! R*

External potential of the structure, E q. (4.16), consists of two parts: quadratic (which produces
linear focusing) and the part with higher order terms which describe nonlinear focusing. The linear
part depends on the values of beam emittance and on the beam current, while the nonlinear part
depends on beam current only. This means that the external field has t o compensate the nonlinearity
of self-field of the beam and produce required linear focusing of th e beam to keep the elliptical
beam phase space distribution.
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Required potential distributio n can be crea ted by introducing inside the transport channel an
opposite charged cloud of particles (plasma lens) with the space charge density:

2 1.€?
Pext =pPo exp(-2L—)+ €= (4.17)
R*> 2mc R*
2 1 1 1 1 1 1 1 1 1 1 1 1
L — - 1.2
1/ \\\\_ 1.0 K \ ]
0 / Space Charge Field 0 N\ i
\ i 0.8 \
RERIAR = 06 b \\ :
I \ N Jotal Field ] = 06 \
) \ \\ B \ Fodusing Beam ]|
N N 0.4
- Focusing|Field - - Transport Beam -
-4 1 1 ] ] 1 ] 0.0 ] 1 \lﬂ_lp 1 1
0.0 05 1.0 15 20 25 3.0 00 05 1.0 L5 20 25 3.0
/R /R
Total field of the structure £, required external focusing field E.,,, Charged particle density of the transported beam
and space-charge field of the Gaussian beam E,,. with Gaussian distribution, and of the external

focusing beam
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Beam Current Measurement

FIGURE 6. Classical transformer circuit.

Torus radii r; = 70 mm, r, = 90 mm

Torus thickness [ =16 mm

Torus material Vitrovac 6025: (CoFe)zgy (MoSiB)3gy

Torus permeability pr =~ 10° for f < 100 kHz, p, o< 1/f above
Number of windings 10

Sensitivity 4V/A at R =50 Q, 10* V/A with amplifier
Resolution for S/N =1 40 pA,p,s for full bandwidth

Tdroop = L /R 0.2 ms

Trise = VV LsCyg 1 ns

Bandwidth 2 kHz to 300 MHz

Table 2.1: Some basic specification of the GSI passive transformer.

LANL beam current monitor
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Faraday Cups

Used as a beam stop for low energy beam
and as a fast current monitor.

Beam Pipe |

| o
Scope S

(IMQ Termination)

Lheam = V(volts)/100 Q




Harps (Profile Monitors)

1.3 mil carbon wires

/6 wires

20 mil spacing

Soldered on to g-10 board
1.5" aperture

_I_""'l_"“_——

.6=JUN-94 12:47 SIZE=2*SIGMA (RMS)
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Scintillation Screens and Steering Magnets

A Chromlux7(Licht) It =lOfx

View of a Chromolux screen with a Steering magnet
camera. The screen is illuminated by

an external light. The lines have a

separation of 5mm (P.Forck, 2011).

LANSCE phosphor screens illuminated

by 800 MeV proton beam
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Beam Position

Monitors

amp

A: area of plate

Scheme of pick-up electrode

(P.Forck, 2011).

LANSCE BPM

Value

Parameter
Frequency of Measurement 201.25 MHz
System Response Time 50 ns
Averaging Window for System 100 ps

Resolution Specifications

Position Resolution (% of radius,

0.46% (0.1mm)

RMS)
Position Accuracy (% of radius) +4.6
Position Range (% of inner +60
electrode radius)
Phase Resolution (RMS) 0.25°
Phase Linearity +2°
Beam Current Resolution (RMS) 0.05 mA
Beam Current Accuracy N/A
Beam Current Range 0.9 to 21 mA
Timing Uncertainty +50 ns
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