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We are at the doorway  
of the New Radiation Science 

 

 Uncertainty relation: 
 

     Et ~ E(eV) t(fs) ~ 1 

Energy scale of electronic states 

 

 Bohr orbital time scale ~ 150 as 

 

 100 attoseconds ~30 nm 

 

 Full set of keys requires 

coherent radiation probes 
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Key science issues  
for the new radiation science 

 Observe flow of information & 

energy on fundamental time 

scales 

 Atomic resolution in energy, 

space & time (meV, nm, as) 

 Image real time processes at nm 

spatial scales, tomographically 

 Measure energy scales relevant to 

function of complex materials 

 Move from observation to control 

of materials & chemistry 
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Grand challenge science with X-rays 
Two general modes of experiments 

Image molecular structures with atomic resolution 

 “Diffract before destroy” 
 

Unprecedented studies of dynamics parameters combining 
spectroscopy & diffraction using X–rays  

 Typically “pump-probe” 

Figures of Merit:  
 

Brilliance v. l  (B = ph/s/mm2/mrad2/0.1%BW)   
 

Time structure of x-ray pulses 
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Expanding the Frontier:  

Time-resolved experiments 

• Science and the multiple relationships between time, 

spectroscopy, and diffraction 
 

• Combining diffraction and spectroscopy (nuclear positions 

& electronic, chemical or structural probes), will yield 

outstanding new science in the X-ray regime. 
 

• Temporal dynamics parameters have not been exploited in 

the X–ray, mostly due to lack of sources. 
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Example: Reveal electron dynamics 

 Probe molecules at intrinsic time scale 

of electron dynamics 

 Bohr orbit period ~ 150 attoseconds 

 Follow correlated motion of electrons 

 Understand correlation of electronic & 

nuclear motion 

 Many-fold-improvement needed over 

     brightness of bench-top sources 

 tunability for chemical specificity 

 as - to - ps, time-bw-limited pulses 

 coherence 

Courtesy of R. Falcone 

Foundation for energy and environmental sciences & technologies of the future 
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Example:  
Resolve non-equilibrium dynamics 

• Resolve fundamental time scales 

• Pump - probe techniques 
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Pump-probe experiment concept 
for ultra-fast science and/or imaging 

ion or e- 

detector 

 excitation pulse 

 probe pulse 

 ∆t X-ray 

detector 

sample 

• Pulses can be x-rays, VUV, electrons or ions  
 

• Requires control/measurement of t with a resolution << x-ray 

pulse duration (possibly as small as 100 attoseconds) 

Near IR pulse 
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What matters most for ultra-fast science 

 Timing: most experiments initiate a time evolving process with another 

laser or x-ray pulse - tight time synchronization is expected 

  0.1 to 10’s of fs 
 

 Pulse-to-pulse stability: essential since only a small fraction of the 

molecules or materials are excited 

  Expectation of 3rd generation 0.1% stability,  

  Real time subtraction - pump on/pump off 
 

 Bandwidth & chirp: minimum BW, without violating transform limit, to 

isolate spectral shifts, chirp to correlate energy with time in new ways 

  Core level shifts 0.1-0.5 eV typical: RIXS < 5 meV bandwidth 

Con’t 

(searching for weak, dynamically changing signals  

amidst large, time-invariant signals) 
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Ultrafast scientists’ needs 

   Tunability 
• Spectroscopy demands tuning to near edge transitions 

 

   Repetition rate 
• High repetition rates desirable for samples that can be refreshed, 

low damage, as high as conventional electronics 
 

   Pulse duration 
• 50 - 200 fs for many processes, 0.1 - 10 fs for future applications 

 

   Pulse energies 
• Sufficient to obtain photoemission signals, absorption contrast 

changes, without sample damage 

Con’t 
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Further needs for ultrafast science 

 Polarization 

• Complete rhc & lhc components needed for polarization blocking & 
dichroism experiments 

  Coherence 

• True phase control (Spatial, temporal, phase coherence)  

• Need complete phase control for efficient modulation of electron beam at 
short periods ==> generation of fsec/asec pulses 

  Focusability 

• Near-diffraction limit for seeded systems, 10’s nm at 1 keV 

   Power density 

• 1015 W/cm2 readily achievable 

  Trade off between power density & repetition rate 

• Maintain linear probing for many experiments 

• Multi-photon versus single photon 

LINAC based designs give best opportunity to achieve goals 
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Spatial & Temporal Coherence 

 Need complete phase control for efficient modulation of 

electron beam at short periods.  

 Permits the generation of fs/as pulses 
 

 Spatial and temporal coherence are essential for some imaging 

techniques, but partial coherence is better for some. 

 Experiments which utilize and indeed require full phase coherence 

include Fourier transform holography, coherent diffractive 

imaging, coherent zone plate imaging. 

 Partial coherence is more appropriate for full-field zone plate 

imaging. 

 A further class of experiments such as wave mixing, lies ahead, 

which will require true phase coherence at the sample. 
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Operating modes for fs/as FEL 

With Photoelectrons With Photons 

 space charge issue 

 108 photons/pulse 

 high repetition rate 

 as/fs highly desirable,    

enabling science 

 tradeoff of time duration 

vs. spectral bandwidth 
(ΔE· Δτ)|FWHM = 1.82 eV · fs 

 single pulse imaging 

 1011 photons/pulse at sample 

 illumination/polarization control 

 as/fs highly desirable,  

enabling science 

 tradeoff of duration vs. ph flux, e.g. 

 1   fsec  and 1010 ph/pulse @ 2nm OR 

 10 fsec  and 1011 ph/pulse @ 2nm  

 
 



US Particle Accelerator School 

Integrated photon flux needed  
in condensed matter physics experiments 

 Angle resolved photoemission: volume datasets 

 1017 photons (20 – 100 eV) 

 Microscopy 

 1013 photons (280 – 1200 eV) 

 Spectro-microscopy 

 1015 photons (280 – 1200 eV) 

 Time resolved microscopy 

 1016 photons (280 – 1200 eV) 

 Time resolved spectroscopy 

 1010 photons (280 – 1200 eV)  

From H. Padmore 
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Regimes of repetition rate vs. pulse energy 

Repetition 
rate 

Pulse energy 

 MHz-GHz, nJs 

Limited by acoustic 

velocities in samples, 

good for counting expt’s, 

photoemission imaging 

10-100Hz, mJs, 
Limited by sample 

damage, many high 

field effects 

1 kHz-1 MHz, Js 
Ideal match to ultrafast 

lasers & sample 

considerations, single 

photon regime 
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Three approaches to get VUV to hard X-rays 
with accelerators 

 Bremsstrahlung 

 

 

 Compton scattering 

 

 

 

 

 Synchrotron radiation 
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Basic layout of Compton source 

Source: W. Graves, MIT 
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X-rays from a Compton source 

 Photon scattering cross section is approximately  
 

σTH=6.65x10-29 m².   
 

 The number of X-ray photons is the product of the 

luminosity and the interaction cross section: 

  

 

 

where Ne is the number of electrons, Ng the number of  laser 

photons, frep the repetition rate, and s the rms beam  

 

NX =
NeNgs TH frep

4ps2
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Interaction region of the Compton source 

Source: W. Graves, MIT 
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Parameters of proposed MIT source @ 12 keV 

Can be useful for some experiments 
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Light sources provide three types of SR 
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Number of photons emitted 

 Since the energy lost per turn is 

 

 

 And average energy per photon is the 

 

 

 

 The average number of photons emitted per revolution is     
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Light sources add radiation from many small bends 
 for brighter X-rays  

 

 

 

 

 

 

 

 

 But the number of undulator photons is still limited by 

  

Ng » Qbendinga finegNe
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Approach 1:  
Diffraction limited storage rings 

These effects take many revolutions  
to spoil the beam 

 

==> Discard the beam after using 

. 

 100 x brighter than existing rings 

 Ideal for structural studies 

 Extremely stable, Many simultaneous users 

The U.S. needs a diffraction limited,  

hard X-ray source to remain competitive  

BUT cannot access ultra-fast processes  
 

 Pulse length in rings (20 - 50 ps) is set by 

 Natural energy spread 

 Coherent synchrotron radiation 

 Instabilities 
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Approach 2: Energy Recovery Linacs  
(Hard X-rays ==> ~ 5 GeV electrons) 

Synchrotron light source 

(pulsed incoherent X-ray emission) 

Pulse rates – kHz => MHz 
 

X-ray pulse duration ~ 1 ps 
 

High average e-beam brilliance 

& e-beam duration ~ 1 ps 
 

 One pass through ring 

 Recover beam energy 

 High efficiency 
 

 Superconducting RF 

 optimized for CW operation 

       

Pulse duration & E limited  

(> 50 fs at 0.1% bandwidth)  

by coherent synchrotron radiation 

in the arcs 
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To get brighter X-ray beams  

we need another great invention 

 The Free Electron Laser (John Madey, Stanford, 1976) 

 

 Physics basis: Bunched electrons radiate coherently 

 

 

 

 

 

 

 

 Madey’s discovery: the bunching can be self-induced! 
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The undulator couples the EM field & beam 

 

 

 

 

 

 

 

 

 Wiggling the electron beam ==> J  
 

 JE transfers net energy from the electron beam if the radiation slips 1 
optical period per wiggler period 
 

 This bunches the beam ==> coherent emission & gain 
 

EM field can be external imposed OR  

it can be the incoherent synchrotron radiation from the beam 
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The pendulum equation of the FEL 

 The equations of motion for individual electrons, 

 

 

 Is coupled to the wave equation for the electromagnetic field. 

 

 

 Non-dimensional parameters, A and J, are proportional to the optical 

field strength and the current density, respectively.  

 The current density, J, determines the rate of change of the laser field, A.  

 The EM field phase, , is the phase of the complex scalar, A.  

 The electron phase, x, with respect to the EM and wiggler field is  

    x=(kw-k)z - t. 

 

   

d2x

dt 2
= A sin(x + j)

   

dA

dt
= -J e- ix

The simulation will show us the bunching & signal growth 
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Scaling FEL performance: 
1-D, cold beam limit 

 Exponential growth length  

 

  

P = Poe
z / Lg LG »

lw

4pr  Im(µ)
In the cold-beam, 1-D limit, Im(µ) = √3/2. 

where  
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 The dimensionless vector potential is  
 

 aw = √2 * K = √2*0.934*B(T)*lw(cm)  
 

 

 The relativistic plasma frequency is wp

2 =
4pnerec
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Basic Free Electron Laser  Physics 

Resonance condition: 

 Slip one optical period per wiggler period 
 

 FEL bunches beam on an optical wavelength at 
ALL harmonics 

 Bonifacio et al. NIM A293, Aug. 1990 

 

Gain-bandwidth & efficiency ~  
 Gain induces  E ~  
 

1) Emittance constraint 

 Match beam phase area to diffraction limited 
optical beam 

 

2) Energy spread condition 

 Keep electrons from debunching 
 

3) Gain must be faster than diffraction 
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A sample 92 eV FEL  
(modified 1-D estimate) 

However, the beam power is 450 kW to produce 500 W of EUV  
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The key to efficiency: 

Recovery of used beam energy 

JLAB’s proposed 600 MeV  

2-pass Energy Recovery Linac 

Dumping beam at 5 MeV recovers >98% of the beam power  

CEBAF-upgrade        

100 MeV cryomodules 
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Some typical CW cost estimators 
(based on JLab upgrade) 

• Frequency 1.5 GHz  

• 15-20 MV/m CW (~10 MV/m real estate gradient) 

• Qo ~ 1010 at 20 MV/m (has been demonstrated) 

• CM Cost ~$2.6M*/100 MeV (Jlab upgrade module) 

• RF ~$1.7M/cryomodule (8x13kW RF stations) @~1mA 

• At 10 mA (claiming some efficiency) use $10M 

• 2K cryogenic plant ~$30M/GeV (4.5 kW CHL2)  

• Excl. distribution & cold box . Use $50M for new site? 

==>  ~$176M per GeV of cryomodules (excluding tunnel costs) 

• ~$17.6/watt beam power (10ma @ 1GeV =10MW) 

*FY08 loaded dollars, actual 12 GeV project costs will be known soon 

Source: R. Rimmer 
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Rough estimate of hardware costs 
Based on Rimmer guidelines 

Such a machine is largely within the capabilities of US industry 

Cost element

Injector $3,000,000

Linac structure $8,000,000

RF $5,100,000

Linac mechanical $3,000,000

Cryoplant $15,000,000

Low energy arc $6,200,000

High energy arc $5,000,000

FEL / wiggler $5,000,000

Return Legs $4,700,000

Spreaders $5,000,000

Beamines $3,000,000

Beam dump $150,000

Diagnostics $500,000

Controls $750,000

Mgmt & Commissiong $6,440,000

Sub-total $70,840,000

35% Contingency $24,794,000

Total                  $95,634,000 
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State of technology: VUV to X-ray sources 

ERLs 

Duty  

factor  

correction 

for  

pulsed linacs 
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Short pulse techniques 
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Ultra-short X-ray pulses with low charge 
electron bunches 1- 10 pC 

UCLA studies:  

Smaller emittance (by 10 x) & very short, ~ 1 fs or less, electron 

bunches can be produced by dropping the bunch charge to 1 -10 pC 

J.B. Rosenzweig et al., NIM A 593, 39 (2008 

peak current 

gse 2

^

=
I

B

Normalized slice emittance Slice energy spread 

Electron beam brightness can be increase by a factor 10 - 100 x 

Road to compact FELs 
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Simulation for LCLS with 1 pC 

J.B. Rosenzweig, FEL workshop, LBNL, November 2008 

Improved brightness -> reduced 

saturation length 

saturation at ~70 m 

~350 asec 

Difficult to synchronize to external 

source due to electron bunch 

arrival time jitter 

Allows for multi-bunch operation in non-SLED configuration 
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High-gain harmonic generation (HGHG) 

L.-H. Yu et al, Science 289 932-934 (2000) 

L.-H. Yu et al, Phys. Rev. Let. Vol 91, No. 7, (2003) 

l
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Multiple-stage, Super-Radiant   
Harmonic Cascade Amplifier 

Low e electron pulse 

sE  < /4, Te  >> TMO 
Micro orbit-bump (100 m) 

MO pulse 

Te  >> TMO 

PMO  >100 Pshot 

 

FEL amplifier 

LW < LSAT 

3rd - 5th  

Harmonic  

radiator 

PHG ~ PMO 

3 - 5th harmonic  

FEL amplifier 

LW < LSAT 

3rd - 5th   

Harmonic  

radiator 

PHG ~ PMO 

Position of optical pulses in electron pulse 

sE  ~ sEo 

Requirements: 

FEL scheme for generation of precisely timed pulses of  

10 
8 - 10 

12 photons/pulse over range of  20 - 2 nm 

Csonka 1980; Kincaid 1980; Bonifacio 1990;  L.-H. Yu 1990 
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Linac  

Extension 

FERMI @ Elettra: a seeded, HGHG cascade 

1 GeV Linac 

(existing) 

Experimental 

User Hall 

Undulator 

Building 

Operations began in 2011 
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Simple undulator for water window FEL 

• Channel guided LWFA with capillary:  

• 1 GeV, ~ 10 fs electron beam 

• Charge in femtosecond bunch ~0.5 nC* 

• TW-waveguide undulator for fs x-ray generation 

fs x-rays @ 3nm 
Electrons 

8 m X-band waveguide,  

200 MW 

Pellegrini 
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NX-rays from betatron motion & Thomson 
scattering 

laser pulse 

plasma 

radiation channel 

Betatron oscillations: 

lx=lu/2g2 
lu 

+ 

- 

- 

Radiation pulse duration = bunch duration 

 Betatron: ab=π(2g)1/2rb/lp 

Thomson scattering: a0 = e/mc2A 

Strength parameter 

Esarey et al., Phys. Rev E (2002) 

Rousse et al., Phys. Rev. Lett. (2004) 
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Dawn of a new age of radiation science 

 Tailor accelerator types to meet user requirements  

 SCRF: High average data rates, ultra-stable 

 S-band & C-band RF: compact, faster, cheaper (?) 1st generation 

 Laser driven: Very compact, hyperspectral 

 

We have the keys in hand 
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