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Outline

1. Longitudinal Space-Charge (LSC)
1. Short-scale effects. 

2. Long-scale effects

2. The microbunching instability
1. The physical picture

2. Simplified linear theory for the instability gain

3. The laser heater as a remedy
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On-the-spot exercise: Estimate effect of 
longitudinal space-charge on ultrarelativistic beam
• Consider a beam of length  2𝑙𝑏,  with charge 𝑄 = −𝑒𝑁 and a test electron 𝑞 = −𝑒 close 

to the beam head. The beam is in relativistic motion with respect to the lab. 
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• Model the beam as a point charge. 

Beam Test-particle 

𝒍𝒃

𝒍𝒃

The  physical system

The simplified model

• Exercise: Write the expression  for the Coulomb  𝐸𝑧
′ field on the test particle in the 

beam co-moving frame. Lorentz-tranform field to lab frame.  Estimate the work done 
by the space-charge force on  the test particle over a distance 𝑳 = 𝟏𝒎. Assume            
𝑸 = 𝟏𝒏𝑪 , 𝑬𝒃 = 𝟓𝟎𝟎 𝐌𝐞𝐕 beam energy, and 𝒍𝒃 = 𝟏𝐦𝐦 .



On-the-spot exercise: Answer. 
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E-field experienced by test electron: 𝑬𝒛 = 𝑬𝒛
′ =

𝟏

𝟒𝝅𝜺𝟎

𝑸

𝒍𝒃
′𝟐 =

𝟏

𝟒𝝅𝜺𝟎

𝑸

𝒍𝒃
𝟐𝜸𝟐

Work done by space charge over distance 𝐿: (use 
1

𝜀0
= 𝑍0𝑐, with 𝑍0 = 120𝜋 Ω) 

Δ𝑈 = 𝑞𝐸𝑧𝐿 =
1

4𝜋𝜀0

𝑒|𝑄|

𝑙𝑏
2 𝛾2

𝐿 =
𝑍0𝑐

4𝜋𝑙𝑏
2

𝑒|𝑄|

𝛾2 𝐿 > 0 i.e. test-electron  gains energy 

𝛥𝑈 𝑒𝑉

𝐿[𝑚]
≃

120 × 3 × 108

4 × 0.001 2
×

10−9

10002
= 9 𝑒𝑉/𝑚

Aside: Energy gained by test electron is lost by the rest of the bunch (Newton 3rd law ). 
Overall, the bunch energy is not changed by space-charge forces. 
Rf wakefields, however, cause net bunch-energy loss. Why the difference? 

𝒍𝒃
′

𝑄 = −𝑒𝑁 𝐸𝑧
′

𝒍𝒃 = 𝒍𝒃
′ /𝜸

𝐸𝑧 = 𝐸𝑧
′

Beam co-moving frame Lab frame 

𝑞 = −𝑒
𝑞 = −𝑒



Space charge vs. rf wakefields

• Only at  10s of MeV energy or lower (i.e. in the injector) space charge effects over 
bunch-length scale are significant 

• Q: Can  we then forget about space charge altogether in the Linac(≳ 100 𝑀𝑒𝑉)? 
• A:  Not quite… 
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Result from exercise shows:

𝜟𝑼𝒔𝒑.𝒄𝒉. ≃ 𝟗 𝒆𝑽/m @  𝐸 = 500𝑀𝑒𝑉

@ E = 100𝑀𝑒𝑉?
𝚫𝐔𝒔𝒑.𝒄𝒉. ≃ 𝟗 × 𝟐𝟓 = 𝟎. 𝟐𝟑𝒌𝒆𝑽/𝒎

Still much smaller than 
~10’s keV/m associated  

with typical 
rf wakefields

𝑈 =
𝑍0𝑐

4𝜋𝒍𝒃
𝟐

𝑒|𝑄|

𝛾2 𝐿

Space charge can become 
relatively large (and dominant) 
either for very short bunches 
or on short length scales  



A more refined model for longitudinal space-charge 
LSC (in the presence of metallic boundaries)

• Discussed in A. Chao’s “Instabilities” book

• Assumptions: 
– Ultrarelativistic approximation: (the fields from a point 

charge are a ‘pancake’ with  a small opening angle 
1

𝛾
)

– Beam with cylindrical  charge density with radius 𝑟𝑏

– Infinitely conducting cylindrical pipe with  radius 𝑟𝑝
– Bunch density is smooth and  length in co-moving frame 

is  long compared to radius of beam pipe  𝛾𝐿𝑏 ≫ 𝑟𝑏

𝐸𝑧 𝑟, 𝑧 ≃ −
2𝑞𝑁

4 𝜋𝜀0𝜸𝟐

𝒅𝝀 𝒛

𝒅𝒛
log

𝑟𝑝

𝑟𝑏
+

𝑟𝑏
2−𝑟2

2𝑟𝑏
2

Field is proportional 
to derivative of bunch profile
(can be large if  density varies
significantly over short length ≪ 𝐿𝑏)

Space-charge suppression 
at high energy 

𝑟𝑝
𝑟𝑏

beam

pipe wall

Note:  in this  formula’s following A. Chao’s convention  bunch head  is  ‘to the right’ at  𝒛 > 𝟎
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Analysis of LSC effects on micro-scale is most 
conveniently done in frequency domain (Impedance)

• Suppose we have a high frequency perturbation with wavenumber 
𝒌 = 𝟐𝝅/𝝀 on a beam with local unperturbed current 𝐼0 > 0
– 𝐼0 is a slow-varying function of z, over a distance ~𝜆 can be taken as 

constant  
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𝚫𝜸 𝒛 = 𝟒𝝅
𝑰𝟎

𝑰𝑨
𝑳𝒔𝑨

𝒁 𝒌

𝒁𝟎
𝒔𝒊𝒏(𝒌𝒛)

𝐼 𝑧 = 𝐼0[1 + A 𝑐𝑜𝑠 kz ]

• Density wave induces energy modulation  Δ𝛾 = Δ𝐸/𝑚𝑐2 over a distance 𝐿𝑠
(rigid bunch; ultra-relativistic approx.)

Alfven current 
𝐼𝐴 = 𝑒𝑐/𝑟𝑐 ≃ 17𝑘𝐴

Vacuum impedance
𝑍0 = 120𝜋 ohms

𝚫𝜸 𝒛 = −𝟒𝝅
𝑰𝟎

𝑰𝑨
𝑳𝒔

𝑨

𝟐

𝒁(𝒌)

𝒁𝟎
𝒆𝒊𝒌𝒛 + 𝒄. 𝒄

• For LSC,  the impedance turns out to be purely imaginary:

Impedance per unit length 



Behavior of LSC impedance (free space) 
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𝒁 𝒌

𝒌 =
𝟐𝝅

𝝀

𝒁 𝒌 ≃
𝒊𝒁𝟎𝒌

𝟒𝝅𝜸𝟐 (𝟏 − 𝟐𝒍𝒐𝒈
𝒓𝒃𝒌

𝜸
) valid  for  

𝒓𝒃𝒌

𝜸
≪ 1

𝑬𝒃 = 𝟐𝟎𝟎𝑴𝒆𝑽
𝒓𝒃 = 𝟐𝟓𝟎𝝁𝒎

Bessel function
𝜉𝑏 = 𝑘𝑟𝑏/𝛾

Effective radius for 
Gaussian bunches:
𝑟𝑏 ≃ 1.7(𝜎𝑥 + 𝜎𝑦)/2Peak is at 

𝒓𝒃𝒌

𝜸
≃ 1

𝒁 𝒌 =
𝒊𝒁𝟎

𝝅𝜸𝒓𝒃

𝟏 − 𝝃𝒃 𝑲𝟏(𝝃𝒃)

𝝃𝒃

𝚫𝜸 𝒛 =

𝟒𝝅
𝑰𝟎

𝑰𝑨
𝑳𝒔𝑨

𝒁 𝒌

𝒁𝟎
𝒔𝒊𝒏(𝒌𝒛)

Remember meaning 
of impedance:

Longer wavelengths 



Comparison of main Linac Impedances (per m):
LSC, CSR, &  rf structures wakefields

• CSR impedance is the largest  at high frequencies but overall CSR effect 
is smaller than LSC (dipoles are short compared to rest of machine)
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CSR:
R= 5𝑚

LSC:
𝑬𝒃 = 𝟐𝟎𝟎𝑴𝒆𝑽
𝒓𝒃 = 𝟐𝟓𝟎𝝁𝒎

Spectrum of  𝝈𝒛 = 𝟏𝒎𝒎
smooth gauss bunch 

Band of interest 
for the  𝝁Bunching
instability

RF Structures
(SLAC Linac)
a= 11.6𝑚𝑚
𝑧1 = 1.5𝑚𝑚

𝒁𝑪𝑺𝑹 =
𝐙𝟎

𝝅𝑹
𝟎. 𝟒𝟏 + 𝒊𝟎. 𝟐𝟑 𝒌𝑹 𝟏/𝟑

𝒁𝑳𝑺𝑪 =
𝒊𝒁𝟎

𝝅𝜸𝒓𝒃

𝟏 − 𝝃𝒃 𝑲𝟏(𝝃𝒃)

𝝃𝒃

𝒁𝑹𝑭 associated with: 

𝒘𝒛 =
𝒁𝟎𝒄

𝝅𝒂𝟐
𝐞𝐱𝐩 − 𝒛/𝒛𝟏
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The microbunching instability: The physical picture

Dispersion turns energy modulation

into larger charge-density ripples

Collective effects turn ripples of

charge-density into energy modulation

• First observed in simulations (M. Borland);  
Importance pointed out by Saldin et al.. Early 
2000s

• Seeded by irregularities in longitudinal beam 
densities

• Caused primarily by LSC + presence of 
dispersive sections (BCs)

Reminiscent of 
FEL process 



The instability as observed in simulations
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LCLS longitudinal-phase space
in first start-to-end simulations
for LCLS (M. Borland, 2001)  

Early physics model included CSR, 
not LSC (which is actually more 
relevant)

Linac simulations including LSC 
(J. Qiang, IMPACT)

No collective effects

Main adverse effect of micro-bunching
instability is growth in energy spread
(limits SASE performance; degrades
HG in seeding methods and reduces 
longitudinal coherence of radiation) 



Characterize the instability in terms of gain
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𝑮 =
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑓𝑖𝑛𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛
=

𝚫 𝝆𝒇/𝝆𝒇

𝚫 𝝆𝒊/𝝆𝒊

𝚫 𝝆𝒇 = 𝚫𝐈𝒇

𝚫 𝝆𝒊 ∝ 𝚫𝐈𝒊

Initial  Final 



Analytical model for linear gain through chicane (1)               
(no compression, linear and cold-beam approx., ultrarelativistic approx.)  

𝒛𝟏 = 𝒛𝒊

𝜸𝟏 = 𝜸𝒊 + 𝚫 𝜸 𝐬𝐢𝐧 𝐤𝐳𝒊

𝒛𝒇 = 𝒛𝟏 + 𝑹𝟓𝟔 𝜹𝟏

𝜹𝒇 = 𝜹𝟏

LSC active in Linac section (for simplicity no acceleration) No collective effects in BC

𝑠𝑖
𝑠1 𝑠𝑓

𝜹𝟏 ≡
𝜸𝟏− 𝜸𝒊

𝜸𝑩𝑪
=

𝚫 𝜸

𝜸𝑩𝑪
𝐬𝐢𝐧 𝒌𝒛𝒊

𝒛𝒇 = 𝒛𝒊 + 𝑹𝟓𝟔

𝚫 𝜸

𝜸𝑩𝑪
𝐬𝐢𝐧 𝒌𝒛𝒊

𝟏 =
𝚫𝒛𝒊

𝚫𝒛𝒇
+ 𝑹𝟓𝟔

𝚫 𝜸

𝜸𝑩𝑪

𝚫𝐳𝒊

𝚫𝒛𝒇
𝒌 𝐜𝐨𝐬 𝒌𝒛𝒊

𝐼𝑖 𝑧 = 𝐼0[1 + A cos 𝑘𝑧𝑖 ]

𝚫 𝜸 = 𝟒𝝅
𝑨𝑰𝟎

𝑰𝑨
𝑳𝒔

𝒁 𝒌

𝒁𝟎

𝚫𝒛𝟏 = 𝚫𝐳𝐢

uniform beam with 
small cos perturbation

Note: the same  𝛥𝑁 particles
are still in same interval 𝛥𝑧1 = 𝛥𝑧𝑖

The same 𝛥𝑁 particles are now
in a shorter interval 𝛥𝑧𝑓 < 𝛥𝑧𝑖.

Differentiate to find new density: 

𝚫𝒛𝒇𝜟𝒛𝒊

𝜟𝑵

There are 𝛥𝑁 particles
in interval 𝛥𝑧𝑖



Analytical model for linear gain through chicane (2)

• In the presence of compression C
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𝑮 ≃ 𝟒𝝅
𝑰𝟎

𝑰𝑨
𝑳𝒔

𝒁 𝒌

𝒁𝟎𝜸𝑩𝑪
|𝑹𝟓𝟔 |𝑪𝒌

𝝆𝒇 =
𝒅𝑵

𝒅𝒛𝒇
=

𝒅𝑵

𝒅𝒛𝒊

𝒅𝒛𝒊

𝒅𝒛𝒇
≃

𝝆𝟎

𝟏 + 𝒌𝑹𝟓𝟔
𝚫 𝜸
𝜸𝑩𝑪

𝐬𝐢𝐧 𝒌𝒛𝒊

≃ 𝝆𝟎 𝟏 − 𝒌𝑹𝟓𝟔

𝚫 𝜸

𝜸𝟎
𝐬𝐢𝐧 𝒌𝒛𝒇

𝑮 = |
𝚫 𝑰𝐟

𝚫 𝑰𝒊

| = |
𝚫 𝝆𝐟

𝚫 𝝆𝒊
| =

𝒌 𝑹𝟓𝟔 𝚫 𝜸
𝜸𝑩𝑪

𝑨
= 𝟒𝝅

𝑰𝟎

𝑰𝑨
𝑳𝒔

𝒁 𝒌

𝒁𝟎
𝒌 |𝑹𝟓𝟔|

Linear expansion in 𝛥 𝛾

Use
𝒅𝑵

𝒅𝒛𝒊
≃ 𝝆𝟎, and

𝒅𝒛𝒊

𝒅𝒛𝒇
from last slide 

• In the presence of finite slice energy spread 𝝈𝜹 (e.g. gaussian energy spread 
distribution model) gain is reduced 

𝑮 ≃ 𝟒𝝅
𝑰𝟎

𝑰𝑨
𝑳𝒔

𝒁 𝒌

𝒁𝟎𝜸𝑩𝑪
|𝑹𝟓𝟔|𝑪𝒌 𝒆− 𝑪𝒌𝑹𝟓𝟔𝝈𝜹

𝟐/𝟐

Generalizations

Note: here 𝑘 is the wavenumber before compression 

Gain is ratio of initial and final
amplitudes of density modulation



Gain function: theory vs. macroparticle simulations
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Theory  vs. macroparticle simulations   

𝑮 ≃ 𝟒𝝅
𝑰𝟎

𝑰𝑨
𝑳𝒔

𝒁 𝒌

𝒁𝟎𝜸𝑩𝑪
(𝑹𝟓𝟔𝑪𝒌)𝒆− 𝑪𝒌𝑹𝟓𝟔𝝈𝜹

𝟐/𝟐

Wavelength of modulation 
Before compression 

Gain has  form of  
low(frequency)-pass filter  

𝐶𝑘𝑝𝑒𝑎𝑘~1/𝑅56𝜎𝛿

Gain is exp
suppressed

at short wavelengths

Gain curve is  from 
end of Inj.  through BC 



Microbunching instability induces an energy modulation 
downstream of compressor

16Numerical simulations
by code IMPACT

𝝀 ≃ 𝟏𝟓𝝁𝒎

Longitudinal phase-space (exit of Linac) 

mm

• At the very least, the electron bunch carries  
shot noise (uniform power spectrum)

• Additional noise may be present due e.g. to 
noisy laser in photo-gun injector. 

• Because of the microbunching instability 
Spectral component of noise at 𝑘 ≃ 𝑘𝑝𝑘 will 
dominate after  compression.

• These, in turn, will seed energy modulation in 
the linac section downstream of the 
compressor

Phase-space shows
energy modulation with 
wavelength roughly 
corresponding to
Gain peak 

𝑮𝟎

𝐶𝑘𝑝𝑘~1/𝑅56𝜎𝛿

𝚫𝜸 𝒛 ≃ −𝟒𝝅
𝑰𝟎

𝑰𝑨
𝑳𝒔𝑨

𝒁 𝑪𝒌𝒑𝒌

𝒁𝟎
𝒄𝒐𝒔(𝑪𝒌𝒑𝒌𝒛)

𝐴=relative density perturb.



Multiple-stage bunch compression enhances instability

• Effect compounded by repeated compression  through bunch compressors. In first approx.:  

• 𝑮𝒕𝒐𝒕 ≃ 𝑮𝑩𝑪𝟏 × 𝑮𝑩𝑪𝟐 × ⋯

• If instability is large effects beyond the linear approximation used here can become important. 
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Study of 𝝁𝑩-instability  for FERMI:  Longitudinal phase space, current profile at selected points 



Possible cure for the 𝝁B-I: 
“Heat” the beam or “fight fire with fire” 

• Finite uncorrelated  (slice)  energy spread 𝝈𝜹 helps with reducing the 
instability gain (“Landau damping”).  

• Why?
– Through chicane, particles separated in energy by 𝜎𝛿 move away from each other:

𝚫𝒛 = 𝑹𝟓𝟔𝝈𝜹

– This washes away clumps of charge (bunching) on the scale 𝜆 if Δ𝑧 >
𝜆

2
– Leads to condition 𝑪𝒌𝑹𝟓𝟔𝝈𝜹≳1  (exponential suppression in above Eq. ). 
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𝑮 ≃ 𝟒𝝅
𝑰𝟎

𝑰𝑨
𝑳𝒔

𝒁 𝒌

𝒁𝟎𝜸𝑩𝑪
(𝑹𝟓𝟔𝑪𝒌)𝒆− 𝑪𝒌𝑹𝟓𝟔𝝈𝜹

𝟐/𝟐

• Generally, beam out of injector is longitudinally cold (colder than needed 
for FEL).  
– We can afford to increase slice energy spread if this helps to reduce damage later on.   

• How can we “heat” the beam? 



An ingenious solution: the “Laser Heater”
• Exploit the principle of the Inverse Free Electron laser

– conventional-laser & e-beam interact in short undulator placed in the 
middle of small magnetic chicane 

19

e-beam

Laser pulse
• In fundamental

Gaussian mode
• co-propagating with 

e-beam) 

Short-undulator

• Energy exchange is possible between  laser pulse and electrons interacting in a 
wiggler/undulator when the laser wavelength meets our familiar FEL resonance 
condition:

e-beam

dipole

dipole dipole

dipole

𝜆 𝐾, 𝜆𝑢, 𝛾 ≡
𝜆𝑢

2𝛾2 1 +
𝐾2

2
= 𝜆𝐿

Recall: undulator parameter: 𝐾 = 0.934 × 𝐵 𝑇 × 𝜆𝑢 𝑐𝑚



The Laser Heater in action
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𝑷𝑳 = 𝟐𝑷𝟎

𝝈𝑬

𝒎𝒆𝒄𝟐

𝟐

(𝝈𝒙
𝟐 + 𝝈𝒓

𝟐)
𝜸

𝑲 𝑱𝑱 𝑵𝒖𝝀𝒖

𝟐

𝑃0 =
𝑚𝑐3

𝑟𝑐
≃ 8.7𝐺𝑊

𝐽𝐽 = 𝐽0 𝜉 − 𝐽1 𝜉 ≃ 1 −
𝐾2

8
+

3𝐾4

64
+ ⋯ (for K ≤1)

with 𝜉 = 𝐾2/(4 + 2𝐾2),

Eq.  is valid for round e-beam with 𝜎𝑥 = 𝜎𝑦 = 𝜎𝑟 (optimal)

Required laser 
pulse peak-power

Desired e-beam 
rms energy spread

Laser  rms
spot size

e-beam 
rms size

𝒛′ = 𝒛 + 𝑹𝟓𝟏𝒙 + 𝑹𝟓𝟐𝒙′ + 𝑹𝟓𝟔𝜹

𝑹𝟓𝟐 𝝈𝒙′ ≫ 𝝀𝑳/𝟐𝝅

Entries of transfer matrix from  undulator to exit 
of chicane
𝑹𝟓𝟏 = 𝟎,
𝑹𝟓𝟐 = 𝜼𝒖 =dispersion in middle of chicane

𝝀𝑳

If angular spread is large the
phase-space randomizes  and energy 
spread becomes truly uncorrelated 

Beam injected into LH with very small 
slice energy spread. 

Beam right after 
Interaction  with 
laser pulse

Beam exits chicane

E 
(M

eV
)

z (mm)

Generally, the 𝑅56𝛿 term is negligible



Designing a laser heater

• Step 1: Choose no. of undulator periods 𝑵𝒖
– 𝑁𝑢~10 is a reasonable choice (should not be too large to keep width  ~1/2𝑁𝑢 of u-

resonance condition wide enough)

• Step 2: Choose e-beam energy.
– Can’t be too large or else the resonance condition will demand too-short laser 

wavelength. Typically LH is placed right after injector. Say 𝐸𝑏 = 100 𝑀𝑒𝑉

• Step 4: Choose laser wavelength 𝝀𝑳
– Based on commercially available high-power lasers,                                                              

e.g. 𝜆𝐿 = 1064𝑛𝑚

• Step 5: Choose undulator period 𝝀𝒖 (see next slide)
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On choice of undulator period  
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𝝀𝑳 =
𝝀𝒖

𝟐𝜸𝟐 𝟏 +
𝑲𝟐

𝟐

𝑲 = 𝟎. 𝟗𝟑𝟒 × 𝒃[𝑻]𝒆
−𝒂

𝒈
𝝀𝒖 × 𝝀𝒖 𝒄𝒎

Solve above two equations  
(eliminate 𝜆𝑢) to  get 𝑔𝑎𝑝 𝑣𝑠. 𝐾

A. Select desired undulator min. gap 

Plot λu vs. K

B. Find corresponding 𝑲

C. Find 𝝀𝒖

𝝀𝑳 =
𝝀𝒖

𝟐𝜸𝟐 𝟏 +
𝑲𝟐

𝟐

gap

At this point laser wavelength
and beam energy have been set

(for PM undulator, e.g.  b=2.08 T and a=3.24) 
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There is an optimum initial slice rms energy spread 

Numerical 
study for 
FERMI

Optimum ‘heating

Stronger instability  

Lowest bound to final     
slice energy spread is 

𝝈𝑬 = 𝑪𝝈𝑬𝟎

C= Compression 
factor



Effectiveness of the laser heater: LCLS experiments

• First Laser Heater installed in LCLS and tested during commissioning 
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Optimum heating
6𝜇𝐽 → 𝜎𝐸 = 20𝑘𝑒𝑉

𝒛

𝑬

Measurement of long. phase space w/ LH 

FEL output vs. setting of LH  



Very recent measurements of microbunching
instability at LCLS 
• Pictures of longitudinal phase space are  from screen measurements  

downstream of X-band transverse RF deflector (positioned after the FEL)
• First direct measurement of effect of LH on instability 
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D. Ratner et al., PRST-AB 18 030704 (2015)

LH is 
suppressing 
the instability

LH is turned off



The fine print

• Make sure transverse beam emittance does not suffer:
– Dispersion should not be too large (usually not an issue)

∆𝜀𝑛𝑥

𝜀𝑛𝑥
≃

1

2

𝜂𝑢𝜎𝐸

𝜎𝑥𝐸

2

≪ 1

• Formula for laser power is valid when the Rayleigh range 𝒁𝑹 = 𝝅𝒘𝟎
𝟐/𝝀𝑳, 

long compared to undulator length 𝑳𝒖 = 𝑵𝒖𝝀𝒖 (i.e. laser cross section 
doesn’t vary significantly)
– 𝒘𝟎 = 𝟐𝝈𝒓 with 𝜎𝑟 being the laser intensity rms transverse size
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Schematic of 
laser-pulse envelope
with Rayleigh range  



Summary highlights

• Model of  LSC impendance
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𝒁 𝒌 ≃
𝒊𝒁𝟎𝒌

𝟒𝝅𝜸𝟐 (𝟏 − 𝟐𝒍𝒐𝒈
𝒓𝒃𝒌

𝜸
) valid  for  

𝒓𝒃𝒌

𝜸
≪ 1

𝚫𝜸 𝒛 = 𝟒𝝅
𝑰𝟎

𝑰𝑨
𝑳𝒔𝑨

𝒁 𝒌

𝒁𝟎
𝒔𝒊𝒏(𝒌𝒛)

• Energy modulation seeded current modulation 

• Laser pulse peak power requirement for Laser Heater 

𝑷𝑳 = 𝟐𝑷𝟎

𝝈𝑬

𝒎𝒄𝟐

𝟐

(𝝈𝒙
𝟐 + 𝝈𝒓

𝟐)
𝜸

𝑲 𝑱𝑱 𝑵𝒖𝝀𝒖

𝟐

𝒃 =
𝚫𝑰𝒆𝒙𝒊𝒕

𝟐 𝟏/𝟐

𝑰𝒆𝒙𝒊𝒕
≃ 𝑮𝟎

𝟐

𝑵𝝀𝒎𝒊𝒏

• Bunching resulting from 𝜇𝐵-I, seeded by shot-noise, through system with 𝐺0 peak-
gain.  

𝐼 𝑧 = 𝐼0[1 + A 𝑐𝑜𝑠 kz ]

𝒘𝟎 = 𝟐𝝈𝒓Elegant uses this input



Supplemental material
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Final comments:

• Simple model of linear theory discussed neglects collective effects (CSR, 
LSC) within chicane

• A more general theory of linear gain is available
– Yielding instability gain as a solution of a certain integral equation

• For proper  numerical simulation no. of macroparticles should ideally equal no. of 
physical electrons to avoid overestimating shot noise 
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• In addition to shot noise instability can be seeded by disturbances 
at the photocathode (e.g. temporal non-uniformity of photo-laser)
– Analytical modeling is trickier. High-resolution macroparticle-modeling is the 

way to go, but these too require good care.   

Fresh from the presses:

Evolution of amplitude of 
Small current perturbation at 
cathode (3.4ps  period).
Ref. plasma oscillations.

LBNL APEX-injector simulations  



Impedance model for LSC (in free-space)
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𝐸𝑧 x, y, z =
𝑞

4𝜋𝜀0

z − z′ 𝛾

x − x′ 2 + y − y′ 2 + z − z′ 2𝛾2 3/2

𝐸𝑧 field (lab-frame)  at  𝑥 = (𝑥, 𝑦, 𝑧) due to a single electron at  𝑥′, with charge 𝑞 = −𝑒

𝐸𝑧 0,0, z − z′; s

𝑞𝑑𝑖𝑠𝑘
=

1

4𝜋𝜀0
 

z − z′ 𝛾𝜆𝑟 𝑥′, 𝑦′; 𝑠 𝑑𝑥′𝑑𝑦′𝑑𝑧′

x − x′ 2 + y − y′ 2 + z − z′ 2𝛾2 3/2

 𝑍 𝑘 =
1

𝑐
 

−∞

∞

𝑑Δ𝑧  𝑤𝑧 Δ𝑧 𝑒−𝑖𝑘Δ𝑧

• Beam with cylindrical  charge density with radius 𝑟𝑏; transverse uniform density
• Look for field 𝐸𝑧 on axis 𝑥 = 𝑦 = 0 generated by a thin disk of charge at 𝑧′ of radius 𝑟𝑏

• Normalized transverse density: ∫ 𝜆𝑟 𝑥′, 𝑦′; 𝑠 𝑑𝑥′𝑑𝑦′ = 1

𝑤𝑧 Δ𝒛 = −
1

𝒒𝒅𝒊𝒔𝒌
 

0

𝐿

𝑑𝑠 𝑬𝒛(𝑠 , Δ𝑧)

 𝑍 𝑘 =
𝑖𝑍0

𝜋𝛾𝑟𝑏

1 − 𝜉𝑏 𝐾1(𝜉𝑏)

𝜉𝑏

𝜉𝑏 = 𝑘𝑟𝑏/𝛾

Wake-field potential
per unit length Modified Bessel 

function

…or  𝑤𝑧 Δ𝑧 ≡
𝑤𝑧 Δ𝒛

𝐿
Definition of 
Wakefield potential 

Impedance
per unit length 

Note: from now on for simplicity we drop the hat:  “  ”  



Estimating amplification of shot-noise:
the difficulty with macroparticle-simulations

• Estimate of bunching (at exit of last bunch compressor)
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Approximation of linear gain 
𝑮𝟎

𝝀𝒎𝒊𝒏 = 𝟐𝝅/𝒌𝒎𝒂𝒙

𝒃 =
𝚫𝑰𝒆𝒙𝒊𝒕

𝟐 𝟏/𝟐

𝑰𝒆𝒙𝒊𝒕
≃ 𝑮𝟎

𝟐

𝑵𝝀𝒎𝒊𝒏

𝑵𝝀𝒎𝒊𝒏 = 𝑵𝒃

𝝀𝒎𝒊𝒏

𝑳𝒃

Assuming 𝐿𝑏 ≫ 𝜆𝑚𝑖𝑛

No. of 
electrons/bunch 

Bunch length
(model assumes flat-top)

𝑁𝑏/𝑁𝑚𝑝

E.g. 𝑁𝑚𝑝 = 106, 𝑁 = 6.25 × 109(1𝑛𝐶) → 𝑁𝑏/𝑁𝑚𝑝~80

Cut-off 
wavelength 

• Macroparticle simulation that uses 𝑁𝑚𝑝 macroparticles/bunch 
overestimates  bunching by:   


