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Longitudinal space charge
and the microbunching instability.
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Outline

1. Longitudinal Space-Charge (LSC)
1. Short-scale effects.
2. Long-scale effects

2. The microbunching instability
1. The physical picture
2. Simplified linear theory for the instability gain
3. The laser heater as a remedy



On-the-spot exercise: Estimate effect of
longitudinal space-charge on ultrarelativistic beam

« Consider a beam of length 2l,, with charge Q = —eN and a test electron g = —e close
to the beam head. The beam is in relativistic motion with respect to the lab.

Beam Test-particle
»‘.’ The physical system

|

lp

*  Model the beam as a point charge.
Q‘ .' The simplified model

|

lp

« Exercise: Write the expression for the Coulomb E, field on the fest particle in the
beam co-moving frame. Lorentz-tranform field to lab frame. Estimate the work done
by the space-charge force on the test particle over a distance L = 1m. Assume
Q = 1nC , E;, = 500 MeV beam energy, and [, = 1mm ..




On-the-spot exercise: Answer.




Space charge vs. rf wakefields

0
Result from exercise shows: Q= 1nC
TESLA 1.3 GHz rf —wake
AUgpcp. =9 eV/m@ E =500MeV - -5
@ E = 100MeV ? Z, 0 Parabz;lic buzr:ch
-) a(2)= 4—'&(] - E)

AUgp cp, =9 %X 25 =0.23keV/m

Still much smaller than —<

~10’s keVV/m associated -3 -1 0 1 2

with typical
rf wakefields

*  Only at 10s of MeV energy or lower (i.e. in the injector) space charge effects over
bunch-length scale are significant

*  Q: Can we then forget about space charge altogether in the Linac(z 100 MeV)?
« A: Not quite...

Space charge can become

Zyc e|Q| . .

U = >——L relatively large (and dominant)
dmly v either for very short bunches

or on short length scales




A more refined model for longitudinal space-charge
LSC (in the presence of metallic boundaries)

« Discussed in A. Chao's "Instabilities” book

« Assumptions:
= Ultrarelativistic approximation: (the fields from a point
charge are a ‘pancake’ with a small opening angle ;) " n

T I

\ v=fc

> - -

— Beam with cylindrical charge density with radius 7,
— Infinitely conducting cylindrical pipe with radius r,

— Bunch density is smooth and length in co-moving frame
is long compared to radius of beam pipe yL, > 7,

&

beam }

pipe wall
2gN  dA(z) rp | TE-r?
E (r,z) = — 10 £
2(1,2) 4megy?  dz grb T 2rf
/ \ Field is proportional
Space-charge suppression to derivative of bunch profile
at high energy (can be large if density varies

significantly over short length < L)

6
Note: in this formula’s following A. Chao’s convention bunch head is ‘to theright’at z > 0



Analysis of LSC effects on micro-scale is most
conveniently done in frequency domain (Impedance)

* Suppose we have a high frequency perturbation with wavenumber
k =2m/A onabeam with local unperturbed current I, > 0

— Iy is a slow-varying function of z, over a distance ~A can be taken as

constant
I1(z) =1,[1+ Acos(kz)]

Density wave induces energy modulation Ay = AE/mc? over a distance Lj

(rigid bunch; ultra-relativistic approx.) Impedance per unit length

Iy Al\Z(k) ",
Ay(z) = -4 — Ly=|[——€e** + c.c
¥ (2) I, 52[ 7
Alfven current Vacuum impedance
Iy =ec/r, =~ 17kA Zy = 120m ohms

« For LSC, the impedance turns out to be purely imaginary:

I Z(k
Ay(z)=4n—OLSA| (o)
I, 0

sin(kz)



Behavior of LSC impedance (free space)

iZyg 1— &, K.(&,) v =Fmly

Z(k) =
( ) Tyry fb Effective radius for
Gaussian bunches:
Peak is at % ~1 o = 1.7(0x + 0y)/2
500 \ :
Remember meaning
of impedance:
. Z(k) <"‘@ Ay(2) =
~ 100 J\ 4 —LA| ()lsm(kz)
2 50 Loy
5 "
o
S /*
N 12 Z(k) ~ lzol; (1-2lo g—) valid for —<< 1
0.1 | 10 100 1000 )
Longer wavelengths __| 1 K = AT E, =200MeV
(mm ) A rp = 250um
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Comparison of main Linac Impedances (per m):
LSC, CSR, & rf structures wakefields

« CSR impedance is the largest at high frequencies but overall CSR effect
is smaller than LSC (dipoles are short compared to rest of machine)

1000

|Z] ohms/m

100!
10,

1 i

A

GSR: L —————— Ej, = 200MeV
rp, = 250um

LSC:

Bandioiiinterest

OItHENBUhCRING
INStapIlity

RF Structures |
(SLAC Linac) |

/ a= 11.6mm

z;1 = 1.5mm

[

Spectrum of 6, = 1mm
smooth gauss bunch

1

10 100
A mm™h

1000

Z
Zosp = n—; (0.41 + i0.23)(kR)1/3

_1Zy 18y K1($p)
Zisc =
YT} $h

Z pr associated with:

Z
= Lcexp(—w/z/zl)

W -
Z  ma?



The microbunching instability: The physical picture

First observed in simulations SM, Borland):
Importance pointed out by Saldin et al.. Early

2000s ' ' |
geed,e.d by irregularities in longitudinal beam DISprSlon turns energy Tk WlEuel
ensities Into larger charge-density ripples

Caused primarily by LSC + presence of

dispersive sections (BCs) m

phase space phase space phase space
AE AE AE
B
: W\z !‘/VLZ
charge density charge density
p2) p)
W W
Z 5

©__F

Reminiscent of
- _ FEL process
charge-density into energy modulation

Collective effects turn ripples of




The instability as observed in simulations

~

“B\\: I | 1 I
~ 954 with CSR
9 0.4 e e r
2 0.2}
@
T 0.0l
g 0.2
o -0.41 ,
qu without CSR
o -0.6|
= .
0.8 -

LCLS longitudinal-phase space
in first start-to-end simulations
for LCLS (M. Borland, 2001)

Early physics model included CSR,
not LSC (which is actually more
relevant)

-0.10 -0.05 0.00 0.05
Arrival time (ps

Main adverse effect of micro-bunching
instability is growth in energy spread
(limits SASE performance; degrades

HG in seeding methods and reduces
longitudinal coherence of radiation)

0.04

~.0.035 |

0.03 f

energy devation (dE/E

0.025 |

0.02

Linac simulations including LSC
(J. Qiang, IMPACT)

No collective effects

-0.6

04

0.2 0 0.2 04 0.6
bunch length (ps)




Characterize the instability in terms of gain

Initial

phase space
AE

=
{

charge density

Final

~ X

phase space
AE

44"

charge density
p)
APy

- Alf

AV S *"
{

A
ALY

relative amplitude of final density perturbation __ Apf/pf

relative amplitude of initial density perturbation - Api/pi
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Analytical model for linear gain through chicane (1)
(no compression, linear and cold-beam approx., ultrarelativistic approx.)

<
<

LSC active in Linac section (for simplicity no acceleration)

No collective effects in BC

[

Yi

pi(zi)

p1(z1)

Zj

I;(z) = I,[1+ Acos(kz;)]

uniform beam with
small cos perturbation

There are AN particles
in interval Az;

<

==

n
>

N
\/

Y1

i

Z1

Z1 = Z;
Y1 = ¥; + AY sin kz;

- Aly  |Z(K)|
Ve
Yi—Yi AY .

= sin kz;
14:1 ) 4: 1

01

Note: the same AN particles
are still in same interval Az; = Az;

== —
—
AZf
=
zf
Zf =z + R56 61
8f = 81

Ay
Zf =Z; + R56 — S1n kZi
) 4: 1
The same AN particles are now
in a shorter interval Azy < Az;.
Differentiate to find new density:

AZi A? AZi
= + Ry ——k cos kz;
Az YBc Az

1




Analytical model for linear gain through chicane (2)

AN

dN dN dz; A
L~ Po 1-— kR56 —y sin ka

Pr = =g = S = Po [
dzy dzidzp | g4 kRs ﬁ—;; sin kz; Yo

Linear expansion in Ay

dN dz;
Use — = P, and d—' from last slide

dz; zf
L . . k|Rs6|AY
Gain is ratio of initial and final _ AL Aps T ype 4 Iy ! |Z(k)|k R
amplitudes of density modulation B |A_7i| . lAﬁil T a I, Tz, IRs6|
Generalizations
« Inthe presence of compression C
| Z(k
G=4m > LSM IR<¢ |Ck
I, "Zyypc

« In the presence of finite slice energy spread o5 (e.g. gaussian energy spread
distribution model) gain is reduced

Iy  |Z(k
G ~ an 10 1 JEI

I, °Zyypc

|Rs¢|Ck e~ (CkR5605)%/2

14

Note: here k is the wavenumber before compression




Gain function: theory vs. macroparticle simulations

Iy  |Z(k
oo, Ly, EE)

I, *°Zyypc

(R56Ck)e—(CkR5605)2/2

Theory vs. macroparticle simulations

N
S
]

N

o

Exn = | gm

-0 = 0.005 MeV Gain has form of

- low(frequency)-pass filter
b =73 A
[ ~980A

Ckpeak~1/R5606

Oo*e—7" . . . . ‘
7\ 100 ' 200 300
Gain is exp A (,um) _
Wavelength of modulation
suppressed Before compression

at short wavelengths

400 500 Gain curve is from
end of Inj. through BC

Laser heater Harmdpic linearizer

InjectorlLinac1 BC Linac 2 Spreader
7\ i

[ J— | }
&\
40 MeV 250 MeV 2.4 GeVao,
70 A 1 kA —




Microbunching instability induces an energy modulation

downstream

f compressor

At the very least, the electron bunch carries

50 ¢

sdlll

oo = 0.005 MeV

€Exn = 1 gm
o =73 A
Iy ~980A

shot noise (uniform power spectrum)

Additional noise may be present due e.g. fo
noisy laser in photo-gun injector.

Because of the microbunching instability
Spectral component of noise at k = k,; will

r\ dominate after compression.

These, in turn, will seed energy modulation in
the linac section downstream of the

100

Gain peak

Phase-space shows
energy modulation with
wavelength roughly
corresponding to

5(50_ compressor / A=relative density perturb.
I Z(Ck
Ay(z) ~ —4mw — LSAl (Chepi)| cos(Cky;.z)
I, Zy

Longitudinal phase-space (exit of Linac)

Numerical simulations
by code IMPACT

A=15um
- ©

-0.25

-0.4

-0.35 -0.3 -025 -02 -0.15 -0.1 -0.05 mm




Multiple-stage bunch compression enhances instability

Study of uB-instability for FERMI: Longitudinal phase space, current profile at selected points

Effect compounded by repeated compression through bunch compressors. In first approx.:

Giot = Gpc1 X Gpez X

If instability is large effects beyond the linear approximation used here can become important.

A e A A A A At

B A, A L S WA

exit of BC1

s=44.1185 m

entrance of BC2

Z (um)

exit of BC2

end of linac

55 55
; S 1.82 182 54 54
AO'SOUSE 18 18 833 Ot
N 05} N N g 52 § 32
5 i 5 178 5 178 - 25,
< 0.4995{ =~ 1% Hl— 176 5 ’
0.4991 1.74 1.74 @ 2
; s =20 =10 0 10 =20 -10 0 10 20
-200 -100 0 100 204 40 -2 0 20 40 40 =20 0 20 40 2 (jm) 2 (ym)
Z (pm)  (um) z (pum)
=-bband lineafizer
Laser heater BEC1 BC2 SPR ER
= l LA LiMAC2 LIMAC3 LirACA 17
5 [ e S T s s ———




Possible cure for the uB-I:
"Heat"” the beam or “fight fire with fire”

I Z(k
6 = am 10 1, 20

I, *°Zyypc

(Rs6Ck) ,—(CkRs5605)%/2

 Finite uncorrelated (slice) energy spread a; helps with reducing the
instability gain ("Landau damping’g.
«  Why?

— Through chicane, particles separated in energy by g5 move away from each other:

Az = R560-6

— This washes away clumps of charge (bunching) on the scale 1 if Az > %
— Leads to condition CkRs¢0521 (exponential suppression in above Eq. ).

. fGen[e:rl'zcix—lgy, beam out of injector is longitudinally cold (colder than needed
or .

— We can afford to increase slice energy spread if this helps to reduce damage later on.
*  How can we "heat” the beam?



An ingenious solution: the “Laser Heater"

« Exploit the principle of the Inverse Free Electron laser

— conventional-laser & e-beam interact in short undulator placed in the
middle of small magnetic chicane

Laser pulse
* In fundamental 800-nm laser Short-undulator

Gaussian mode v

* co-propagating with N | 4 I <o KT g
e-beam) 7} 10cm :dTPOIe A S0 em 7 dipole 2cm

0 |
. H |
dipole ~120 cm dipole

* Energy exchange is possible between laser pulse and electrons inferacting in a
WIQ% er/undulaftor when the laser wavelength meets our familiar FEL resonance
condition:

A K?
A(K,Au,]/) Ez_);tz(l +7) = /1L

Recall: undulator parameter: K = 0.934 X B[T] X A,[cm]



The Laser Heater in action

Beam injected into LH with very small
slice energy spread.

Beam right after
Interaction with
laser pulse

Desired e-beam
rms energy spread

2 2
— Ok 2 2 4
PL = ZPO <mecz> (O'x + O-T) (K[]]]Nulu>

Required laser
pulse peak-power

e-beam Laser rms
rms size spot size

Eq. is valid for round e-beam with o, = g,, = g, (optimal)

mc3

rC
U/l =Jo(®) =J1(&) = 1 ="+ 2=+ - (for K <1)
with & = K2/(4 + 2K?2),

Beam exits chicane

10001

zZ =2z + R51x + R52x' + R566

Entries of transfer matrix from undulator to exit
of chicane

Rsq =0,

|Rs5,| = m,, =dispersion in middle of chicane

If angular spread is large the
phase-space randomizes and energy
spread becomes truly uncorrelated

|R52|axr >> AL/Zn'

Generally, the R=.6 term is negligible




Designing a laser heater

« Step 1: Choose no. of undulator periods N,

— Ny~10 is a reasonable choice (should not be too large to keep width ~1/2N,, of u-
resonance condition wide enough)

« Step 2: Choose e-beam energy.

— Can't be too large or else the resonance condition will demand too-short laser
wavelength. Typically LH is placed right after injector. Say E;, = 100 MeV

« Step 4: Choose laser wavelength 4,

— Based on commercially available high-power lasers,
eg. A, = 1064nm

« Step 5: Choose undulator period 1, (see next slide)
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On choice of undulator period

A. Select desired undulator min. gap

At this point laser wavelength
and beam energy have been set

0.10f \
0.09

AN E=100. MeV

0.08 AN
E 0.07 AN

_a(i)
K =0.934 X b[T]le %/ x A,[cm]

£ 0.06 AN |
> 0.05 \\ Solve above two equations
gap_ o4 (eliminate 4,,) to get gap vs.K
e
0.03 :
0.4 0.6 0.8 b 12 (for PM undulator, e.g. b=2.08 T and a=3.24)
K |
~_ : B. Find corresponding K
0.075 ~ I
S E£100. MeV
0070 h . Plot A, vs.K
N u VS.
2 0.065 . I ,
0.060 A ! 1 = Ay - K
) 0.055| < I LT 2y? 2
0.050 C. Find ).u N
0.045 | | N

0.4 0.6 0.8 1.0 1
K

2
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There is an optimum initial slice rms energy spread

) Optimum ‘heating
Numerical S B—
study for : T i
FERMI = 250 " i
S I e Tlbo—BC lattice w®
=, 200 : L i oF
> I +$-3’ .
2 150 ™ I g Lowest bound to final
o | o : slice energy spread is
b il | “l.- -
. - i O = CO-EO
100 ++lﬁ*“’ One—BC lattice
- 2 n C= Compression
} 7.3 10 12.5 15 175 20 225 factor
oo (keV) [at start]

—
Stronger instability
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Effectiveness of the laser heater: LCLS experiments

First Laser Heater installed in LCLS and tested during commissioning

Emittance
N
.-'\.\‘

OTR2

Screens/Wires

2-km point in 3-km SLAC IinacT

135-NMeV
Spectrometer

L1S

YAGS2
Screen

FEL intensity (arb. units)

14

12 1

10

8

6

o
T

FEL output vs. setting of LH

e

t 43
t Eﬁ ﬁﬁig

| %q%{i
F

s,

Central slice energy spread (keV)

110 =
100
90
80+
70+
60
50r
40+
30+
20
101

[N, A, mc?

TAg =

o2 P K
2[0_% + rr%] Py

YoOr

* measurement
—thecory
—simulation

0 L 1 1 1 1 1 1 1 1 L
0 20 40 60 80 100 120 140 160 180 200

Laser heater energy (uJ)

i

Measurement of long. phase space w/ LH

4

y (mm)

0 ------h-w-
e
o
e

Optimum heating
. ___6u] — op = 20keV"
0 5 10 E 20

Laser heater energy (ul)

25

X (mm)

(a) no heating

y (mm)
|

4

X (mm)

(b) nominal heating

1 2 3 4

X (mm)

(¢) maximum heating




Very recent measurements of microbunching
instability at LCLS

* Pictures of Ior]lgi’rudinal phase space are from screen measurements
downstream of X-band fransverse RF deflector (positioned after the FEL)

« First direct measurement of effect of LH on instability

LH OFF LH=2.9keV
LH is turned off | =3

= =
(@)} (@]
o) @
c C
() (0]
(] (]
= =
© k<
(o) ()]
o o

-50 0 50 -50 0 50

Longitudinal position (um) Longitudinal position (um)

LH=4.3keV LH=5.4keV

2 3 °
=3 | <
?} ‘ ”U"“ | 4 § 0 LH is
@ I h @ .
z f' | G suppressing
o ® _5 . oge
2 2 the instability
© o
[} [}
= T _10

-50 0 50 -50 0 50

Longitudinal position (um) Longitudinal position (um)

D. Ratner et al., PRST-AB 18 030704 (2015)



The fine print

* Make sure transverse beam emittance does not suffer:
— Dispersion should not be too large (usually not an issue)

2
Ae 1 o
nx ~ _ nu E « 1
Enx 2\ O E

«  Formula for laser power is valid when the Rayleigh range Zp = nwj/1;,
long compared to undulator length L, = N4, (i.e. laser cross section
doesn't vary significantly)

— Wqy = 20, with o, being the laser intensity rms transverse size

Schematic of
laser-pulse envelope
with Rayleigh range
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Summary highlights

* Model of LSC impendance 1(2) = [1+ Acos(kz)]
Z(k) ~ lZ()k

(1 2lo g—) valid for —<< 1

« Energy modulation seeded current modulation

Ay(z)—41t—LA| Ll
I, 0

sin(kz)

Bunching resulting from uB-I, seeded by shot-noise, through system with G, peak-
gain.
1/2

(Al gy )2 2
b = ( £ > = GO

I exit N Amin

* Laser pulse peak power requirement for Laser Heater

2 2
P, = 2P, (%) (6% + 02) (K[”]YNM)

Elegant uses this input —~ Wo = 20, 27



Supplemental material



Final comments:

« Simple model of linear theory discussed neglects collective effects (CSR,
LS(S within chicane

« A more general theory of linear gain is available
— VYielding instability gain as a solution of a certain integral equation

« For pr'olaer' numerical simulation no. of macroparticles should ideally equal no. of
physical electrons to avoid overestimating shot noise

« In addition to shot noise instability can be seeded by disturbances
at the photocathode (e.g. temporal non-uniformity of photo-laser)

— Analytical modeling is trickier. High-resolution macroparticle-modeling is the
way to go, but these too require good care.

LBNL APEX-injector simulations

Fresh from the presses: 30
: : 2.5
Evolution of amplitude of 50
Small current perturbation at & ; 5 .
. &n
cathode (3.4ps period). 1.0
Ref. plasma oscillations. 8-(5) T=3.4ps




Impedance model for LSC (in free-space)

E, field (lab-frame) at X = (x, y, z) due to a single electron at X', with charge g = —e

q (=7
e [(x—x)7 + 6 —y)? + G — 2P

EZ (X’ y' Z) =

* Beam with cylindrical charge density with radius 73,; transverse uniform density

* Look for field E, on axis x = y = 0 generated by a thin disk of charge at z’ of radius r,
Normalized transverse density: [ A,.(x’,y';s) dx'dy’ =1

E,(0,0,z—12';s) ~ 1 f (z—z’)y/lr(x’,y’;s) dxldy/dzl
G ey ) Ta-x7 + G-y + G- 2T

L
Definition of w,(Az) = — 1 j ds E,(s,Az) ..or W (Az) = WZ(LAZ)
Wakefield potential Qdisk Jo Wake-field potentiV
per unit length Modified Bessel
function
e | ooy 2o 1 =8 K1(Sp)
Z(k) = —f dAz w,(Az)e " tkAZ Z(k) —
cl_o TyTh $b
Impedance Sp =knp/y

per unit length R
Note: from now on for simplicity we drop the hat: “ ”



Estimating amplification of shot-noise:
the difficulty with macroparticle-simulations

50 | ] Cut-off
i Approximation of linear gain } wavelength
40 | 0 Vel _
Ip=73 A min
I ~980A N jmin = Np,
= 30| L,
S No. of

20 ¢t electrons/bunch

Bunch length

10 ¢ )lmin = Zn/kmax (model assumes flat-top)

0 L

200 300 400 500
A (um)

« Estimate of bunching (at exit of last bunch compressor)

)1/2 >

b — ((Alexit)z
N Amin

I exit

Assuming Ly, > Ain

ZGO

* Macroparticle simulation that uses N,,,, macroparticles/bunch
overestimates bunching by: N IN
b mp

E.g. Ny = 10%,N = 6.25 x 10°(1nC) = /Ny /Ny ~80 21



