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Electromagnetic Radiation, Wavalength and Energy

O E.m. radiation consists of individual massless particles called photons.

O Many photons behave collectively as a transverse e.m. wave:

[ Photon's energy scales linearly with frequency of the associated
electric field:
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Peak Brilliance, Total and Spectral

Angular
divergence, Q
T X \/6 + 6 T x - \/O- + O-
Brilliance =constantx _F d The product of beam size and angular'

divergence is called emittance. If they
are not correlated (e.g., at a beam waist):
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d An electron beam that overlaps
transversally with a Gaussian photon pulse
is said to be at the diffraction limit when
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Time-Bandwidth Product, Gaussian Pulse

Electric field of a
Gaussian wave packet:

Intensity of a
Gaussian wave packet:

Spectrum of a
Gaussian wave packet:
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When the minimum time-bandwidth product is achieved, then the pulse
is said to be Fourier transform-limited (from Heisenberg's uncertainty
principle). This has to do with "longitudinal coherence”, see next slide.
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Coherence, Transverse and Longitudinal
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Longitudinal coherence length:
the distance over which two e.m.
waves separated in frequency by
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Courtesy of A. Schawlow, Stanford.

Transverse coherence length: the
distance over which the e.m. field can be
reconstructed from the knowledge of
the field at another point, in the same
plane (i.e., the field phase information is
preserved). A coherent beam generates

interference patterns.
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The ldeal Light Source, Wish List
It should include:

wavelength tunability (e.g., for
scanning atomic level resonances);
high degree of coherence (e.g., for
coherent diffraction imaging);

high brilliance (e.g., for single-shot
scattering experiments).

More recent trends are for:

short wavelengths (e.g., for resolution
at sub-nm scales);

short pulses (e.g., for stroboscopic
pictures of fast chemical processes);
high repetition rate (e.g., for large
statistics experiments) .
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Storage Ring-Based Light Sources: Electron Synchrotrons

Electron synchrotrons are tools of discovery for:

 Life Science (e.g., microcrystal protein structure)

« Chemistry (e.g., chemical species at surfaces)

* Material Science (e.g., phase contrast imaging)

« Condensed Matter Physics (e.g., materials under pressure)

Synchrotron radiation can be generated in:
« dipole magnets,

 wigglers (strong focusing, K >»> 1),
* undulators (weak focusing, K~1)

INJECTION BOOSTER

Q Peak brilliance is 1022-1025 (s-mm?2-
mrad?-0.1%bw) for x-ray photons

O Synchrotrons serve tens
of beamlines at one time

STORAGE
RING
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LINAC-Based Light Sources: Free Electron Lasers

FELs enable new experiments in:

« Life Science (e.g., nanocrystal protein structure)

« Chemistry (e.g., probing ultrafast dynamics of surface reactions)

* Material Science (e.g., 3-D nanomorphology, diffraction imaging)

« Condensed Matter Physics (e.g., materials under extreme conditions)

FEL radiation is generated in:
 undulators (moderate focusing, K~1-5)

=] electron heam
3. bunch compressor: =0
increase of the current [ 25

4. accelerator:
reaching the target energy

2. booster accelerator:
reduction space-charge effects

1. rf photo-cathode gun:
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Advantages of a LINAC-driven Light Source

. ) 2> Y up
O An accelerated charge particle radiates: P, = 5—37/—2‘19
C m,

’ })circ

:7/2P

lin

O Leptons (i.e., electrons) radiate more than hadrons (i.e., protons)
when subjected to the same force. Circular acceleration is more
efficient (and typically cheaper) than linear.

O But, e-beams in synchrotron light sources (SLS) reach equilibrium
sizes that are typically far from providing radiation as wished by FEL
users (synchrotron radiation damping of particles’ velocities is
balanced by the quantum excitation due to random emission of
photons in time) .

0 An electron radiofrequency linear accelerator (RF e-LINAC) can be
used to overcome the SLS equilibrium dynamics and to “shape” the
e-beam as desired. However, a more efficient radiating process is
still needed to surpass the SLS's brilliance level...



Pictures courtesy of

Coherent Radiation from an Undulator T. Shintake, R. Bakker
Undulator strength parameter:
odu\e
o YO K =0.934 4,[cm] B, [T]
ok e(s P u max
E | short undulator  Small undulator
! i gap
— period
% I'\:Ilizlgdnetlc \l j]
S»n A= 4 (1+K2f2+y2<92)
ErC o 272 x
high e-beam energy, s:?wall e-beam
divergence
small energy spread

\ * Electrons’ transverse velocity couples
"™z to the transverse electric field.

E-component =

« To amplify in intensity, the light

optical field i
- g ~ should overlap with the electrons and
- hy +hs - out race them by one optical
pen L wavelength (27 in phase) af’rer' they
e = ﬂs=2—};[1+7] have traveled one full cycle, i.e. A,
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Pictures courtesy of

Microbunching and FEL instability T. Shintake
SR or ERL FEL: Free Electron Laser If The €|€CTI"OHS are independently
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Pictures courtesy of

Optical Architectures: SASE vs. Seeded FEL R. Bakker, E. Allaria,

G. De Ninno

O Self-Amplified Spontaneous Emission FEL: “RETHET Y el (e
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Requirements on Undulator and e-Beam

e-beam Undulator

peak current parameter
111> 22 v 1/3 « Pierce parameter p.The jack of
P=7l=2 T 3';2 (K % JJ[K])? all trades of 1D FEL theory.
A Typically p < 1073

e-beam energy = e-beam transverse size

A3 « Radiation power grows exponentially along the
p _poe 1 PS undulator (typical behavior for instability-driven
(s) = Pye 4, processes) until saturation.

p p|° Radiation power at saturation is proportional to p and e-
sat ~P T'p beam power: P, = El/e.

Ay | « FEL power saturation length. This sets the scale for the

Lsat ~ ? undulator length.
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e-Beam Brightness

1 6-D energy-normalized e-beam brightness (i.e., emittances do not
change with acceleration, and are assumed to be uncoupled):

« Apply both to projected and slice
B 0 _ 0 emittances

n,0 )
gn,xgn,ygn,z 7/0 gx,Ogy,OO-z,OO-E,O d (27[) nor’malization faCtor's Sklpped
here

O In the presence of collective effects (frictional forces due to inter-
bunch Coulomb interactions, image charges, etc.), the normalized
emittances grow by a factor £ (in each plane):

B ) Q _ Q _ Bn,O
S _ _
! gnx,f gny,f gnz,f gx é/y gz %gx,ogy,oaz,OO-E,O gx é/y gz

O The contributions from different collective effects to the final emittance

growth () can in principle be balanced, in order to have the minimum impact
on Bn,O-

Minimize collective effects and/or to balance them, is a major part of Linac
Design for FELs.
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Picture in PR 539

Brightness and FEL Wavelength (2014)

Q Take B,, (previous slide) and set the fransverse emittances at the
diffraction limit, e, ,=A/4xn, then substitute A with the FEL resonance
condition. We thereby obtain a dependence of the (required) brightness on
the (desired) FEL wavelength:

f o _ I 31l 1 /1
€, € s COLY E c o, /IM(I+K2 A
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Brightness and FEL Parameter

O Take B, ¢(1) (see previous slide) and substitute it into the definition of pgg,
again with emittances at the diffraction limit. As a practical case, assume
K=1. We find:

0 =0.016 the strongest dependence

’ of pis on the beam energy.

E[GeV 1 A[nm] g { A }1/3 N.B.: for any given brightness,
ﬂu[m]l/3 o n,f m ’

O Equation above can be further manipulated to highlight the dependence of
PreL oh the e-beam parameters at the undulator:

I[A]en,x[ﬂm]]m

p.[m]

pz3.1><104£

N.B.: at any given ), it is always convenient to increase the peak current, while
there is no practical convenience in reducing the emittance below the
diffraction limit, because this would reduce pgg (with much improvement
neither in the FEL output power, nor in the FEL transverse coherence).




Picture courtesy of

Layout and Physics Challenges . Nauyen

Electron Injector

Linear Accelerator

Bunch Compressor

Electron Beam
Transport

PHOTO-INJECTOR:
generates short (-5
ps), low emittance
pulses (~1 um rad)

MAIN RF LINAC: MAGNETIC CHICANE(S):
accelerates to high reduces bunch length to increase
energy (~ 2 GeV) the peak current (~ 1 kA)

for lasing at desired wavelength (~

direct and focus electrons 1 nm), and output power (~ 1 GW)

to ensure full and safe bunch
charge ftransport
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Picture courtesy of

Other Components . Nguyen

O Transfer lines: connect different accelerator sections (injector, main linac,
undulator, dump), while preseving the beam quality.

O Diagnostic stations: include diagnostic elements (also RF) and magnets, to
characterize the beam sizes and emittances; both non- and invasive.

Q Collimation systems: scatter/absorb halo particles, traveling at large
betatron and energy coordinates, while not interfering with the main beam.

[ Dump lines: stop the beam at intfermediate/full energy, often associated
with spectrometer lines for diagnostics.

[ Injector: normal conducting, RF photo-injector is the most common to date.
Others involve, e.g., superconducting / DC / VHF / thermo-ionic systems.

modelocked laser

Crucial component!

It defines the lowest value
for the normalized beam
brightness along the entire
facility (emittance exchange
schemes not considered here).
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NC-RF Photo-Injector (mention)

1 3-Steps Photo-Emission:

Transport

‘.r-s .......... Esape
T Potential is
WOBrk f;mCt'O” : Excitfition lowered by the
or bandgap applied field

Laser hv

Vacuum

d Thermal Emittance, Radius

h V- ¢eﬁ‘
E =0, |————
n.,thermal r 2
3m,c
Eapplfed Ecafhode = Eapplied o
Eimage:: : E _ q
*\ — image
&, A
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Picture courtesy of
D. Nguyen, D. Dowell
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cathode NC-RF PIs are:
Gradient ~ 100 MV/m

QE ~ 104

Rep. Rate ~ 100 Hz
Cathode lifetime ~ year(s)
Beam energy ~ 5 MeV
Total charge <1 nC

19



Pictures courtesy of

«Emittance Compensation» M. Ferrario, M. Trovd, C. Harris

Gun

3 il Booster starts here
I r r ;“ J
r” - 2 q & 37/3 R2 - F(}") = _2 ? Courtesy of M. Ferrario

= Because of non-uniform longitudinal f'
charge distribution, slices expand k : . -
radially at different rates. The

force is linear with r. e . |um]=0|nC]

sigma_x_[mm]
— enx_[um]

. . . 2.5 - 20
= External linear focusing (e.g., solenoid) ~
realign slices in phase space, reducing the ~ E 2¢- f
projected emittance. E s
r r . e r C 5 ’;‘-
N b
00+ — - — T T |

6 4 -2 0 2 4 6

o Slice position along the bunch (ps)
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Worldwide XUV FEL User Facilities: now running

LCLS@SLAC (California) O SA CLA@Spnng-s (Japan

First lasing 2009 /"/

o Beam
i \)f‘/ . -ur Compreaaor
- - B -
o r"_\ Bam g
- mprnssq .

y & ray
Optics - . ,',_.“"-

SASE: ~0.2km, = 1.3 GeV, 2> 4.5nm g HGHG: ~0.2 km, - 1.5 GeV, - 4.0 nm

USPAS June 2015 S. Di Mitri - Lecture_Mo1 21



Worldwide XUV FEL User Facilities: commg soon

- 8WissFEL@PSI (SwitEgFland)
In constructionif

= SASE: ~3.5 km, > 20 GeV, >005nm [l sask. -3 km, > 10 Gev, > 0.1 nm
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Worldwide FEL 7est Facilities

All the present test facilities experimented SASE
and Seeded FEL schemes.

Proof-of-principle FEL studies are carried out at
lower beam energy - longer wavelength than user
facilities.

Research on several seeded schemes are ongoing...

SPARwLNF. -;
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Summary Highlights: FEL vs. SLS

Peak brilliance [Photons/(s mrad” mm- 0.1% BW)]

10%°

10
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1 027

25
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e
PETRAII SPring-8
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APS
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1
\

SLS FEL
Emittance 10 um <1 um
Energy spread 0.1% <0.1%
Bunch length 10 ps 0.1 ps
Peak current 30 A 1000 A
Repetition rate 108 Hz <10* Hz
Intensity stability 10-6 10-4

Synchrotrons are complementary

10 to FELs as for:
10" ° k-TUHGbI’“Ty
100 102 10° 10 10° 10° ¢ Multi-users access
sneray (V) »  Stability
e Pulse rate
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Summary Highlights: FEL Requirements

d High Intensity & Short Pulses = I ~ kA

[ Electron/Photon Overlap = y < 1.0 um
 Energy Resonance = 05< 0.1%
d Short Wavelength = E > 1 GeV
A= 100 um 2> ~15 MeV
P (1+K—2j A= 10nm > ~1 GeV
2y 2 A= 1nm > ~3 GeV
A= 1A 2> ~15 GeV



