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A little bit of theory…
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Lorentz Force:

� = �	 � + �× �

Magnetic rigidity:

�� =
	� + 2	��

��

� = �	� × �

F : force q : charge v : charge velocity B : magnetic field

K : Beam energy c : speed of light E
o

: Particle rest mass
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… a little bit more
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I

B

Biot-Savart law

�.�� � �
�
�� 2�� � �

� � ���
2��

r

r : radius B : magnetic field µ
o

: vacuum magnetic permeability
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Units
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SI units
Variable Unit

F Newtons (N)

q Coulombs (C)

B Teslas (T)

I Amperes (A)

E Joules (J)

1 T = 10,000 G

�� = 4π × 10��
�.�
�

Charge of 1 electron ~ 1.6x10-19 C 1 eV = 1.6x10-19 J

(eV) for beams
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Magnitude of Magnetic Fields
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Value Item

0.1 - 1.0 pT human brain magnetic field

24 µT strength of magnetic tape near tape head

31-58 µT strength of Earth's magnetic field at 0° latitude (on the equator)

0.5 mT
the suggested exposure limit for cardiac pacemakers by American Conference of 

Governmental Industrial Hygienists (ACGIH)

5 mT the strength of a typical refrigerator magnet

0.15 T the magnetic field strength of a sunspot

1 T to 2.4 T coil gap of a typical loudspeaker magnet

1.25 T strength of a modern neodymium-iron-boron (Nd2Fe14B) rare earth magnet.

1.5 T to 3 T strength of medical magnetic resonance imaging systems in practice, experimentally up to 8 T

9.4 T modern high resolution research magnetic resonance imaging system

11.7 T field strength of a 500 MHz NMR spectrometer

16 T strength used to levitate a frog

36.2 T strongest continuous magnetic field produced by non-superconductive resistive magnet

45 T
strongest continuous magnetic field yet produced in a laboratory (Florida State University's 

National High Magnetic Field Laboratory in Tallahassee, USA)

100.75 T
strongest (pulsed) magnetic field yet obtained non-destructively in a laboratory (National 

High Magnetic Field Laboratory, Los Alamos National Laboratory, USA)

730 T
strongest pulsed magnetic field yet obtained in a laboratory, destroying the used equipment, 

but not the laboratory itself (Institute for Solid State Physics, Tokyo)

2.8 kT
strongest (pulsed) magnetic field ever obtained (with explosives) in a laboratory (VNIIEF in 

Sarov, Russia, 1998)

1 to 100 MT strength of a neutron star

0.1 to 100 GT strength of a magnetar
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Types of magnets
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• Dipoles

• Quadrupoles

• Sextupoles

• Correctors

• Septa

• Kickers
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Optics analogy 1
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Prism
Lens
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Optics analogy 2
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Dipole

Quadrupole

Incoming beam

Low energy

Sextupole

Desired focus

Low energy focus High energy focus
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Dipole
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The dipole magnet has two poles, a constant field and steers a particle beam.  
Using the right hand rule, the positive dipole steer the rotating beam toward 
the left.
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Dipoles
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ALBA SR Combined Function Dipole
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Quadrupole
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The Quadrupole Magnet has four poles. The field varies linearly with the distance from
the magnet center. It focuses the beam along one plane while defocusing the beam
along the orthogonal plane. An F or focusing quadrupole focuses the particle beam
along the horizontal plane.
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Quadrupole
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ALBA SR Quadrupole
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Sextupole
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The Sextupole Magnet has six poles. The field varies quadratically with the distance 
from the magnet center. It’s purpose is to affect the beam at the edges, much like an 
optical lens which corrects chromatic aberration.  An F sextupole will steer the particle 
beam toward the center of the ring.
Note that the sextupole also steers along the 60 and 120 degree lines.
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Sextupole

ALBA SR Sextupole
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Correctors
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SPEAR3 Corrector

16



Current Carrying Septum
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Eddy-Current Septum
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Lambertson Septum
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Kicker magnets
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The forces on parallel currents is illustrated in the following figure.  The force on 

a charge moving with a given velocity through a magnetic field is expressed with 

the lorentz force:

Magnetostriction

� = �	� × �
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Magnetostriction

• Currents with the samecharge travelling in the samedirection attract.

• Currents with oppositecharge travelling in the samedirection repel. 

• Currents with the samecharge travelling in the oppositedirection repel.

• Currents with the oppositecharge travelling in the oppositedirection attract.
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Introduction to the Mathematical 

Formulation

• An understanding of magnets is not possible without understanding some
of the mathematics underpinning the theory of magnetic fields. The
development starts from Maxwell’s equation for the three-dimensional
magnetic fields in the presence of steady currents both in vacuum and in
permeable material.

• For vacuum and in the absence of current sources, the magnetic fields
satisfy Laplace’s equation.

• In the presence of current sources (in vacuum and with permeable
material) the magnetic fields satisfy Poisson’s equation. Although three
dimensional fields are introduced, most of the discussion is limited to two
dimensional fields.

– This restriction is not as limiting as one might imagine since it can be shown
that the line integral of the three dimensional magnetic fields, when the
domain of integration includes all regions where the fields are non-zero,
satisfy the two dimensional differential equations.
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Maxwell’s Equations
(in vacuum)

�.� =
�
��

�.� = 0

� × � = −
��
��

� × � = ��� + ���� ��

��

Gauss’s law

Faraday’s law

Ampere’s law

��. ! =
"
��

��. ! 	= 0

�. � = −#��
�� . !

�. � = ��$ + ����#��
�� . !
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Maxwell’s Equations
(in media)

�.% = ��

�.� = 0

� × � = −
��
��

� ×� = �	 + �


��

Gauss’s law

Faraday’s law

Ampere’s law

�%. ! = "�

��. ! 	= 0

�. � = −#��
�� . !

�. � = $	 +#�%
�� . !
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Maxwell’s Steady State Magnet Equations

�.� = 0

� × � = ���

� × � = 0

in the absence of sources
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The function of a complex variable
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� = ! + &'
A : Vector potential

V : Scalar potential

� = � × � =

� � �

�

��

�

�	

�

�


�� �� ��

� = −�� = − �
��

��
+ �

��

�	
+ �

��

�


( × � = ( × ( × ! = ( (.! − (�! = 0

0 (Coulomb gauge)

(�! = 0

A satisfies the Laplace equation!

(.� = (. −(' = −(�' = 0 (�' = )
V also satisfies the Laplace equation!

The complex function � = ! + &' must also satisfy the Laplace equation (�� = 0
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The Two-Dimensional Fields
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Fields from the two-dimensional 

Function of a complex variable
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Solution to Laplace’s equation
(2D)
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(�� =
�28
�-2 +

�28
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 02
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Orthogonal Analog Model
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The name of the method for picturing the field in a magnet is called the Orthogonal Analog
Model by Klaus Halbach. This concept is presented early in the lecture inorder to
facilitate visualization of the magnetic field and to aid in the visualization of thevector and
scalar potentials.

• Flow Lines go from the + to - Coils.

• Flux Lines are ortho-normal to the Flow Lines.

• Iron Surfaces are impervious to Flow Lines.
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Orthogonal Analog Model
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Current Carrying Septum
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Multipoles Expansion
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0 = - + &.

8 0 = � + &' = 91�0�
�

���

where n is the order of the multipole

The ideal pole contour can be computed using the scalar equipotential.  

The field shape can be computed using the vector equipotential.
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Example 1: Dipole (n=1)
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� + &' = 1�0� = 1�(- + &.)

- =
�
1�

. =
'
1�
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Dipole (n=1)
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Example 2: Quadrupole (n=2)
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� + &' = 1�0� = 1� - + &. 2 = 1� -2 − .2 + &2-.

-2 − .2 = �
1�

-. =
'
21�
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Quadrupole

US Particle Accelerator School – Austin, TX – Winter 2016 38



• For the sextupole case, the function of a 

complex variable is written in polar form.

– This case is presented to illustrate that both 

polar and Cartesian coordinates can be used in 

the computation.    

( )θθ

θ

3sin3cos
3

333

izC

ezCCzF i

+=

==

θ3cos
3

zCA =

θ3sin
3

zCV =

Example 3: Sextupole (n=3)

0 = - + &. = 0 6���
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Sextupole Equipotentials
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Real and Skew Magnets
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• Magnets are described as real when the magnetic fields are vertical along the 

horizontal  centerline :

Bx = 0 and By ≠ 0 for y=0

• Real magnets are characterized by C = real.

• Magnets are described as skew when the field are horizontal along the horizontal 

centerline:

Bx ≠ 0 and By = 0 for y=0

• Skew magnets are characterized by C = imaginary.
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Dipole Example
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Real

Skew
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Quadrupole Example
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Real

Skew
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Ideal pole shapes
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- =
!
1�

� = −
�!
�- 						� = −

�'
�.

. = ℎ

Dipole

h = half gap

� = ��

' = −:�� . = − ��.

' - = 0, . = ℎ = −��ℎ

−��ℎ = −��.
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Ideal pole shapes
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-2 − .2 = !
1�

Quadrupole

. =
ℎ2

2- Hyperbola!

Sextupole

0 = -� + .� =
!

1��;<3>
�
�

0 = -� + .� =
ℎ

<&73>�

� = ��. -		@	. = 0
�� = ���. �2		@	� = 0

' = −:(��. -) . = − ��. -. = −��. �2�;<><&7>

' � = ℎ,> = �/4 = −
�′4�
2

−
��ℎ�

2
= −��-.

� = −
�!
�- 						� = −

�'
�.
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• Using the concept of the magnetic potentials, the ideal 
pole contour can be determined for a desired field.  

• Combined Magnet Example

– The desired gradient magnet field requires a field at a 
point and a linear gradient.  

– Given:

� A central field and gradient.

� The magnet half gap, h, at the magnet axis. 

– What is the ideal pole contour?  

Complex Extrapolation
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xBBBy '0 +=The desired field is; 

The scalar potential

satisfies the relation; 
y

V
By ∂

∂−=

( ) xyByBdyxBBV '' 00 −−=+−= ∫Therefore;  

( ) ( )hyx ,0, =For on the pole surface, 

( ) hBhBhBV pole 00 0' −=×−−=

Therefore, the equation

for the pole is, hBVxyByB pole 00 ' −==−−

xBB

hB
y

'0

0

+
=or solving for y, 
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xBB
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0

+
=
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B

B
x −=Hyperbola with asymptote at, 

US Particle Accelerator School – Austin, TX – Winter 2016 49



Section Summary

US Particle Accelerator School – Austin, TX – Winter 2016

• We learned about the different kinds of magnets and their functions.

� 0 = !+ &' = 91�0�
�

���

• The ideal pole contour can be computed using the scalar equipotential.  

• The field shape can be computed using the vector equipotential.

�� = −
�'
�-

�� =
�!
�.

� = −
�!
�-

� = −
�'
�.
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Next…
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• Multipoles

• Pole tip design

• Conformal mapping
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