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Lie Method Bases Analysis and Tracking Code 

Hamiltonian 
Lie form 
e(-:H:s) 

Element                                                                              Accelerator 

Solvable 
Solution (Map) 

Symplectic 
Integrator 

Tracking map Taylor map 

Similarity  
transformation 
CBH theorem 
 

Tracking phase vector Dynamic aperture? 

Factorization 
Normal form Symplecticity 
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Truncated Power Series Algebra 
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Given a function, 

We know that its derivative 

In particular, for x=2, we have 

f (2) = 2
5

f '(2) = − 3
25

(a0,a1)+ (b0,b1) = (a0 + b0,a1 + b1)
1

(a0,a1)
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,− a1
a0
2 )

Rules: 

Compute:  
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Result in: 

     Analytic                                                    TPSA 

f (v) = ( f (a0 ), f '(a0 ))
v = (a0,1)Starting: 



Algebra or Rules 
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The rules can be derived from the rules of derivatives. But they can also be   
understood using the Taylor expansion,   

a = a0 + a1x
b = b0 + b1x
a+ b = (a0 + b0 )+ (a1 + b1)x

Plus: 

Inverse: 

a = a0 + a1x
1
a
=

1
a0 + a1x

=
1

a0 (1+
a1
a0
x)
≈
1
a0
(1− a1

a0
x) = 1

a0
−
a1
a0
2 x

Truncation Multiplication: 

ab = (a0 + a1x)(b0 + b1x) ≈ a0b0 + (a0b1 + a1b0 )x



Symplectic Matrix 
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M is a sysmplectic matrix if it has the property that 

!MJM = J,
where J is 

J is anti-symmetric and symplectic. 
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Dragt-Finn Factorization 
Given a nonlinear Taylor map M, we   

Here M1 is the linear part of M. It is clear that I2 is a second order of nonlinear  
map near identity. It’s lowest perturbation is the second order, indicated with  
its subscript. Now,  we would like to write I2 as a Lie operator , namely 

 M1
−1 M = I2
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 M1
−1 M = I2 = exp[: f3 :]

Once we have f3, then we can compute the next of by 

 e−: f3:M1
−1 M = I3

I3 is a third of order nonlinear map near identity. Similar process can be  
continued to the next order. Finally, this procedure leads to the Dragt-Finn 
factorization, 

 M =M1 e
: f3:e: f4: ...e: fn+1:

Here n is the truncation order of the Taylor map M. 



Extraction of a First Order Lie Factor 
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[ fn+1, z]= In
To solve the equation,  

Here z is the vector in the phase space in the Poisson bracket. Its solution  
is given by 

fn+1 =
1
n+1

[z2k (
k=1

3

∑ In )2k−1 − z2k−1(In )2k ]

It is valid only if the map is symplectic. 



Nonlinear Normal Form 

Physical coordinates                         Normalized coordinates 
Transformation approximated by a 10th order Taylor map 
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How to Construct “Ascript”  

],,,,,,[ IIIIIIIIIIII iEEiEEiEEU −−−=

U −1MU = Λ = diag(ei2πν I ,e−i2πν I ,ei2πν II ,e−i2πν II ,ei2πν III ,e−i2πν III )
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We use eigen vectors to construct a symplectic matrix 

which is symplectic and has the property that 

A−1MA = R = K −1ΛK

“Ascript” is defined as A=UK has the property that  

Further more A is symplectic and real. 
Clearly, it is an extension of one dimension. 
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Solution of “Ascript” 

A = 2[ReEI , ImEI , ReEII , ImEII , ReEIII , ImEIII ],

The eigen vectors are normalized as 

Explicitly, “ascript” can be written 

!EI ,II ,III
* JEI ,II ,III = i,
!E−I ,−II ,−III
* JE−I ,−II ,−III = −i

How to get “ascript” directly from the one-turn matrix? Given “ascript”, we 
have U=AK-1, which we should use in our map analysis. How about 
propagation of U? A2=M1->2*A1 leads to U2=M1->2*U1. But that implies we need 
to write force in complex, That is rather “dangerous”. Therefore, we should  
use the complex coordinates only in the analysis. 
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Nonlinear Normal Form  
in eigen bases 

Λ−1e: f3 (
!u ):U  M  U −1e−: f3 (

!u ): = I3
Λ−1e: f3 (

!u ):ΛΛ−1U  M  U −1e−: f3 (
!u ): = I3

Λ−1e: f3 (
!u ):ΛI2e

−: f3 (
!u ): = I3

e: f3 (Λ
−1!u ):I2e

−: f3 (
!u ): = I3

Here we switch to map notation. The operator on the left acts first. M is a  
nonlinear Taylor map, trunked at order n. Let’s make a following transformation 

It is clear that I2 is a nonlinear map near identity. It’s lowest perturbation is  
the second order, indicated with its subscript. Now, we would like to 
make a similarity transformation in the next order of perturbation, namely 

Λ−1U  M  U −1 = I2

Here we inserted an identity map after e:f3: and used the previous equation. In  
The last step, we performed a similarity transformation on the Lie operator. 
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Nonlinear Normal Form at third-order  

e: f3 (Λ
−1!u ):I2e

−: f3 (
!u ): = I3

e: f3 (Λ
−1!u ):e: f 3 (

!u ):e:− f3 (
!u ): = I3

e: f3 (Λ
−1!u )+ f 3 (

!u )− f3 (
!u ): = I3

We could rewrite this equation as  

where {\bar f}_3 is Lie operator generates I2 and {\bar I}_3 is another 
map near the identity map third-order perturbation. Since L is diagonal matrix 
We could easily solve f3 in terms of {\bar f}_3. That is reason why we start 
with the complex base at linear transformation. The solution is  

Note that there are two similarity transformations to be used to simplify the 
calculation. Clearly, f3 becomes large near the resonance. 

f 3(
!u)− f3(Λ

−1!u) = f3(
!u)

Once f3 is calculated, we can compute I3 using 
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Nonlinear Normal Form 
Fourth-Order and Tune Shifts 

e:h4 (uu ):Λ−1e: f4 (
!u ):e: f3 (

!u ):U  M  U −1e−: f3 (
!u ):e−: f4 (

!u ): = I4

e:h4 (uu ):Λ−1e: f4 (
!u ):e: f3 (

!u ):U  M  U −1e−: f3 (
!u ):e−: f4 (

!u ): = I4
e:h4 (uu ):Λ−1e: f4 (

!u ):ΛΛ−1e: f3 (
!u ):U  M  U −1e−: f3 (

!u ):e−: f4 (
!u ): = I4

e:h4 (uu ):Λ−1e: f4 (
!u ):ΛI3e

−: f4 (
!u ): = I4

e:h4 (uu ):e: f4 (Λ
−1!u ):I3e

−: f4 (
!u ): = I4

In fourth-order,  

Here we could like to absorb the third-order terms in I3 to f4 and H4, which 
foes not have any dependence on the phase of the complex coordinates. Once 
again it is much easy to obtain h4 in a complex coordinate. Note, L and h4 
commute. 

It is easy to see the solution is 
f 4 (
!u)− f4 (Λ

−1!u) = f4 (
!u)

h4 (uu) = −h4 (uu)
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Nonlinear Normal Form 

M = A −1K e−: f3:...e−: fn+1:Λe:h3+...+hn+1:e: fn+1:...e: f 3:K −1A
= A −1K e−: f3:K −1K ...e−: fn+1:K −1K ΛK −1K e:h3+...+hn+1:e: fn+1:...K −1K e: f 3:K −1A

= A −1e−:
⌢
f3:...e−:

⌢
fn+1:R e:

⌢
h3+...+

⌢
hn+1: e:

⌢
fn+1:...e:

⌢
f 3:A

M =U −1e−: f3:...e−: fn+1:Λe:h3+...+hn+1:e: fn+1:...e: f 3:U

This procedure can be continued until the right hand side becomes identity due  
to the truncation (n-th order) of the Taylor Map. The result is the normal form  
presentation of map  

It is clear from the expression that we should perform linear transformation 
and then order-by-order nonlinear transformation to the nonlinear normal form. 
It is also easier to see the resonances in the complex coordinates. To go back to 
real space, we substitute U=K-1A!

Be careful, here we used map notation, so the left acts first. In real coordinates, 
we have ⌢

fn (
"x) = fn (K

!u),
⌢
hn (
!x) = hn (K

!u)
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Footprint in Tune Space 

Frequency analysis                                  Normal form analysis 
Tracking & FFT                                        Taylor map & Lie form 
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Summary 
•  Concept of truncated Taylor map is important. 

The map analysis should not go beyond the 
order of the map when it is extracted from an 
accelerator.  

•  Dragt-Finn factorization is fundamental in map 
analysis. The Lie factors can be compared to the 
analytic calculation. 

•  Normal form gives us the beam footprint in the 
tune space. It is an essential metric in design of 
the storage rings. 
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