Microwave Measurement and Beam Instrumentation Course at Jefferson Laboratory, January 15-26 th 2018

Lecture: Maxwell's Equations

F. Marhauser

Monday, January 15, 2018

This Lecture

- This lecture provides theoretical basics useful for follow-up lectures on resonators and waveguides
- Introduction to Maxwell's Equations
- Sources of electromagnetic fields
- Differential form of Maxwell's equation
- Stokes' and Gauss' law to derive integral form of Maxwell's equation
- Some clarifications on all four equations
- Time-varying fields \rightarrow wave equation
- Example: Plane wave
- Phase and Group Velocity
- Wave impedance

Maxwell's Equations

A dynamical theory of the electromagnetic field

James Clerk Maxwell, F. R. S.
Philosophical Transactions of the Royal Society of London, 1865 155, 459-512, published 1 January 1865

PART I.-INTRODÚCTORY.

(1) The most obvious mechanical phenomenon in electrical and magnetical experiments is the mutual action by which bodies in certain states set each other in motion while still at a sensible distance from each other. The first step, therefore, in reducing these phenomena into scientific form, is to ascertain the magnitude and direction of the force acting between the bodies, and when it is found that this force depends in a certain way upon the relative position of the bodies and on their electric or magnetic condition, it seems at first sight natural to explain the facts by assuming the existence of something either at rest or in motion in each body, constituting its electric or magnetic state, and capable of acting at a distance according to mathematical laws.

Maxwell's Equations

- Originally there were 20 equations

Three equations of magnetic force $\left(H_{x}, H_{y}, H_{z}\right)$

$$
\mu H_{x}=\frac{\mathrm{d} A_{z}}{\mathrm{~d} y}-\frac{\mathrm{d} A_{y}}{\mathrm{~d} z}, \quad \mu H_{y}=\frac{\mathrm{d} A_{x}}{\mathrm{~d} z}-\frac{\mathrm{d} A_{z}}{\mathrm{~d} x} \text { and } \quad \mu H_{z}=\frac{\mathrm{d} A_{y}}{\mathrm{~d} x}-\frac{\mathrm{d} A_{x}}{\mathrm{~d} y} .
$$

Three equations of electric currents $\left(J_{x}, J_{y}, J_{z}\right)$

$$
\begin{equation*}
\frac{\mathrm{d} H_{z}}{\mathrm{~d} y}-\frac{\mathrm{d} H_{y}}{\mathrm{~d} z}=4 \pi J_{x}^{\prime}, \quad \frac{\mathrm{d} H_{x}}{\mathrm{~d} z}-\frac{\mathrm{d} H_{z}}{\mathrm{~d} x}=4 \pi J_{y}^{\prime} \quad \text { and } \quad \frac{\mathrm{d} H_{y}}{\mathrm{~d} x}-\frac{\mathrm{d} H_{x}}{\mathrm{~d} y}=4 \pi J_{z}^{\prime} . \tag{B}
\end{equation*}
$$

Three equations of electromotive force $\left(E_{x}, E_{y}, E_{z}\right)$
Contains Lorentz force $\operatorname{curl} H=4 \pi J^{\prime}=4 \pi\left(J+\frac{\mathrm{d} D}{\mathrm{~d} t}\right)$,

$$
\left.\begin{array}{l}
E_{x}=\mu\left(H_{z} \frac{\mathrm{~d} y}{\mathrm{~d} t}-H_{y} \frac{\mathrm{~d} z}{\mathrm{~d} t}\right)-\frac{\mathrm{d} A_{x}}{\mathrm{~d} t}-\frac{\mathrm{d} \phi}{\mathrm{~d} x} \tag{C}\\
E_{y}=\mu\left(H_{x} \frac{\mathrm{~d} z}{\mathrm{~d} t}-H_{z} \frac{\mathrm{~d} x}{\mathrm{~d} t}\right)-\frac{\mathrm{d} A_{y}}{\mathrm{~d} t}-\frac{\mathrm{d} \phi}{\mathrm{~d} y} \\
E_{z}=\mu\left(H_{y} \frac{\mathrm{~d} x}{\mathrm{~d} t}-H_{x} \frac{\mathrm{~d} y}{\mathrm{~d} t}\right)-\frac{\mathrm{d} A_{z}}{\mathrm{~d} t}-\frac{\mathrm{d} \phi}{\mathrm{~d} z}
\end{array}\right\}
$$

Three equations of electric elasticity $\left(D_{x}, D_{y}, D_{z}\right)$

$$
\begin{equation*}
E_{x}=k D_{x}, \quad E_{y}=k D_{y} \quad \text { and } \quad E_{z}=k D_{z} \tag{F}
\end{equation*}
$$

Three equations of electric resistance ()

$$
\begin{equation*}
E_{x}=-\varrho I_{x}, \quad E_{y}=-\varrho I_{y} \quad \text { and } \quad E_{z}=-\varrho I_{z} . \tag{A}
\end{equation*}
$$

Three equations of total currents $\left(J_{x}^{\prime}, J_{y}^{\prime}, J_{z}^{\prime}\right)$
One equation of free electricity

$$
\rho_{\mathrm{e}}+\frac{\mathrm{d} D_{x}}{\mathrm{~d} x}+\frac{\mathrm{d} D_{y}}{\mathrm{~d} y}+\frac{\mathrm{d} D_{z}}{\mathrm{~d} z}=0 .
$$

One equation of continuity ($\mathrm{d} \rho_{\mathrm{e}} / \mathrm{d} t$)

$$
\frac{\mathrm{d} \rho_{\mathrm{e}}}{\mathrm{~d} t}+\frac{\mathrm{d} J_{x}}{\mathrm{~d} x}+\frac{\mathrm{d} J_{y}}{\mathrm{~d} y}+\frac{\mathrm{d} J_{z}}{\mathrm{~d} z}=0
$$

$$
20 \text { variables which are: }
$$

nagnetic intensity
electromotive force
current due to true conduction
electric displacement
total current (including variation of displacement)
quantity of free electricity
electric potential

A_{x}	A_{y}	A_{z}
H_{x}	H_{y}	H_{z}
E_{x}	E_{y}	E_{z}
J_{x}	J_{y}	J_{z}
D_{x}	D_{y}	D_{z}
J_{x}^{\prime}	J_{y}^{\prime}	J_{z}^{\prime}
ρ_{e}		
ϕ		

Sources of Electromagnetic Fields

- Electromagnetic fields arise from 2 sources:
- Electrical charge (Q)
- Electrical current $\left(I=\frac{d Q}{d t}\right)$
\longrightarrow Stationary charge creates electric field
$\longrightarrow \quad$ Moving charge creates magnetic field
- Typically charge and current densities are utilized in Maxwell's equations to quantify the effects of fields:
- $\quad \rho=\frac{d Q}{d V}$ electric charge density - total electric charge per unit volume V

$$
\left(\operatorname{or} Q=\iiint_{V} \rho d V\right)
$$

- $J=\lim _{S \rightarrow 0} \frac{I(S)}{S}$ electric current density - total electric current per unit area S

$$
\left(\text { or } I=\iint_{S} \vec{J} \cdot d \vec{S}\right)
$$

- If either the magnetic or electrical fields vary in time, both fields are coupled and the resulting fields follow Maxwell's equations

Maxwell's Equations

Differential Form

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{D}=\rho \quad \text { or } \quad \vec{\nabla} \cdot \vec{E}=\frac{\rho}{\epsilon_{0}} \tag{1}
\end{equation*}
$$

Gauss's law

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{B}=0 \tag{2}
\end{equation*}
$$

Gauss's law for magnetism

$$
\begin{equation*}
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \tag{3}
\end{equation*}
$$

Faraday's law of induction

$$
\begin{equation*}
\vec{\nabla} \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t} \quad \text { or } \quad \vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}+\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t} \tag{4}
\end{equation*}
$$

- Together with the Lorentz force these equations form the basic of the classic electromagnetism

$$
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})
$$

Lorentz Force

Divergence (Gauss') Theorem

Integral of divergence of vector field (\vec{F}) over volume V inside closed boundary S equals outward flux of vector field (\vec{F}) through closed surface S

$$
\nabla \cdot \vec{F}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot\left(F_{x}, F_{y}, F_{z}\right)=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}
$$

Curl (Stokes') Theorem

Integral of curl of vector field (\vec{F}) over surface S equals line integral of vector field (\vec{F}) over closed boundary $d S$ defined by surface S

$$
\nabla \times \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|=\left(\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}\right) \hat{\imath}+\left(\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}\right) \hat{\jmath}+\left(\frac{\partial F_{y}}{\partial z}-\frac{\partial F_{x}}{\partial y}\right) \hat{k}
$$

$\boldsymbol{e} . \boldsymbol{g} .: \boldsymbol{F}_{z}=\mathbf{0} \rightarrow \nabla \times \vec{F}=\left(\frac{\partial F_{y}(x, y)}{\partial x}-\frac{\partial F_{x}(x, y)}{\partial y}\right) \hat{k}$
Curl vector is perpendicular to surface $S ; \hat{k}=\hat{n}$

$$
\iint_{S}\left(\frac{\partial F_{y}(x, y)}{\partial x}-\frac{\partial F_{x}(x, y)}{\partial y}\right) d S=\oint_{\partial S} F_{x} d x+F_{y} d y \quad \text { Green's Theorem }
$$

Example: Curl (Stokes') Theorem

$$
\iint_{S}(\overbrace{\nabla \times \vec{F}}^{\text {curl }}) \cdot d \vec{S}=\oiint_{S}((\nabla \times \vec{F}) \cdot \hat{n}) d S=\oint_{\partial S} \vec{F} \cdot d \vec{l}
$$

Integral of curl of vector field (\vec{F}) over surface S equals line integral of vector field (\vec{F}) over closed boundary dS defined by surface S

Example: Curl (Stokes) Theorem

$$
\iint_{S}(\nabla \times \vec{F}) \cdot d \vec{S}=\oiint_{S}((\nabla \times \vec{F}) \cdot \hat{n}) d S=\oint_{\partial S} \vec{F} \cdot d \vec{l}
$$

Integral of curl of vector field (\vec{F}) over surface S equals line integral of vector field (\vec{F}) over closed boundary dS defined by surface S

Example: Closed line integrals of various vector fields

Maxwell's Equations

Differential Form

$\vec{\nabla} \cdot \vec{D}=\rho$

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{B}=0 \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \hline
\end{aligned}
$$

$$
\vec{\nabla} \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t} \int \overrightarrow{\text { Stokes' theorem }}
$$

$$
\vec{D}=\epsilon_{0} \vec{E}
$$

$$
\epsilon_{0}=\text { permittivity of free space }
$$

$$
\vec{B}=\mu_{0} \vec{H}
$$

$$
\mu_{0}=\text { permeability of free space }
$$

Integral Form

$$
\begin{array}{ll}
\oiint_{S} \vec{D} \cdot d \vec{S}=\iiint_{V} \rho d V & \text { Gauss's law } \\
\cline { 1 - 1 } \oiint_{S} \vec{B} \cdot d \vec{S}=0 & \text { Gauss's law for magnetism } \\
\oint_{S} \vec{E} \cdot d \vec{l}=-\iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot d \vec{S} \quad \text { Faraday's law of induction } \\
\hline \oint_{\partial S} \vec{H} \cdot d \vec{l}=\iint_{S} \vec{J} \cdot d \vec{S}+\iint_{S} \frac{\partial \vec{D}}{\partial t} \cdot d \vec{S} \quad \text { Ampère's law }
\end{array}
$$

$\rho=$ electric charge density $\left(\mathrm{C} / \mathrm{m}^{3}=\mathrm{As} / \mathrm{m}^{3}\right)$
$J=$ electric current density ($\mathrm{A} / \mathrm{m}^{2}$)
$D=$ electric flux density/displacement field (Unit: As/m²)
$E=$ electric field intensity (Unit: V/m)
$H=$ magnetic field intensity (Unit: A/m)
$B=$ magnetic flux density (Unit: Tesla $=\mathrm{V} s / \mathrm{m}^{2}$)

Electric Flux \& $1^{\text {st }}$ Maxwell Equation

Definition of Electric Flux

1. Uniform field
$\Phi_{E}=\vec{E} \cdot \vec{S}=\vec{E} \cdot \hat{n} S=E \cdot S \cdot \cos (\theta)[\mathrm{Vm}]$

- angle between field and normal vector to surface matters

2. Non-Uniform field

$$
d \Phi_{E}=\vec{E} \cdot d \vec{S}=\vec{E} \cdot \hat{n} d S
$$

$$
\Phi_{E}=\iint_{S} \vec{E} \cdot d \vec{S}
$$

Gauss: Integration over closed surface

infinitely long metal plate

$$
\oiint_{S} \epsilon_{0} \vec{E} \cdot d \vec{S}=\epsilon_{0}|E| \pi R^{2}=\sum_{i} q_{i}=Q_{\text {circle }}
$$

$$
|E|=\frac{Q_{\text {circle }}}{\epsilon_{0} \pi R^{2}} \quad ; \text { circle } S=\pi R^{2}
$$

Electric Flux \& $1^{\text {st }}$ Maxwell Equation

Definition of Electric Flux

1. Uniform field
$\Phi_{E}=\vec{E} \cdot \vec{S}=\vec{E} \cdot \hat{n} S=E \cdot S \cdot \cos (\theta)[\mathrm{Vm}]$

- angle between field and normal vector to surface matters

2. Non-Uniform field

$$
d \Phi_{E}=\vec{E} \cdot d \vec{S}=\vec{E} \cdot \hat{n} d S
$$

$$
\Phi_{E}=\iint_{S} \vec{E} \cdot d \vec{S}
$$

Gauss: Integration over closed surface

$$
\begin{aligned}
& \oiint \oiint_{S} \epsilon_{0} \vec{E} \cdot d \vec{S}=\epsilon_{0} \Phi_{E}=\iiint_{V} \rho d V=\sum_{i} q_{i} \\
& \Phi_{E}=\frac{\sum_{i} q_{i}}{-}
\end{aligned}
$$

infinitely long metal plates

$$
\Phi_{E}=\frac{Q_{\text {circle }}}{\epsilon_{0}}+\frac{-Q_{\text {circle }}}{\epsilon_{0}}=0
$$

Electric Flux \& $1^{\text {st }}$ Maxwell Equation

Examples of non-uniform fields
Point charge Q

Integration of over closed spherical surface S

$$
\oiint_{S} \epsilon_{0} \vec{E} \cdot d \vec{S}=\epsilon_{0} \boldsymbol{E}(r) 4 \pi r^{2}=Q
$$

; sphere $S=4 \pi r^{2}$
pointing out radially

$$
\boldsymbol{E}(r)=\frac{Q}{\epsilon_{0} 4 \pi r^{2}} \cdot \hat{\boldsymbol{r}}
$$

Add charges

$$
\oiint_{S} \epsilon_{0} \vec{E} \cdot d \vec{S}=\iiint_{V} \rho d V=\sum_{i} q_{i}=Q_{\text {sphere }}
$$

\vec{E}

$$
\Phi_{E}=\frac{\sum_{i} q_{i}}{\epsilon_{0}}=\frac{q}{\epsilon_{0}}+\frac{-q}{\epsilon_{0}}=0
$$

$$
\Phi_{E}=\frac{3 q}{\epsilon_{0}}=\frac{Q_{\text {sphere }}}{\epsilon_{0}}
$$

Principle of Superposition holds:

$$
\vec{E}(r)=\frac{1}{\epsilon_{0} 4 \pi}\left(\frac{q_{1}}{\left(r_{c 1}-r\right)^{2}} \hat{r}_{c 1}+\frac{q_{2}}{\left(r_{c 2}-r\right)^{2}} \hat{r}_{c 2}+\frac{q_{3}}{\left(r_{c 3}-r\right)^{2}} \hat{c}_{c 3}+\cdots\right)
$$

Magnetic Flux \& 2 ${ }^{\text {nd }}$ Maxwell Equation

Definition of Magnetic Flux

Uniform field

$$
\Phi_{B}=\vec{B} \cdot \vec{S}=\vec{B} \cdot \hat{n} S=B \cdot S \cos (\theta)[W b=V S]
$$

Non-Uniform field
$d \Phi_{B}=\vec{B} \cdot d \vec{S}=\vec{B} \cdot \hat{n} d S$
$\Phi_{B}=\iint_{S} \vec{B} \cdot d \vec{S}$

Gauss: Integration over closed surface

$$
\oiint_{S} \vec{B} \cdot d \vec{S}=0
$$

$$
\Phi_{M}=0
$$

- There are no magnetic monopoles
- All magnetic field lines form loops

Closed surface:
Flux lines out = flux lines in

- No. In violation of $2^{\text {nd }}$ Maxwell's law, i.e. integration over closed surface, no holes allowed
- Also: One cannot split magnets into separate poles, i.e. there always will be a
${ }^{15}$ North and South pole

Magnetic Flux \& $3^{\text {rd }}$ Maxwell Equation

If integration path is not changing in time
$\oint_{\partial S} \vec{E} \cdot d \vec{l}=-\frac{d}{d t} \iint_{S} \vec{B} \cdot d \vec{S}=-\frac{d \Phi_{B}}{d t} \quad ; \Phi_{B}=\iint_{S} \vec{B} \cdot d \vec{S}$

- Change of magnetic flux induces an electric field along a closed loop
- Note: Integral of electrical field over closed loop may be non-zero, when induced by a time-varying magnetic field
- Electromotive force (EMF) ε :

$$
\varepsilon=\oint_{\partial S} \vec{E} \cdot d \vec{l}[V]
$$

- $\quad \varepsilon$ equivalent to energy per unit charge traveling once around loop

Faraday's law of induction

Magnetic Flux \& 3 ${ }^{\text {rd }}$ Maxwell Equation

If integration path is not changing in time
$\oint_{\partial S} \vec{E} \cdot d \vec{l}=-\frac{d}{d t} \iint_{S} \vec{B} \cdot d \vec{S}=-\frac{d \Phi_{B}}{d t} \quad ; \Phi_{B}=\iint_{S} \vec{B} \cdot d \vec{S}$

- Change of magnetic flux induces an electric field along a closed loop
- Note: Integral of electrical field over closed loop may be non-zero, when induced by a time-varying magnetic field

Electromotive force (EMF) ε :

$$
\varepsilon=\oint_{\partial S} \vec{E} \cdot d \vec{l}[V]
$$

- \quad equivalent to energy per unit charge traveling once around loop
or voltage measured at end of open loop

Faraday's law of induction

Ampère's (circuital) Law or $4^{\text {th }}$ Maxwell Equation

Right hand side of equation:

conduction current I
Example:

Left hand side of equation:

$; \vec{B}=\mu_{0} \vec{H} \quad \begin{aligned} & \text { tangential to a circle at any } \\ & \text { radius } r \text { of integration }\end{aligned}$
; circumference $C=2 \pi r$

$$
|\boldsymbol{B}(r)|=\frac{\mu_{0} I}{2 \pi r}
$$

Ampère's (circuital) Law or $4^{\text {th }}$ Maxwell Equation

Presence of Resistive Material

$$
\begin{aligned}
& \oint_{\partial S} \vec{H} \cdot d \vec{l}=\quad \iint_{S} \vec{J} \cdot d \vec{S}+\quad \iint_{S} \frac{\partial \vec{D}}{\partial t} \cdot d \vec{S} \\
& \text { conduction current displacement current }
\end{aligned}
$$

- In resistive materials the current density J is proportional to the electric field
$\vec{J}=\sigma \vec{E}=\frac{1}{\rho} \vec{E} \quad \begin{aligned} & \text { with } \sigma \text { the electric conductivity }(1 /(\Omega \cdot \mathrm{m}) \text { or } \mathrm{S} / \mathrm{m}) \text {, respectively } \\ & \rho=1 / \sigma \text { the electric resistivity }(\Omega \cdot \mathrm{m})\end{aligned}$
- Generally $\sigma(\omega, \mathrm{T})$ is a function of frequency and temperature

Time-Varying E-Field in Free Space

- Assume charge-free, homogeneous, linear, and isotropic medium
- We can derive a wave equation:

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \quad \text {;Faraday's law of induction }
$$

$$
\vec{\nabla} \times(\vec{\nabla} \times \vec{E})=-\vec{\nabla} \times \frac{\partial \vec{B}}{\partial t}=-\frac{\partial}{\partial t}(\vec{\nabla} \times \vec{B}) ;| | \text { curl }
$$

$$
\underbrace{; \vec{V} \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t} ; \text { Ampère's law }}_{\vec{\nabla}(\vec{V} \cdot \vec{E})-\nabla^{2} \vec{E}=-\mu \frac{\partial}{\partial t}\left(\vec{J}+\frac{\partial \vec{D}}{\partial t}\right)}
$$

$$
\nabla^{2}=\Delta=\text { Laplace operator }
$$

$$
\vec{\nabla}\left(\frac{\rho}{\epsilon_{0}}\right)-\nabla^{2} \vec{E}=-\mu \frac{\partial}{\partial t}\left(\sigma \vec{E}+\epsilon \frac{\partial \vec{E}}{\partial t}\right)
$$

; Gauss's law

$$
; \vec{J}=\sigma \vec{E}
$$

$$
\nabla^{2} \vec{E}-\mu \epsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0
$$

Homogeneous wave equation

Time-Varying B-Field in Free Space

- Assume charge-free, homogeneous, linear, and isotropic medium
- We can derive a wave equation:

$$
\vec{\nabla} \times \vec{B}=\mu \vec{J}+\mu \epsilon \frac{\partial \vec{E}}{\partial t} \quad ; \text { Ampère's law }
$$

$$
\vec{\nabla} \times(\vec{\nabla} \times \vec{B})=\mu(\vec{\nabla} \times \vec{J})+\mu \epsilon\left(\vec{\nabla} \times \frac{\partial \vec{E}}{\partial t}\right) ;| | \text { curl }
$$

$\vec{\nabla}(\vec{\nabla} \cdot \vec{B})-\nabla^{2} \vec{B}=\mu(\vec{\nabla} \times \vec{J})-\mu \epsilon \frac{\partial^{2} \vec{B}}{\partial t^{2}} \quad ;$ curl of curl $\vec{\nabla} \times(\vec{\nabla} \times \vec{A})=\vec{\nabla}(\vec{\nabla} \cdot \vec{A})-\nabla^{2} \vec{A}$
; Faraday’s law
$\nabla^{2} \vec{B}-\mu \epsilon \frac{\partial^{2} \vec{B}}{\partial t^{2}}=0 \quad$ Similar homogeneous wave equation as for E-Field
; Gauss's law for magnetism $\vec{\nabla} \cdot \vec{B}=0$
; no moving charge ($\vec{J}=0$)

Time-Harmonic Fields

- In many cases one has to deal with purely harmonic fields $\left(\sim e^{i \omega t}\right)$

$$
\left.\begin{array}{|l|}
\hline \nabla^{2} \vec{B}-\mu \epsilon \frac{\partial^{2} \vec{B}}{\partial t^{2}}=0 \\
\nabla^{2} \vec{E}-\mu \epsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0
\end{array}\right] \nabla^{2} \vec{B}=-\mu \epsilon \omega^{2} \vec{B}
$$

Example: Plane Wave in Free Space

$$
\vec{A}(\vec{r}, t)=\vec{A}_{0} \cdot e^{-i \vec{k} \cdot \vec{r}} \cdot e^{i \omega t}=\vec{A}_{0} \cdot e^{i(\omega t-\vec{k} \cdot \vec{r})} \quad|\vec{A}(\vec{r}, t)|=\operatorname{Re}(\vec{A})
$$

- k is a wave vector pointing in direction of wave propagation
- Wave is unconstrained in plane orthogonal to wave direction, i.e. has surfaces of constant phase (wavefronts), wave vector k is perpendicular to the wavefront

- Magnitude of field (whether it is E or B) is constant everywhere on plane, but varies with time and in direction of propagation
- One may align propagation of wave (k) with z-direction, which simplifies the equation
- In Cartesian coordinates: $\vec{A}(x, y, z, t)=\vec{A}_{0} \cdot e^{-i k z} \cdot e^{i \omega t}$
- Applying homogeneous wave equation $\nabla^{2} \vec{A}=-\mu \epsilon \omega^{2} \vec{A}$ (with $\nabla^{2} \vec{A}=\frac{\partial A_{x}}{\partial x^{2}}+\frac{\partial A_{y}}{\partial y^{2}}+\frac{\partial A_{z}}{\partial z^{2}}$

$$
\begin{aligned}
& \nabla^{2} \vec{A}=-k^{2} \vec{A}=-\mu \epsilon \omega^{2} \vec{A} \\
& \text { We know speed of light in linear medium: }
\end{aligned} \rightarrow \begin{aligned}
& k^{2}=\mu \epsilon \omega^{2} \\
&
\end{aligned} \rightarrow k^{2}=\mu \epsilon \omega^{2}=\frac{\omega^{2}}{v^{2}}
$$

Example: Plane Wave in Free Space

linear polarization
(can be superposition of horizontally and vertically polarized wave with same amplitude and phase)

elliptical polarization
(superposition of two lineared polarizations with phase shift between waves)

circular polarization
(similar to elliptical polarization but with phase shift of +-90 deg. between waves)

Example: Plane Wave in Free Space

- Acknowledging that k is generally a vector: $\vec{k}=k \cdot \widehat{k_{z}}$
- Inserting the just derived equation $k^{2}=\frac{\omega^{2}}{v^{2}}$, i.e. a dependency with the angular frequency, we can denote the relation of k with the wavelength

$$
\vec{k}=\frac{2 \pi f}{v} \widehat{k_{z}}=\frac{2 \pi}{\lambda} \widehat{k_{z}}
$$

$$
k=\frac{2 \pi}{\lambda}=\frac{2 \pi f}{v}
$$

k is the wavenumber $[1 / \mathrm{m}]$

$$
v_{p h} \equiv \frac{\omega}{k}=\frac{1}{\sqrt{\mu \epsilon}}=c_{0} \frac{1}{\sqrt{\mu_{r} \epsilon_{r}}}
$$

Phase velocity

$$
v_{g r} \equiv \frac{d \omega}{d k}=\frac{1}{\sqrt{\mu \epsilon}}=v_{p h} \quad \text { Group velocity }=\text { Phase velocity }=\text { speed of light }
$$

Wave Impedance

- Furthermore for plane wave, due to $3^{\text {rd }}$ Maxwell equation we know that magnetic field is orthogonal to electrical field and can derive for time-harmonic field:

$$
\vec{\nabla} \times \vec{E}=-\mu \frac{\partial \vec{H}}{\partial t}=-\mu \omega \vec{H}
$$

- Considering the absence of charges in free space and $4^{\text {th }}$ Maxwell equation, we find:

$$
\vec{\nabla} \times \vec{H}=\varepsilon \frac{\partial \vec{E}}{\partial t}=\varepsilon \omega \vec{E}
$$

- We then can find for the electrical field components considering
$; \nabla \times \vec{F}=\left(\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}\right) \hat{\imath}+\left(\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}\right) \hat{\jmath}+\left(\frac{\partial F_{y}}{\partial z}-\frac{\partial F_{x}}{\partial y}\right) \hat{k}$
$\longrightarrow-\frac{\partial E_{y}}{\partial z} \hat{\imath}+\frac{\partial E_{x}}{\partial z} \hat{\jmath}=-i \mu \omega \vec{H}=-i \mu \omega H_{x} \hat{\imath}-i \mu \omega H_{y} \hat{\jmath}$
- Similarly for the magnetic field considering

$$
-\frac{\partial H_{y}}{\partial z} \hat{\imath}+\frac{\partial H_{x}}{\partial z} \hat{\jmath}=i \varepsilon \omega \vec{E}=i \varepsilon \omega E_{x} \hat{\imath}+i \varepsilon \omega E_{y} \hat{\jmath}
$$

- All field components are orthogonal to propagation direction

$$
\frac{\partial E_{y}}{\partial z}=i \mu \omega H_{x}
$$

$$
\frac{\partial E_{x}}{\partial z}=-i \mu \omega H_{y}
$$

$$
\begin{gathered}
\frac{\partial H_{y}}{\partial z}=-i \varepsilon \omega E_{x} \\
\frac{\partial H_{x}}{\partial z}=i \varepsilon \omega E_{y} \\
\hline
\end{gathered}
$$

\rightarrow this means that the plane wave is a Transverse-Electric-Magnetic (TEM) wave

Wave Impedance

- We obtained two sets of independent equations, that lead to two linearly independent solutions

1a)
$\frac{\partial E_{x}}{\partial z}=-i \mu \omega H_{y}$

1b)
$\frac{\partial H_{y}}{\partial z}=-i \varepsilon \omega E_{x}$

2a)
2b)

- The wave equation for the electric field components yields:

$$
\frac{\partial^{2} E_{x}}{\partial x^{2}}=-k^{2} E_{x}
$$

$$
\frac{\partial^{2} E_{y}}{\partial x^{2}}=-k^{2} E_{y}
$$

$$
; \nabla^{2} \vec{A}=\frac{\partial A_{x}}{\partial x^{2}}+\frac{\partial A_{y}}{\partial y^{2}}+\frac{\partial A_{z}}{\partial z^{2}}
$$

- Utilizing the Ansatz:

$$
E_{x}=E_{x, p} e^{-i k z}+E_{x, r} e^{+i k z}
$$

$$
E_{y}=E_{y, p} e^{-i k z}+E_{y, r} e^{+i k z}
$$

we can derive the corresponding magnetic field components:

$$
H_{y}=\frac{k}{\mu \omega}\left(E_{x, p} e^{-i k z}-E_{x, r} e^{+i k z}\right)
$$

$$
\left.H_{x}=-\frac{k}{\mu \omega}\left(E_{y, p} e^{-i k z}-E_{y, r} e^{+i k z}\right) ; 2 \mathrm{a}\right)
$$

- Using the substitution $Z=\frac{k}{\mu \omega}$:

$$
H_{y}=\frac{1}{Z}\left(E_{x, p} e^{-i k z}-E_{x, r} e^{+i k z}\right)
$$

$$
H_{x}=-\frac{1}{Z}\left(E_{y, p} e^{-i k z}-E_{y, r} e^{+i k z}\right)
$$

$$
Z=\frac{\mu \omega}{k}=\frac{\mu \omega}{\sqrt{\mu \epsilon} \omega}=\sqrt{\frac{\mu}{\epsilon}} \approx \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \sqrt{\frac{\mu_{r}}{\varepsilon_{r}}}
$$

Z is the wave impedance in Ohms

Appendix

Presence of Dielectric Material

- For linear materials

$$
\begin{array}{|ll}
\hline \epsilon=\epsilon_{r} \epsilon_{0} & \varepsilon_{r} \text { is relative permittivity } \\
\mu \mu=\epsilon_{r} \epsilon_{0} & \mu_{\mathrm{r}} \text { is relative permeability }
\end{array}
$$

- Particularly, the displacement current was conceived by Maxwell as the separation (movement) of the (bound) charges due to the polarization of the medium (bound charges slightly separate inducing electric dipole moment)

$$
\vec{D}=\epsilon \vec{E}=\epsilon_{0} \vec{E}+\vec{P}
$$

P is polarization density ('polarization') is the density of permanent and induced electric dipole moments

- For homogeneous, linear isotropic dielectric material

$$
\vec{P}=\epsilon_{0}\left(\epsilon_{r}-1\right) \vec{E}
$$

$$
\left(\epsilon_{r}-1\right)=c_{e}
$$

$\mathrm{c}_{e}=$ electric susceptibility

- For anisotropic dielectric material

$$
\vec{P}=\sum_{j} \epsilon_{0} \mathrm{c}_{i, j} \vec{E}_{j}
$$

- Material may be non-linear, i.e. P is not proportional to $E(\rightarrow$ hysteresis in ferroelectric materials)
- Generally $P(\omega)$ is a function of frequency, since the bound charges cannot act immediately to the applied field $\left(c_{e}(\omega) \rightarrow\right.$ this gives rise to losses

Similar Expressions for Magnetization

- For magnetic fields the presence of magnetic material can give rise to a magnetization by microscopic electric currents or the spin of electrons
- Example: If a ferromagnet (e.g. iron) is exposed to a magnetic field, the microscopic dipoles align with the field and remain aligned to some extent when the magnetic field vanishes (magnetization vector M) \rightarrow a non-linear dependency between H and M occurs
- Magnetization may occur in directions other than that of the applied magnetic field
- The magnetization vector describes the density of the permanent or induced magnetic dipole moments in a magnetic material

$$
\vec{B}=\mu_{0} \cdot \vec{H}=\mu_{0}(\vec{H}+\vec{M})=\mu_{0}\left(1+x_{v}\right) \vec{H}
$$

- Herein X_{v} is the magnetic susceptibility, which described whether is material if appealed or retracted by the presence of a magnetic field
- The relative permeability of the material can then be denoted as:

$$
\mu_{r}=1+x_{v}
$$

