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This Lecture
－ The Cylindrical Resonator

• TE and TM Modes Nomenclature

• Derivation of Electromagnetic Fields

• Examples of Mode Pattern

• Lumped Circuit Representation 

• Figures of Merit

－ Quality Factor

－ Stored Energy

－ Power Loss

－ Skin Depth

－ Accelerating voltage

－ Transit Time Factor

－ (Characteristic) Shunt Impedance

－ Phase and Group Velocity (Waveguide) and Consequence for Accelerators

• Coupled Resonator

－ Phase Velocity for Synchronous Acceleration

－ Eigen-frequencies

－ Dispersion Relation (Brillouin Diagram)

－ Examples of Field Amplitudes in Coupled Resonators

－ Experiment related to this Lecture2



Example: Cylindrical Resonator (“Pillbox”)



RF Mode Nomenclature

－ Indices describe how many notches field may have in each coordinate direction:

• Index m = azimuthal (φ) direction

• Index n = radial (r) direction

• Index p = longitudinal (z) direction
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• Nomenclature for cylindrical resonator RF modes:
－ TE = only Transverse Electric modes, Ez = 0 ∀ z (also named H-modes)

－ TM = only Transverse Magnetic, Hz = 0 ∀ 𝑧 (also named E-modes)

－ Mode can be categorized by azimuthal dependency:
• m = 0 is monopole mode

• m = 1 is dipole mode

• m = 2 is quadrupole mode

• m = 3 is sextupole mode

• m = 4 is octupole mode

• asf.
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- Cylinder coordinates are more suitable to describe this problem

Cylindrical Resonator

𝛻2= Δ =
1

𝑟

𝜕

𝜕𝑟
𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜑2 +
𝜕2

𝜕𝑧2

𝜵𝟐𝑨 =
1

𝑟

𝜕  𝐴

𝜕𝑟
+

𝜕2  𝐴

𝜕𝑟2 +
1

𝑟2

𝜕2  𝐴

𝜕𝜑2 +
𝜕2  𝐴

𝜕𝑧2 = −𝜇𝜖𝜔2𝑨

 𝐴𝑒𝑖𝜔𝑡 =

𝐴𝑟

𝐴𝜑

𝐴𝑧

𝑒𝑖𝜔𝑡

Laplace operator in cylinder coordinates:

Ansatz (separation of variables r, , and z):  𝐴 = 𝑁 𝑟 𝑀 𝜑 𝑃 𝑧

wave equation for 
time–harmonic 
fields

𝜕

𝜕𝑟
,

𝜕

𝜕𝜑
, 𝑜𝑟

𝜕

𝜕𝑧; substitute ‘ for 
1

𝑟
𝑁′𝑀𝑃 + 𝑁′′𝑀 𝑃 +

1

𝑟2 𝑁 𝑀′′𝑃 + 𝑁𝑀𝑃′′ = −𝜇𝜖𝜔2𝑁𝑀𝑃

1

𝑟
𝑁′ + 𝑁′′ +

1

𝑟2 𝑁
𝑀′′

𝑀
+ 𝑁

𝑃′′

𝑃
= −𝜇𝜖𝜔2𝑁

1

𝑟

𝑁′

𝑁
+

𝑁′′

𝑁
+

1

𝑟2

𝑀′′

𝑀
+

𝑃′′

𝑃
= −𝜇𝜖𝜔2

;|| ∙
1

𝑁𝑀𝑃

Henceforth abbreviated 
w/o variables 𝐍, 𝐌,𝐏

R = Radius
L = Length
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Left-hand side functions 
only depend on r and 

Right-hand side function 
only depends on z

Can only be fulfilled ∀ (r, , z) if both sides of 
equation are constant (‘separation constant’)

𝑃′′ = 𝜸2 𝑃 Ansatz: 𝑃 𝑧 = 𝐵1𝑒−𝜸𝑧 + 𝐵2𝑒+𝜸𝑧

forwards 
travelling 
wave

backwards 
travelling 
wave

 =  + i𝛽 [1/m]

- Uses separation constant is -𝜸2 (𝜸 is called ‘propagation constant’)

- Real part  is therefore a damping term (‘attenuation constant’)

- Imaginary part β is a ‘phase constant’  

- B’s are integration constants. Wave will be reflected at endplates, and thus the so far arbitrary 
amplitudes must obey B1 = B2

-  is generally  complex

Right-hand side

1

𝑟

𝑁′

𝑁
+

𝑁′′

𝑁
+

1

𝑟2

𝑀′′

𝑀
+ 𝜇𝜖𝜔2 = −

𝑃′′

𝑃
= −𝜸2

1

𝑟

𝑁′

𝑁
+

𝑁′′

𝑁
+

1

𝑟2

𝑀′′

𝑀
+ 𝜇𝜖𝜔2 = −

𝑃′′

𝑃

- Periodicity of field is given by phase constant β (field changes sign after phase of 2π)

𝜦 denotes the resonator (not free) wavelength𝛽 =
2𝜋

Λ

𝑃 𝑧 = 𝐵1(𝑒−𝜸𝑧 + 𝑒+𝜸𝑧)

;strictly only for loss-less case ( = 0,  = iβ)

Cylindrical Resonator
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Again: Can only be fulfilled ∀ (r, ) if both sides of equation are constant

Ansatz: 𝑀 𝜑 = 𝐶1𝑒−𝑖𝑚𝜑 + 𝐶2𝑒+𝑖𝑚𝜑

- Due to cylindrical symmetry 

;|| ∙ 𝑟2

𝑟
𝑁′

𝑁
+ 𝑟2

𝑁′′

𝑁
+ 𝑟2 𝜇𝜖𝜔2 + 𝜸2 = −

𝑀′′

𝑀

𝑀′′ = −𝑚2𝑀

- Separation constant m2

𝑀 𝜑 = 𝑀 𝜑 + 2𝜋

- Consequently m is an integer/natural number (m ∈ ℕ0, 𝑖. 𝑒. ≥ 0)

Left-hand side

Right-hand side

𝑟
𝑁′

𝑁
+ 𝑟2

𝑁′′

𝑁
+ 𝑟2 𝜇𝜖𝜔2 + 𝜸2 = 𝑚2Left-hand side

of uppr equation

𝑟2𝑁′′ + 𝑟𝑁′ + 𝑟2 𝜇𝜖𝜔2 + 𝜸2 − 𝑚2 𝑁 = 0

;|| ∙ 𝑅

This is a Bessel’s differential equation

1

𝑟

𝑁′

𝑁
+

𝑁′′

𝑁
+

1

𝑟2

𝑀′′

𝑀
+ 𝜇𝜖𝜔2 = −𝜸2

Cylindrical Resonator
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- The only physical solution for integer numbers m that exists (is finite) on the resonator axis (r = 0) is 
Bessel function of the first kind Jm(r) of m-th order 

𝑁 𝑟 = 𝐷1 𝐽𝑚 𝑟 𝜇𝜖𝜔2 + 𝜸2 = 𝐷1  

𝑗=0

∞
−1 𝑗

𝑚 + 𝑗 ! 𝑗!

𝑟 𝜇𝜖𝜔2 + 𝜸2

2

𝑚+2𝑗

𝑓𝑜𝑟 𝑗 = 0,1,2, ⋯

- One obtains for the possible resonant vector fields (modes) in a pillbox resonator regarding for the 
harmonic time dependence:

 𝐴𝑒𝑖𝜔𝑡 = 𝑒𝑖𝜔𝑡𝑁 𝑟 𝑀 𝜑 𝑃 𝑧

= 𝑒𝑖𝜔𝑡 ∙ 𝐷1 𝐽𝑚 𝑟 𝜇𝜖𝜔2 + 𝜸2 ∙ 𝐶1𝑒−𝑚𝜑 + 𝐶2𝑒+𝑚𝜑 ∙ 𝐵1𝑒−𝜸𝑧 + 𝐵2𝑒+𝜸𝑧

- One can distinguish between modes that differentiate by the absence of the electric or
magnetic field component in z-direction 

𝐸𝑧 = 0 ∀ 𝑧 ⟺ TE (Transverse Electric) Modes ⟺ no electric field along z-direction

𝐻𝑧 = 0 ∀ 𝑧 ⟺ TM (Transverse Magnetic Modes ⟺ no electric field along z-direction

- TM-like modes are used for particle acceleration in resonators

Cylindrical Resonator
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TM-Modes

- What is dependency of z-component of electric field for a TM-mode ? 

𝐸𝑧(𝑧) ∝ 𝑃 𝑧 = 𝑃 𝑧 = 𝐵1(𝑒−𝜸𝑧 + 𝑒+𝜸𝑧) = 2𝐵1cos(𝛽𝑧)

- This describes a standing wave, i.e. forward and backward wave oscillate with fixed
amplitude in z, the amplitude is twice as strong as each individual wave amplitude

- Boundary condition at the resonator end plates

𝑃(𝑧 = 𝑒𝑛𝑑 𝑝𝑙𝑎𝑡𝑒𝑠) = 2𝐵1 or 𝑐𝑜𝑠 𝛽𝑧 = ±1 𝛽 = ±
𝜋𝑝

𝐿
with 𝑝 ∈ ℕ0

- Solving for the electromagnetic fields requires to obey boundary conditions

- Assume ideal (loss-less) conductor,  = 0, B1 = B2 (full reflection at short)

 𝑛 × 𝐸 = 0  𝑛 ∙ 𝐻 = 0 ;  𝑛 ⊥ 𝑆

- We remember that periodicity of field is given by phase constant β
(field changes sign after phase of 2π)

Λ 𝑇𝑀 =
2𝜋

𝛽
=

2𝐿

𝑝
𝛽 =

2𝜋

Λ 𝑇𝑀 =
𝜋𝑝

𝐿

- Case: Longitudinal dependency P(z) with boundaries applied
Boundary condition on endplates: Tangential E-fields vanish, reflection of Ez-field 
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TM-Modes

𝐸𝑧(𝑟) ∝ 𝑁 𝑅 = 𝐷1 𝐽𝑚 𝑅 𝜇𝜖𝜔2 + 𝜸2 = 0

- Boundary condition on perimeter: Tangential fields vanish, in this case Ez(r = R):

Requires to find roots of Bessel function

- One typically denotes xmn as the n-th root of the Bessel function of m-th order

𝑥𝑚𝑛 = 𝑅 𝜇𝜖𝜔2 + 𝜸2

𝛾 = ±
𝑥𝑚𝑛

𝑅

2

− 𝜇𝜖𝜔2

; loss-less ( = 0) ;𝛽 = ±
𝜋𝑝

𝐿𝛾 = 𝑖𝛽 = ± 𝑖 𝜇𝜖𝜔2 −
𝑥𝑚𝑛

𝑅

2

= ±𝑖
𝜋𝑝

𝐿

- This yields the resonant frequencies of TM-modes:

𝜔𝑇𝑀 = 2𝜋𝑓𝑇𝑀 =
1

𝜇𝜖

𝜋𝑝

𝐿

2

+
𝑥𝑚𝑛

𝑅

2

- Free wavelength is then given by:

𝜆𝑇𝑀 =
𝘷

𝑓𝑇𝑀 =
2𝜋

𝜋𝑝
𝐿

2
+

𝑥𝑚𝑛
𝑅

2

(six significant figures)

- Case: Radial dependency N(R) with boundaries applied
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TM-Modes

𝛾 = 𝑖𝛽 = ± 𝑖 𝜇𝜖𝜔2 −
𝑥𝑚𝑛

𝑅

2

= ±𝑖
π𝑝

𝐿

- The resonator wavelength is then given by:

Λ 𝑇𝑀 =
𝜆𝑇𝑀

1 −
𝜆𝑇𝑀 ∙ 𝑥𝑚𝑛

2𝜋 𝑅

2

=
2𝐿

𝑝

Λ > 𝜆 Resonator wavelength always larger than free wavelength

𝑘𝑚𝑛 ≡
2𝜋

Λ 𝑇𝑀 = 𝜇𝜖𝜔2 −
𝑥𝑚𝑛

𝑅

2

=
𝜋𝑝

𝐿

- Considering

- We find that the wavenumber is constrained according to:

- For p = 0  Λ 𝑇𝑀=∞, since Ez (ω) is uniform
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TM-Modes

- Only non-trivial solution for Ez() ∀  possible if:

𝐸𝑧() ∝ M 𝜑 = 𝐶1𝑒−𝑖𝑚𝜑 + 𝐶2𝑒+𝑖𝑚𝜑 M 𝜑 = 𝐶1 + 𝐶2; if  = 0 →

𝑀 𝜑 = 𝐶1(𝑒−𝑖𝑚𝜑+𝑒+𝑖𝑚𝜑) = 2𝐶1𝑐𝑜𝑠(𝑚𝜑)

𝐶1 = 𝐶2

- Eventually one obtains:

; 𝐸0 = 4𝐵1𝐶1𝐷1

- No we finally can solve for the electromagnetic fields  

𝐸𝑧 𝜔 = 𝐸0 ∙ 𝐽𝑚 𝑟
𝑥𝑚𝑛

𝑅
∙ 𝑐𝑜𝑠(𝑚𝜑) ∙ cos 𝛽𝑧 ∙ 𝑒𝑖𝜔𝑇𝑀𝑡

- One requires the curl in cylinder coordinates:

𝛻 ×  𝐴 =

1

𝑟

𝜕𝐴𝑧

𝜕𝜑
−

𝜕𝐴𝜑

𝜕𝑧
𝜕𝐴𝑟

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑟

1

𝑟

𝜕 𝑟𝐴𝜑

𝜕𝑟
−

1

𝑟

𝜕𝐴𝑟

𝜕𝜑

𝜕2

𝜕𝑧2 + 𝑘2

𝜕2

𝜕𝑧2 + 𝑘2

𝐸𝜑

𝐻𝑟
=

1

𝑟

𝜕

𝜕𝑧

𝜕𝐸𝑧

𝜕𝜑
+ 𝑖𝜔𝜇

𝜕𝐻𝑧

𝜕𝑟
𝑖𝜔𝜀

𝑟

𝜕𝐸𝑧

𝜕𝜑
+

𝜕

𝜕𝑧

𝜕𝐻𝑧

𝜕𝑟

𝜕2

𝜕𝑧2 + 𝑘2

𝜕2

𝜕𝑧2 + 𝑘2

𝐻𝜑

𝐸𝑟
=

1

𝑟

𝜕

𝜕𝑧

𝜕𝐻𝑧

𝜕𝜑
+ 𝑖𝜔𝜀

𝜕𝐸𝑧

𝜕𝑟
𝑖𝜔𝜇

𝑟

𝜕𝐻𝑧

𝜕𝜑
+

𝜕

𝜕𝑧

𝜕𝐸𝑧

𝜕𝑟

Case: Azimuthal dependency M() with boundaries applied

- Knowing Ez one can obtain all other field components Ex, Ey, Hx, and Hy utilizing
the wave equations for field components in cylinder coordinates



13

TM-Modes

𝐸𝜑 =
1

𝑟
∙

𝑅2

𝑥𝑚𝑛
2 ∙

𝜕

𝜕𝑧

𝜕𝐸𝑧

𝜕𝜑

𝐸𝑟 =
𝑅2

𝑥𝑚𝑛
2 ∙

𝜕

𝜕𝑧

𝜕𝐸𝑧

𝜕𝑟
𝐻𝑟 = 𝑖𝜔𝜀 ∙

1

𝑟
∙

𝑅2

𝑥𝑚𝑛
2 ∙

𝜕𝐸𝑧

𝜕𝜑

𝐻𝜑 = −𝑖𝜔𝜀 ∙
𝑅2

𝑥𝑚𝑛
2 ∙

𝜕𝐸𝑧

𝜕𝑟

𝐻𝑧 = 0

𝑑𝐽𝑚(𝑟)

𝑑𝑟
=

𝑚

𝑟
∙ 𝐽𝑚 𝑟 − 𝐽𝑚+1 𝑟

- Only non-trivial solution for Ez() ∀  possible if:

𝐸𝑧() ∝ M 𝜑 = 𝐶1𝑒−𝑖𝑚𝜑 + 𝐶2𝑒+𝑖𝑚𝜑 ; if  = 0 →

𝑀 𝜑 = 𝐶1(𝑒−𝑖𝑚𝜑+𝑒+𝑖𝑚𝜑) = 2𝐶1𝑐𝑜𝑠(𝑚𝜑)

𝐶1 = 𝐶2

- Eventually one obtains:

; 𝐸0 = 4𝐵1𝐶1𝐷1

- No we finally can solve for the electromagnetic fields  

𝐸𝑧 𝜔 = 𝐸0 ∙ 𝐽𝑚 𝑟
𝑥𝑚𝑛

𝑅
∙ 𝑐𝑜𝑠(𝑚𝜑) ∙ cos 𝛽𝑧 ∙ 𝑒𝑖𝜔𝑇𝑀𝑡

Case: Azimuthal dependency M() with boundaries applied

- Knowing Ez one can obtain all other field components Ex, Ey, Hx, and Hy utilizing
the wave equations for field components in cylinder coordinates
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TM-Mode Field Components

𝐸𝑧 𝜔 = 𝐸0 ∙ 𝐽𝑚 𝑟
𝑥𝑚𝑛

𝑅
∙ 𝑐𝑜𝑠(𝑚𝜑) ∙ cos

π𝑝

𝐿
𝑧 ∙ 𝑒𝑖𝜔𝑇𝑀𝑡

𝐸𝑟 𝜔 = −𝐸0 ∙ 𝑝 ∙
𝜋𝑅2

𝐿 𝑥𝑚𝑛
2 ∙

𝜕𝐽𝑚 𝑟
𝑥𝑚𝑛
𝑅

𝜕𝑟
∙ 𝑐𝑜𝑠(𝑚𝜑) ∙ 𝑠𝑖𝑛

π𝑝

𝐿
𝑧 ∙ 𝑒𝑖𝜔𝑇𝑀𝑡

𝐸𝜑 𝜔 = 𝐸0 ∙
𝑝 𝑚

𝑟
∙

𝜋𝑅2

𝐿 𝑥𝑚𝑛
2 ∙ 𝐽𝑚 𝑟

𝑥𝑚𝑛

𝑅
∙ 𝑠𝑖𝑛(𝑚𝜑) ∙ 𝑠𝑖𝑛

π𝑝

𝐿
𝑧 ∙ 𝑒𝑖𝜔𝑇𝑀𝑡

𝐻𝑟 𝜔 = −𝑖𝐸0 ∙
𝑚

𝑟
∙

𝜔𝑇𝑀𝜀𝑅2

𝑥𝑚𝑛
2 ∙ 𝐽𝑚 𝑟

𝑥𝑚𝑛

𝑅
∙ 𝑠𝑖𝑛(𝑚𝜑) ∙ cos

π𝑝

𝐿
𝑧 ∙ 𝑒𝑖𝜔𝑇𝑀𝑡

𝐻𝜑 𝜔 = −𝑖𝐸0 ∙
𝜔𝑇𝑀𝜀𝑅2

𝑥𝑚𝑛
2 ∙

𝜕𝐽𝑚 𝑟
𝑥𝑚𝑛
𝑅

𝜕𝑟
∙ 𝑐𝑜𝑠(𝑚𝜑) ∙ cos

π𝑝

𝐿
𝑧 ∙ 𝑒𝑖𝜔𝑇𝑀𝑡

𝐻𝑧 𝜔 = 0
𝜔𝑇𝑀 =

1

𝜇𝜖

𝜋𝑝

𝐿

2

+
𝑥𝑚𝑛

𝑅

2

Note: H-fields are shifted by -i=e-i/2 = -90° to E-fields



Analogous Derivation for TE-Modes
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TE-Modes

- What is dependency of z-component of magnetic field for a TE-mode ? 

𝐻𝑧(𝑧) ∝ 𝑃 𝑧 = 𝐵1𝑒−𝑖β𝑧 + 𝐵2𝑒+𝑖β𝑧 = −𝑖2𝐵1𝑠𝑖𝑛(𝛽𝑧)

𝑃 𝑧 = 𝑒𝑛𝑑 𝑝𝑙𝑎𝑡𝑒𝑠 = 0 or 𝑠𝑖𝑛 𝛽𝑧 = 0 𝛽 =
𝜋𝑝

𝐿
with 𝑝 ∈ ℕ, 𝑝 ≠ 0

𝐸𝑧 = 0 ∀ 𝑧 ⟺ TE (Transverse Electric) Modes ⟺ no electric field along z-direction

𝐻𝑧(𝜑) ∝ 𝑀 𝜑 = 2𝐶1𝑐𝑜𝑠(𝑚𝜑)

- Azimuthal fields of E(r=R) must vanish at cavity perimeter (∀ )

𝜕2

𝜕𝑧2
+ 𝑘2

𝜕2

𝜕𝑧2
+ 𝑘2

𝐸𝜑

𝐻𝑟
=

1

𝑟

𝜕

𝜕𝑧

𝜕𝐸𝑧

𝜕𝜑
+ 𝑖𝜔𝜇

𝜕𝐻𝑧

𝜕𝑟
𝑖𝜔𝜀

𝑟

𝜕𝐸𝑧

𝜕𝜑
+

𝜕

𝜕𝑧

𝜕𝐻𝑧

𝜕𝑟

=
𝑖𝜔𝜇

𝜕𝐻𝑧

𝜕𝑟
𝜕

𝜕𝑧

𝜕𝐻𝑧

𝜕𝑟

𝛿𝐻𝑧 𝑟 = 𝑅

𝛿𝑟
= 0

- Hz(z) must vanish at end plates (no perpendicular fields allowed) 

; 𝐵1=−𝐵2

- Hz() is tangential to surface 

- Together with Ez =0 this leads to the condition

𝜕2

𝜕𝑧2
+ 𝑘2 𝐸𝜑 = 𝑖𝜔𝜇

𝜕𝐻𝑧

𝜕𝑟
𝐸𝜑 𝑟 = 𝑅 = 0

Proof (use 1st component)

𝜕𝑁 𝑟=𝑅

𝜕𝑟
= 𝐷1

𝜕

𝜕𝑟
𝐽𝑚 𝑅 𝑘2 + 𝛾2 =0

- That implies
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TE-Modes

- One typically denotes x’mn as the n-th root of the derivative of the Bessel function of
m-th order

𝑥′𝑚𝑛 = 𝑅 𝜇𝜖𝜔2 + 𝛾2

𝛾 = ±
𝑥′𝑚𝑛

𝑅

2

− 𝜇𝜖𝜔2

; loss-less ( = 0) ;𝛽 =
𝜋𝑝

𝐿
with 𝑝 ∈ ℕ, 𝑝 ≠ 0𝛾 = 𝑖𝛽 = 𝑖 𝜇𝜖𝜔2 −

𝑥′𝑚𝑛

𝑅

2

= 𝑖
𝜋𝑝

𝐿

Λ 𝑇𝐸 =
2𝜋

𝛽
=

2𝐿

𝑝

- Due to boundary condition, p = 0 is not allowed (E|| to end plates must vanish)

L

(six significant figures)
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TE-Modes

𝛾 = 𝑖𝛽 = 𝑖 𝜇𝜖𝜔2 −
𝑥𝑚𝑛

′

𝑅

2

= 𝑖
π𝑝

𝐿

- This yields the resonant frequencies of TE-modes:

𝜔𝑇𝐸 = 2𝜋𝑓𝑇𝐸 =
1

𝜇𝜖

𝜋𝑝

𝐿

2

+
𝑥𝑚𝑛

′

𝑅

2

- The free wavelength is then given by:

𝜆𝑇𝐸 =
𝘷

𝑓𝑇𝐸 =
2𝜋

𝜋𝑝
𝐿

2
+

𝑥𝑚𝑛
′

𝑅

2

- The resonator wavelength is then given by:

Λ 𝑇𝐸 =
𝜆𝑐

𝑇𝐸

1 −
𝜆𝑇𝐸𝑥′𝑚𝑛

2𝜋 𝑅

2

=
2𝐿

𝑝

𝑝 ≠ 0
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TE-Modes

𝐻𝑧 𝜔 = 𝐻0 ∙ 𝐽𝑚 𝑟
𝑥𝑚𝑛

′

𝑅
∙ 𝑐𝑜𝑠(𝑚𝜑) ∙ sin 𝛽𝑧 ∙ 𝑒𝑖𝜔𝑇𝐸𝑡

- Only non-trivial solution for Hz() ∀  possible if:

𝐻𝑧() ∝ M 𝜑 = 𝐶1𝑒−𝑖𝑚𝜑 + 𝐶2𝑒+𝑖𝑚𝜑 M 𝜑 = 𝐶1 + 𝐶2; if  = 0 →

𝑀 𝜑 = 𝐶1(𝑒−𝑖𝑚𝜑+𝑒+𝑖𝑚𝜑) = 2𝐶1𝑐𝑜𝑠(𝑚𝜑)

𝐶1 = 𝐶2

- Eventually one obtains:

; 𝐻0 = −4𝐵1𝐶1𝐷1 = −𝑖𝐸0

- Knowing Hz one can obtain all other field components Ex, Ey, Hx, and Hy utilizing
the wave equations for field components in cylinder coordinates

𝐸𝜑 = 𝑖𝜔𝜇 ∙
𝑅2

𝑥′𝑚𝑛
2 ∙

𝜕𝐻𝑧

𝜕𝑟

𝐸𝑟 = −𝑖𝜔𝜇 ∙
1

𝑟
∙

𝑅2

𝑥′𝑚𝑛
2 ∙

𝜕𝐻𝑧

𝜕𝜑
𝐻𝑟 =

𝑅2

𝑥′𝑚𝑛
2 ∙

𝜕

𝜕𝑧

𝜕𝐻𝑧

𝜕𝑟

𝐻𝜑 =
1

𝑟
∙

𝑅2

𝑥′𝑚𝑛
2 ∙

𝜕

𝜕𝑧

𝜕𝐻𝑧

𝜕𝜑

𝐸𝑧 = 0
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TE-Mode Field Components

𝐸𝑧 𝜔 = 0

𝐸𝑟 𝜔 = 𝑖𝐻0 ∙
𝑚

𝑟
∙

𝜔𝑇𝐸𝜇𝑅2

𝑥′𝑚𝑛
2

∙ 𝐽𝑚 𝑟
𝑥′𝑚𝑛

𝑅
∙ 𝑠𝑖𝑛(𝑚𝜑) ∙ sin

π𝑝

𝐿
𝑧 ∙ 𝑒𝑖𝜔𝑇𝐸𝑡

𝐸𝜑 𝜔 = 𝑖𝐻0 ∙
𝜔𝑇𝐸𝜇𝑅2

𝑥′𝑚𝑛
2 ∙

𝜕𝐽𝑚 𝑟
𝑥′𝑚𝑛

𝑅

𝜕𝑟
∙ 𝑐𝑜𝑠(𝑚𝜑) ∙ 𝑠𝑖𝑛

π𝑝

𝐿
𝑧 ∙ 𝑒𝑖𝜔𝑇𝐸𝑡

𝐻𝑟 𝜔 = 𝐻0 ∙ 𝑝 ∙
𝜋𝑅2

𝐿 𝑥′𝑚𝑛
2 ∙

𝜕𝐽𝑚 𝑟
𝑥′𝑚𝑛

𝑅

𝜕𝑟
∙ 𝑐𝑜𝑠(𝑚𝜑) ∙ cos

π𝑝

𝐿
𝑧 ∙ 𝑒𝑖𝜔𝑇𝐸𝑡

𝐻𝜑 𝜔 = −𝐻0 ∙
𝑝 𝑚

𝑟
∙

𝜋𝑅2

𝐿 𝑥′𝑚𝑛
2

∙ 𝐽𝑚 𝑟
𝑥′𝑚𝑛

𝑅
∙ 𝑠𝑖𝑛(𝑚𝜑) ∙ cos

π𝑝

𝐿
𝑧 ∙ 𝑒𝑖𝜔𝑇𝐸𝑡

Note: E-fields are shifted by i=ei/2 = 90° to H-fields

𝑝 ≠ 0

𝐻𝑧 𝜔 = 𝐻0 ∙ 𝐽𝑚 𝑟
𝑥𝑚𝑛

′

𝑅
∙ 𝑐𝑜𝑠(𝑚𝜑) ∙ sin

π𝑝

𝐿
𝑧 𝑒𝑖𝜔𝑇𝐸𝑡

𝜔𝑇𝐸 =
1

𝜇𝜖

𝜋𝑝

𝐿

2

+
𝑥𝑚𝑛

′

𝑅

2
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TM modes

These modes posses longitudinal electric field components parallel to cavity axis

𝐦 = 𝟎
n = 1
p = 0, 1, 2

fundamental mode 
(lowest Eigenfrequency) 
– used in accelerating cavities

2nd harmonic (typically most 
dangerous monopole Higher
Order Mode (HOM))

Note: n ≥ 1

Mode Pattern – Cylindrical Resonator
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𝐦 = 𝟎
n = 2
p = 0, 1

Mode Pattern – Cylindrical Resonator



23

𝐦 = 𝟎
n = 1
p = 1, 2, 3

Note: 
p = 0 not possible
for TE-modes

Mode Pattern – Cylindrical Resonator
TE modes
These modes do not posses longitudinal electric field components parallel to cavity axis
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𝐦 = 𝟎
n = 2
p = 1, 2

Mode Pattern – Cylindrical Resonator
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𝐦 = 𝟏
n = 1
p = 1

Note: 
p = 0, e.g. TM110

is possible

Example: Cylinder Resonator (“Pillbox”)
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𝐦 = 𝟏
n = 1
p = 1

Mode Pattern – Cylindrical Resonator
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Resonator Figures of Merit
Equivalent Circuit

- A resonating circuit can be presented by an inductance L and a capacitance C

- A hollow metallic resonator (e.g. accelerating cavity) can therefore be described with 
an equivalent circuit

- In an accelerating cavity, the beam excites a voltage along the so-called shunt 
impedance, (R = V·Ibeam), which is described as a resistor added in parallel to L and C

Shunt Impedance
‘seen’ by the beam
in resonance

Ibeam

- The total complex impedance of the parallel circuit is

1

𝑍
=

1

𝑅𝑠ℎ
+

1

𝑍𝐶
+

1

𝑍𝐿
=

1

𝑅
+ 𝑖𝜔𝐶 +

1

𝑖𝜔𝐿

𝑍 =
1

1
𝑅𝑠ℎ

+ 𝑖 𝜔𝐶 −
1

𝜔𝐿

- In resonance: 𝜔𝐶 −
1

𝜔𝐿
= 0

𝜔0 =
1

𝐿 ∙ 𝐶
𝑍 = 𝑅𝑠ℎ

- So in resonance, Z is real and at its maximum amplitude

sh
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Resonator Figures of Merit
Equivalent Circuit

- To feed energy to the circuit, we need a generator oscillating at frequency ω

- This forces a current to flow in the resonator circuit

- There will be a phase difference between the generator and circuit current

φ = 𝑎𝑟𝑐𝑡𝑎𝑛
𝐼𝑚 𝑍

𝑅𝑒 𝑍
= 𝑎𝑟𝑐𝑡𝑎𝑛 𝑅 ∙ 𝜔𝐶 −

1

𝜔𝐿

; 𝐿 =
1

𝜔0
2∙𝐶

φ = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑅𝐶

𝜔
∙ 𝜔2 − 𝜔0

2

- In resonance  = 0

current source
(with infinite internal impedance)

sh
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Resonator Figures of Merit
Quality Factor, Stored Energy, Power Loss, Skin Depth

- If the resonator is oscillating freely (shutting off generator), the initially stored energy will decay 
due to resistant losses occurring in the metallic wall (heat due to conductive currents)

sh

Rs

- The resistant losses can be described as resulting from a real resistor in series with L

- One generally desires to minimize the power dissipated in the wall surface
(normal RF conducting  superconducting RF cavities) 

- The quality factor Q0 (0 means unloaded, no external losses) 
of a resonator is defined as:

𝑄0 ≡ 𝜔0 ∙
𝑈𝑆

𝑃𝑎𝑣𝑔
= 2𝜋 ∙

𝑈𝑆

−
Δ𝑈𝑆
𝑇

𝑇 =
2𝜋

𝜔𝑜
=

1

𝑓

- This leads to a differential equation:

𝑃𝑎𝑣𝑔 = −
Δ𝑈𝑆

𝑇

−
𝑑𝑈𝑆

𝑈𝑆
=

𝜔0

𝑄0
𝑑𝑡

𝑈𝑆 𝑡 = 𝑈𝑆(𝑡0) ∙ 𝑒
−

𝜔0
𝑄0

(𝑡−𝑡0)

- The stored energy at time t = t0 decays with relaxation time
𝜏 =

𝑄0

𝜔0- Used for decay time measurements of Q0, i.e. when energy
decays to 1/e of its original value from given time

- Average power =  energy decay per oscillation cycle T=1/f0

- Solution is exponential decay:

𝑈𝑆(𝑡0)

𝑈𝑆 𝜏
=

𝑈𝑆(𝑡0)

𝑒



; 𝜔0 =
1

𝐿∙𝐶

- The stored energy itself is oscillating between the electrically (in capacitor) and magnetically (in 
inductor) stored energy

- The total stored energy in resonance is the sum of the time-averaged electric and magnetic energy

𝑈𝑆 =  𝑈𝑒 +  𝑈𝑚

- The time can be chosen such the total energy is either fully stored in the capacitor or the inductor 

𝑈𝑆 = 𝑈𝑒,𝑝𝑘 = 𝑈𝑚,𝑝𝑘

- For the resonant circuit at the inductor:

- The real power loss in resistor: 𝑃𝑝𝑘 = 𝑅𝑆 ∙ 𝐼𝑝𝑘
2

𝑃𝑎𝑣𝑔 =
1

2
𝑅𝑆 ∙ 𝐼𝑝𝑘

2

𝑄0 = 𝜔0 ∙
𝑈𝑆

𝑃𝑎𝑣𝑔
= 𝜔0 ∙

1
2 𝐿 ∙ 𝐼𝑝𝑘

2

1
2 𝑅𝑆 ∙ 𝐼𝑝𝑘

2
= 𝝎𝟎 ∙

𝑳

𝑹𝑺
=

𝟏

𝝎𝟎 ∙ 𝑹𝑺 ∙ 𝑪
=

𝟏

𝑹𝑺
∙

𝑳

𝑪

𝑈𝑚,𝑝𝑘 =
1

2
𝐿 ∙ 𝐼𝑝𝑘

2

Resonator Figures of Merit
Quality Factor, Stored Energy, Power Loss, Skin Depth
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- We need the stored energy and power loss in terms of RF field parameters

- How can the quality factor expressed by derived RF fields in a cylindrical cavity

𝑈𝑆 = 𝑈𝑒,𝑝𝑘 =
1

2
∙ 𝜖  

𝑉

𝑑𝑉 𝐸 ∙ 𝐸∗ = 𝑈𝑚,𝑝𝑘=
1

2
∙ 𝜇  

𝑉

𝑑𝑉 𝐻 ∙ 𝐻∗

- The total stored energy is given by the volume integral over the RF field at times
either the electric or magnetic field peaks:

; 𝐸 ∙ 𝐸∗ = 𝐸𝑝𝑘
2

; 𝐻 ∙ 𝐻∗ = 𝐻𝑝𝑘
2

Resonator Figures of Merit
Quality Factor, Stored Energy, Power Loss, Skin Depth
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- For the case of TM0n0 (m=0, p=0) monopole modes in a cylindrical resonator we only get:

𝐸𝑧 = 𝐸0 ∙ 𝐽0 𝑟
𝑥0𝑛

𝑅
∙ 𝑒𝑖𝜔𝑡 𝐸𝑟 = 𝐸𝜑 = 𝐻𝑟 = 𝐻𝑧 = 0

𝐻𝜑 = −𝑖𝐸0 ∙
𝜔𝜀𝑅2

𝑥0𝑛
2 ∙

𝜕𝐽0 𝑟
𝑥0𝑛
𝑅

𝜕𝑟
∙ 𝑒𝑖𝜔𝑡

- Therefore we obtain in cylindrical coordinates:

𝑈𝑒,𝑝𝑘,0𝑛0 =
1

2
∙ 𝜖  

𝑉

𝑑𝑉 ∙ 𝐸0
2 ∙ 𝐽0 𝑟

𝑥0𝑛

𝑅

2

=
𝐸0

2

2
∙ 𝜖 ∙  

0

𝐿

𝑑𝑧 ∙  

0

2𝜋

𝑑𝜑 ∙  

0

𝑅

𝑑𝑟 𝑟 ∙ 𝐽0 𝑟
𝑥0𝑛

𝑅

2

= 𝜋 ∙ 𝐿 ∙ 𝜖 ∙ 𝐸0
2 ∙  

0

𝑅

𝑑𝑟 ∙ 𝑟 ∙ 𝐽0 𝑟
𝑥0𝑛

𝑅

2

= 𝜋 ∙ 𝐿 ∙ 𝜖 ∙ 𝐸0
2 ∙

𝑅

𝑥0𝑛

2

∙  

0

𝑥0𝑛

𝑑𝑦 ∙ 𝑦 ∙ 𝐽0 𝑦 2

= 𝜋 ∙ 𝐿 ∙ 𝜖 ∙ 𝐸0
2 ∙

𝑅

𝑥0𝑛

2

∙  
𝑦2

2
∙ 𝐽0

2(𝑦) + 𝐽1
2(𝑦)

0

𝑥0𝑛

= 𝜋 ∙ 𝐿 ∙ 𝜖 ∙ 𝐸0
2 ∙

𝑅2

2
∙ 𝐽1

2(𝑥0𝑛)

; proof in appendix

; at limits: 𝐽1 0 = 0, 𝐽0 0 = 0, 𝐽0 𝑥0𝑛 = 0

; identity  𝑑𝑦 ∙ 𝑦 ∙ 𝐽0 𝑦 2 =
𝑦2

2
∙ 𝐽0

2 + 𝐽1
2

; substitute y = 𝑟 ∙
𝑥0𝑛

𝑅
; dr = dy ∙

𝑅

𝑥0𝑛

R = Radius
L = Length

Resonator Figures of Merit
Quality Factor, Stored Energy, Power Loss, Skin Depth

𝑈𝑒,𝑝𝑘,0𝑛0 = 𝜋 ∙ 𝐿 ∙ 𝜖 ∙ 𝐸0
2 ∙

𝑅2

2
∙ 𝐽1

2(𝑥0𝑛)
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𝑃𝑎𝑣𝑔 =
𝑅𝑆

2
 

𝑆

𝐻𝑠
2 ∙ 𝑑𝑆

- In the metallic surface power losses arise from (eddy) currents induced by the time
varying magnetic fields tangential to the cavity surface

- The time-averaged power loss in the whole resonator surface is given

Rs is the effective surface resistance [Ω] of the metal

Note: H is the peak field, the average power is due to factor ½ 

- The eddy currents are opposed to the current inside 
the metal, which leads to the skin effect, i.e. the 
current density J decreases from the RF surface to the 
inside of the metal

x

- What is dependence of J(x) with distance x from surface
that defines the skin depth  ?

𝑅𝑆 =
1

𝜎 ∙ 𝛿

- This yields to the surface resistance being
dependent on the skin depth

 is the skin depth

Resonator Figures of Merit
Quality Factor, Stored Energy, Power Loss, Skin Depth

H-field is parallel to wall



 

𝜕𝑆

𝐻 ∙ 𝑑 𝑙 = 𝐻𝑦 𝑥 + 𝑑𝑥 Δ𝑏 − 𝐻𝑦 𝑥 Δ𝑏 = 𝐽𝑧 𝑥 𝑑𝑥Δ𝑏

 

𝜕𝑆

𝐻 ∙ 𝑑 𝑙 =  

𝑆

 𝐽 ∙ 𝑑  𝑆 +  

𝑆

𝜕𝐷

𝜕𝑡
∙ 𝑑  𝑆

𝐻𝑦 𝑥 + 𝑑𝑥 − 𝐻𝑦 𝑥

𝑑𝑥
= 𝐽𝑧 𝑥

𝜕𝐻𝑦 𝑥

𝜕𝑥
= 𝐽𝑧 𝑥 = 𝐸𝑧

 

𝜕𝑆

𝐸 ∙ 𝑑 𝑙 = −
𝑑

𝑑𝑡
 

𝑆

𝐵 ∙ 𝑑  𝑆 = −
𝑑𝐵

𝑑𝑡

𝐸𝑧 𝑥 Δ𝑙 − 𝐸𝑧 𝑥 + 𝑑𝑥 Δ𝑙 = −𝜇
𝜕𝐻𝑦(𝑥)

𝜕𝑡
𝑑𝑥Δ𝑙 −

𝜕𝐸𝑧 𝑥

𝜕𝑥
= −𝜇

𝜕𝐻𝑦(𝑥)

𝜕𝑡

;  𝐽 = 𝐸 =
1

𝜌
𝐸1)

2)

- A second condition is provided by the magnetic flux

Resonator Figures of Merit
Quality Factor, Stored Energy, Power Loss, Skin Depth

- In the metallic surface power losses arise from (eddy) currents induced by the time
varying magnetic fields tangential to the cavity surface



- Combine 1) and 2) 
𝜕𝐽𝑧 𝑥

𝜕𝑥
= 𝜇𝜎

𝜕𝐻𝑦(𝑥)

𝜕𝑡
; 𝐻𝑦 = 𝐻𝑦(𝑥)𝑒𝑖𝜔𝑡

𝜕𝐽𝑧 𝑥

𝜕𝑥
= 𝑖𝜇𝜎𝜔 ∙ 𝐻𝑦(𝑥)

𝜕2𝐽𝑧 𝑥

𝜕𝑥2
− 𝑖 ∙ 𝜇𝜎𝜔 ∙

𝜕𝐽𝑧 𝑥

𝜕𝑥
= 0

𝜕𝐻𝑦 𝑥

𝜕𝑥
= 𝐽𝑧 𝑥 = 𝐸𝑧 −

𝜕𝐸𝑧 𝑥

𝜕𝑥
= −𝜇

𝜕𝐻𝑦(𝑥)

𝜕𝑡
1) 2)

- Differential equation:

- General solution:

𝐽𝑧 𝑥 = 𝐽0𝑒− 𝑖∙𝜇𝜎𝜔∙𝑥

- Since the current density must be finite for x  , J’z(0) = 0 

𝐽𝑧 𝑥 = 𝐽𝑧 0 𝑒− 𝑖∙𝜇𝜎𝜔∙𝑥 + 𝐽′𝑧 0 𝑒+ 𝑖∙𝜇𝜎𝜔∙𝑥

With the abbreviation 
𝐽𝑧 𝑥 = 𝐽0 ∙ 𝑒

−
𝑥
𝛿 ∙ 𝑒

−𝑖∙
𝑥
𝛿𝛿 =

2

𝜇𝜎𝜔
[𝑚]

Note: 𝑖 =
1

2
(1 + 𝑖)

Skin depth ; at x = δ

- 𝑱𝒛 𝟎 = 𝑱𝟎 is current density 
at RF surface

𝐽𝑧 𝑥 =
𝐽0
𝑒

∙ 𝑒−𝑖
phase changes by 1 radian
per skin depth

𝑅𝑆 =
𝜇𝜔

2𝜎
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- Similarly to J: 𝐻𝑦 𝑥 = 𝐻0 ∙ 𝑒
−

𝑥
𝛿 ∙ 𝑒

−𝑖∙
𝑥
𝛿

𝑃𝑎𝑣𝑔 =
𝑅𝑆

2
 

𝑆

𝐻𝑠
2 ∙ 𝑑𝑆

H-field is parallel to wall

; equivalent to P = ½ R·Ipk
2
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- Example: Skin depth and surface resistance as a function of frequency
for copper and aluminum at room temperature 



- Coming back to power loss
𝑃𝑎𝑣𝑔 =

1

2
∙

1

𝜎𝛿
∙  

𝑆

𝐻2𝑑𝑆 =
1

2
∙

𝜇𝜔

2𝜎
 

𝑆

𝐻2𝑑𝑆

- In a cylindrical resonator we can sum up losses over lateral
surface and endplates considering symmetry

- In cylindrical coordinates (dx·dy =r·dr·d) we obtain

𝑃𝑎𝑣𝑔 =  𝑃𝑙𝑎𝑡𝑒𝑟𝑎𝑙 + 2 ∙  𝑃𝑒𝑛𝑑𝑝𝑙𝑎𝑡𝑒

𝑃𝑎𝑣𝑔 =
1

2
∙

1

𝜎𝛿
∙

𝑅  

0

𝐿

𝑑𝑧 ∙  

0

2𝜋

𝑑𝜑 ∙ 𝐻𝜑
2 𝑅 + 𝐻𝑧

2(𝑅) + 2 

0

𝑅

𝑑𝑟 ∙ 𝑟  

0

2𝜋

𝑑𝜑 ∙ 𝐻𝑟
2 𝑟 + 𝐻𝜑

2(𝑟)

R = Radius
L = Length

; with Hr(r=R) = 0 on lateral surface ; with Hz(r) = 0 everywhere on endplates 
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 𝑷𝒍𝒂𝒕𝒆𝒓𝒂𝒍 =
1

2
∙

1

𝜎𝛿
∙  

0

𝐿

𝑑𝑧  

0

2𝜋

𝑑𝜑 ∙ 𝐻𝜑
2 𝑅, 𝜑, 𝑡

=
1

2
∙

𝑅

𝜎𝛿
∙ 𝐿 ∙ 𝐸0

2 ∙ 2𝜋 ∙
𝜔0𝑛0𝜀𝑅2

𝑥0𝑛
2

2

∙
𝜕𝐽0 𝑟

𝑥0𝑛
𝑅

𝜕𝑟

2

=
1

𝜎𝛿
∙ 𝑅 ∙ 𝐿 ∙ 𝐸0

2 ∙ 𝜋 ∙
𝜔0𝑛0𝜀𝑅2

𝑥0𝑛
2

2

∙
𝑥0𝑛

𝑅

2

∙ 𝐽1 𝑥0𝑛
2

=
𝟏

𝝈𝜹
∙ 𝑹 ∙ 𝑳 ∙ 𝐸0

2 ∙ 𝝅 ∙
𝝎𝟎𝒏𝟎𝜺𝑹

𝒙𝟎𝒏

𝟐

∙ 𝑱𝟏 𝒙𝟎𝒏
𝟐

; identity 
𝜕𝐽𝑚 𝑟∙

𝑥𝑚𝑛
𝑅

𝜕𝑟
=

𝑚

𝑟
𝐽𝑚 𝑟 ∙

𝑥𝑚𝑛

𝑅
−

𝑥𝑚𝑛

𝑅
𝐽𝑚+1 𝑟 ∙

𝑥𝑚𝑛

𝑅

; identity 
𝜕𝐽0 𝑟∙

𝑥0𝑛
𝑅

𝜕𝑟
= −

𝑥0𝑛

𝑅
𝐽1 𝑟 ∙

𝑥𝑚0

𝑅
; r = R
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Case Example: TM0n0 (m=0, p=0) monopole modes

- Again we only have the following field components  to consider:

𝑬𝒛 = 𝑬𝟎 ∙ 𝑱𝟎 𝒓
𝒙𝟎𝒏

𝑹
∙ 𝒆𝒊𝝎𝒕𝐸𝑟 = 𝐸𝜑 = 𝐻𝑟 = 𝐻𝑧 = 0

𝐻𝜑 = −𝑖𝐸0 ∙
𝜔𝜀𝑅2

𝑥0𝑛
2 ∙

𝜕𝐽0 𝑟
𝑥0𝑛
𝑅

𝜕𝑟
∙ 𝑒𝑖𝜔𝑡

- 1st term of power loss:



 𝑷𝒆𝒏𝒅𝒑𝒍𝒂𝒕𝒆𝒔 =
1

𝜎𝛿
∙  

0

𝑅

𝑑𝑟 ∙ 𝑟  

0

2𝜋

𝑑𝜑 ∙ 𝐻𝜑
2(𝑟, 𝜑, 0)

=
1

𝜎𝛿
∙ 𝐸0

2 ∙ 2𝜋 ∙
𝜔0𝑛0𝜀𝑅2

𝑥0𝑛
2

2

∙  

0

𝑅

𝑑𝑟 ∙ 𝑟
𝜕𝐽0 𝑟

𝑥0𝑛
𝑅

𝜕𝑟

2

=
1

𝜎𝛿
∙ 𝐸0

2 ∙ 2𝜋 ∙
𝜔0𝑛0𝜀𝑅2

𝑥0𝑛
2

2

∙  

0

𝑅

𝑑𝑟 ∙ 𝑟 ∙
𝑥0𝑛

𝑅

2

∙ 𝐽1 𝑟 ∙
𝑥0𝑛

𝑅

2

=
1

𝜎𝛿
∙ 𝐸0

2 ∙ 2𝜋 ∙
𝜔0𝑛0𝜀𝑅2

𝑥0𝑛
2

2

∙  

0

𝑥0𝑛

𝑑𝑦 ∙ 𝑦 ∙
𝑅

𝑥0𝑛

2

∙
𝑥0𝑛

𝑅

2

∙ 𝐽1 𝑦 2

=
1

𝜎𝛿
∙ 𝐸0

2 ∙ 2𝜋 ∙
𝜔0𝑛0𝜀𝑅2

𝑥0𝑛
2

2

∙  

0

𝑥0𝑛

𝑑𝑦 ∙ 𝑦 ∙ 𝐽1 𝑦 2

=
1

𝜎𝛿
∙ 𝐸0

2 ∙ 2𝜋 ∙
𝜔0𝑛0𝜀𝑅2

𝑥0𝑛
2

2

∙  −𝐽0(𝑦) ∙ 𝑦 ∙ 𝐽1(𝑦) +
𝑦2

2
∙ 𝐽0

2(𝑦) + 𝐽1
2(𝑦)

0

𝑥0𝑛

=
1

𝜎𝛿
∙ 𝐸0

2 ∙ 2𝜋 ∙
𝜔0𝑛0𝜀𝑅2

𝑥0𝑛
2

2

∙
𝑥0𝑛

2

2
∙ 𝐽1 𝑥0𝑛

2

=
𝟏

𝝈𝜹
∙ 𝑬𝟎

𝟐 ∙ 𝝅 ∙
𝝎𝟎𝒏𝟎𝜺𝑹𝟐

𝒙𝟎𝒏

𝟐

∙ 𝑱𝟏(𝒙𝟎𝒏)𝟐



𝜕𝐽0 𝑟∙
𝑥0𝑛
𝑅

𝜕𝑟
= −

𝑥0𝑛

𝑅
𝐽1 𝑟 ∙

𝑥𝑚0

𝑅

; symmetry of fields

; substitute y = 𝑟 ∙
𝑥0𝑛

𝑅
; dr = dy ∙

𝑅

𝑥0𝑛

; identity:
𝑑𝐽0 𝑦

𝑑𝑦
= −𝐽1 𝑦

; identity: 
𝜕𝐽𝑚 𝑦

𝜕𝑦
=

𝑚

𝑦
𝐽𝑚 𝑦 − 𝐽𝑚+1 𝑦

; proof in appendix

; at limits: 𝐽1 0 = 0, 𝐽0 0 = 0, 𝐽0 𝑥0𝑛 = 0

; identity  𝑑𝑦 ∙ 𝑦 ∙ 𝐽1 𝑦 2 = −𝐽0 ∙ 𝑦 ∙ 𝐽1 +
𝑦2

2
∙ 𝐽0

2 + 𝐽1
2
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- 2nd term for power loss for TM0n0 (m=0, p=0) monopole modes



𝑃𝑎𝑣𝑔 =  𝑃𝑙𝑎𝑡𝑒𝑟𝑎𝑙 +  𝑃𝑒𝑛𝑑𝑝𝑙𝑎𝑡𝑒𝑠

=
1

𝜎𝛿
∙ 𝑅 ∙ 𝐿 ∙ 𝐸0

2 ∙ 𝜋 ∙
𝜔0𝑛0𝜀𝑅

𝑥𝑜𝑛

2

∙ 𝐽1 𝑥0𝑛
2 +

1

𝜎𝛿
∙ 𝐸0

2 ∙ 𝜋 ∙
𝜔0𝑛0𝜀𝑅2

𝑥0𝑛

2

∙ 𝐽1 𝑥0𝑛
2

𝜔0𝑛0
𝑇𝑀 =

1

𝜇𝜖

𝑥0𝑛

𝑅

2
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𝑈𝑒,𝑝𝑘 =
𝑅2

2
∙ 𝐿 ∙ 𝐸0

2 ∙ 𝜋 ∙ 𝜀 ∙ 𝐽1 𝑥0𝑛
2

Combining both terms this yields:

Total stored energy (Note: does not depend on metal surface (conductivity, skin depth))

Quality factor

𝑸𝟎 = 𝜔 ∙
𝑈𝑒,𝑝𝑘

𝑃𝑎𝑣𝑔
=

𝜔 ∙
𝑅2

2
∙ 𝐿 ∙ 𝐸0

2 ∙ 𝜋 ∙ 𝜀 ∙ 𝐽1 𝑥0𝑛
2

1
𝜎𝛿

∙ 𝐸0
2 ∙ 𝜋 ∙

𝜔0𝑛0 ∙ 𝜀 ∙ 𝑅
𝑥0𝑛

2

∙ 𝐽1 𝑥0𝑛
2 ∙ 𝑅 ∙ 𝐿 + 𝑅2

=
𝜎𝛿 ∙ 𝑥0𝑛

2

2 ∙ 𝜔0𝑛0 ∙ 𝜀
∙

𝐿

𝑅 ∙ 𝐿 + 𝑅2

𝛿 =
2

𝜇𝜎𝜔
Skin depth𝑃𝑎𝑣𝑔 =

1

𝜎𝛿
∙ 𝐸0

2 ∙ 𝜋 ∙
𝜔0𝑛0𝜀𝑅

𝑥0𝑛

2

∙ 𝐽1 𝑥0𝑛
2 ∙ 𝑅 ∙ 𝐿 + 𝑅2

𝑸𝟎 =
𝝈

𝟐𝝁𝝎
∙

𝒙𝟎𝒏
𝟐

𝝎𝟎𝒏𝟎 ∙ 𝜺
∙

𝑳

𝑹 ∙ 𝑳 + 𝑹𝟐
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- TM-modes can be used for acceleration since TE-modes have no electric field component along the axis 
field

𝐸𝑧 𝜔 = 𝐸0 ∙ 𝐽𝑚 𝑟
𝑥𝑚𝑛

𝑅
∙ 𝑐𝑜𝑠(𝑚𝜑) ∙ cos

π𝑝

𝐿
𝑧 ∙ 𝑒𝑖𝜔𝑇𝑀𝑡

- If we neglect time-dependence for now, voltage ‘seen’ by a particle traveling parallel to
resonator axis:

𝑉𝑧,0 =  
−

1

2
𝐿

+
1

2
𝐿
𝑑𝑧 ∙ 𝐸𝑧 = 𝐸0 ∙ 𝐽0 𝑟

𝑥0𝑛

𝑅
∙  

−
1

2
𝐿

1

2
𝐿

𝑑𝑧 ∙ cos
π𝑝

𝐿
𝑧

Note:  lim
𝑝→0

sin
π𝑝

2
π𝑝

2

= 1

- For a given beam current (I), the accelerating voltage (V = I·Rsh) should be maximized, wherein Rsh is the 
shunt impedance (similar to Ohm’s law)

TM010 TM011 TM012

= 𝐸0 ∙ 𝐽0 𝑟
𝑥0𝑛

𝑅
∙

𝐿

π𝑝
∙  𝑠𝑖𝑛

π𝑝

𝐿
𝑧

−
1

2
𝐿

1

2
𝐿

= 𝐿 ∙ 𝐸0 ∙ 𝐽0 𝑟
𝑥0𝑛

𝑅
∙

sin
π𝑝

2
π𝑝

2

𝑉𝑧,0 = 𝐿 ∙ 𝐸0 ∙ 𝐽0 𝑟
𝑥0𝑛

𝑅
∙
sin

π𝑝
2

π𝑝
2

- Maximum value for TM010-mode:  𝑉𝑧,0 = 𝐿 ∙ 𝐸0 ∙ 𝐽0 𝑟
𝑥0𝑛

𝑅

- A beam particle experiences an acceleration along or parallel to the beam axis by the electric field

- Efficient for acceleration are monopole modes (TM0np) with near constant field around the cylindrical axis

on axis  𝑉𝑧,0= 𝐿 ∙ 𝐸0



- However, we need to take into account the change of the field amplitude during the transit time of the beam
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𝑉𝑧,𝑒𝑓𝑓 =  

−𝐿/2

+𝐿/2

𝑑𝑧 ∙ 𝑅𝑒 𝐸𝑧 𝜔 = 𝐸0 ∙ 𝐽0 𝑟
𝑥0𝑛

𝑅
∙  

−𝐿/2

+𝐿/2

𝑑𝑧 ∙ cos
π𝑝

𝐿
𝑧 ∙ cos(𝜔 ∙ 𝑡 + 𝜑)

- For symmetry reasons let us shift the zero to the center of the cavity

- Moreover: velocity increases while beam is accelerated (v(z)) 

- Depending on velocity of the beam, the experienced fields may vary, so it is a function of z

- If velocity increase is however small (vb ~ constant, e.g. already relativistic beam or short accelerating gap) 
 t(z) = z/vb with vb = βb·c0

𝑡 𝑧 =  

0

𝑧

𝑑𝑧
1

v𝑏(𝑧)

𝑉𝑧,𝑒𝑓𝑓 = 𝐸0 ∙ 𝐽0 𝑟
𝑥0𝑛

𝑅
∙  

−
1

2
𝐿

+
1

2
𝐿
𝑑𝑧 ∙ 𝑐𝑜𝑠

π𝑝

𝐿
𝑧 ∙ 𝑐𝑜𝑠 𝜔𝑡 + 𝜑

= 𝐸0 ∙ 𝐽0 𝑟
𝑥0𝑛

𝑅
∙  

−
1

2
𝐿

1

2
𝐿

𝑑𝑧 ∙ 𝑐𝑜𝑠
π𝑝

𝐿
𝑧 ∙ 𝑐𝑜𝑠 𝜔𝑡 ∙ 𝑐𝑜𝑠𝜑 − 𝑠𝑖𝑛 𝜔𝑡 ∙ 𝑠𝑖𝑛𝜑

;  is phase relative to crest of field

= 𝐸0 ∙ 𝐽0 𝑟
𝑥0𝑛

𝑅
∙ 𝑐𝑜𝑠𝜑 ∙  

−
1

2
𝐿

1

2
𝐿

𝑑𝑧 ∙ 𝑐𝑜𝑠
π𝑝

𝐿
𝑧 ∙ 𝑐𝑜𝑠 𝜔𝑡 − 𝑠𝑖𝑛𝜑 ∙  

−
1

2
𝐿

1

2
𝐿

𝑑𝑧 𝑐𝑜𝑠
π𝑝

𝐿
𝑧 𝑠𝑖𝑛 𝜔𝑡

; identity: 
cos(+β) = cos·cosβ - sin·sinβ

= 𝐸0 ∙ 𝐽0 𝑟
𝑥0𝑛

𝑅
∙ 𝑐𝑜𝑠𝜑 ∙  

−
1

2
𝐿

1

2
𝐿

𝑑𝑧 ∙ 𝑐𝑜𝑠
π𝑝

𝐿
𝑧 ∙ 𝑐𝑜𝑠 𝜔𝑡

cos 𝜔𝑡 = 𝑐𝑜𝑠
2π 𝑐0

λ
∙

𝑧

𝛽𝑏 ∙ 𝑐0
+ 𝜑 = 𝑐𝑜𝑠

2π ∙ 𝑧

λ𝛽𝑏
+ 𝜑

 
−

1

2
𝐿

1

2
𝐿

𝑑𝑧 𝑐𝑜𝑠
π𝑝

𝐿
𝑧 𝑠𝑖𝑛 𝜔𝑡 = 0

; If a particle is at center of 
resonator when the field peaks
(electrical center), then: 

𝑉𝑧,𝑒𝑓𝑓 = 𝑐𝑜𝑠𝜑 ∙ 𝐸0 ∙ 𝐽0 𝑟
𝑥0𝑛

𝑅
 
−

1

2
𝐿

1

2
𝐿

𝑑𝑧 ∙ 𝑐𝑜𝑠
π𝑝

𝐿
𝑧 ∙ 𝑇𝑇𝐹 𝑇𝑇𝐹 =

𝐸0 ∙𝐽0 𝑟
𝑥0𝑛
𝑅

 
−

1
2𝐿

1
2𝐿

𝑑𝑧∙𝑐𝑜𝑠
π𝑝

𝐿
𝑧 ·𝑐𝑜𝑠 𝜔𝑡

𝐸0 ∙𝐽0 𝑟
𝑥0𝑛
𝑅

 
−

1
2𝐿

1
2𝐿

𝑑𝑧∙𝑐𝑜𝑠
π𝑝

𝐿
𝑧



𝑉𝑧,𝑒𝑓𝑓 =𝑉𝑧,0 ∙ 𝑐𝑜𝑠𝜑 ∙ 𝑇𝑇𝐹

𝑇𝑇𝐹 =

 
−

1
2𝐿

1
2
𝐿

𝑑𝑧 ∙ 𝑐𝑜𝑠
π𝑝
𝐿 𝑧 · 𝑐𝑜𝑠 𝜔𝑡

 
−

1
2𝐿

1
2
𝐿

𝑑𝑧 ∙ 𝑐𝑜𝑠
π𝑝
𝐿 𝑧
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- Since we already solved the integral without time dependence:

TTF = transit time factor

- For TM0n0-modes

TTF =

 
−

1
2
𝐿

1
2
𝐿

𝑑𝑧 ∙ 𝑐𝑜𝑠
2π ∙ 𝑧
λ𝛽𝑏

+ 𝜑

𝐿

=

λ𝛽𝑏
2π  𝑠𝑖𝑛

2π ∙ 𝑧
λ𝛽𝑏

+ 𝜑
−

1
2
𝐿

1
2
𝐿

𝐿

=
𝑠𝑖𝑛

π ∙ 𝐿
λ𝛽𝑏

+ 𝜑

π ∙ 𝐿
λ𝛽𝑏

𝑉𝑧,𝑒𝑓𝑓 =𝐿 ∙ 𝐸0 ∙ 𝐽0 𝑟
𝑥0𝑛

𝑅
∙

sin
π𝑝

2
π𝑝

2

𝑐𝑜𝑠𝜑 ∙ 𝑇𝑇𝐹

; cos 𝜔𝑡 = 𝑐𝑜𝑠
2π∙𝑧

λ𝛽𝑏
+ 𝜑

→ 𝐿 =
𝛽𝑏λ

2
𝑎𝑛𝑑 𝜑 = 0 𝑇𝑇𝐹 =

λ𝛽𝑏

𝐿π
=

2

π
≈ 0.636 𝑉𝑧,𝑒𝑓𝑓 =

2

π
𝐿 ∙ 𝐸0 ∙ 𝐽0 𝑟

𝑥0𝑛

𝑅

- Unless argument of sine is small (short accelerating gap L and  = 0) an efficient acceleration is achieved, when sin(~) = 1

; for 𝐿 >
𝛽𝑏λ

2
→ 𝑇𝑇𝐹 <

2

π

𝑇𝑇𝐹 =
2

π



Resonator Figures of Merit
Shunt Impedance

- We previously defined the shunt impedance as a resistor (Rsh) in the parallel circuit

- For accelerating resonators the longitudinal shunt impedance is an important figure of merit

- It defines how effective a particle beam is accelerated by a given electric field along the 
resonating RF cavity  shunt impedance for accelerating mode should be maximized

𝑃𝑝𝑘 =
𝑉𝑝𝑘

2

𝑅𝑠ℎ
𝑃𝑎𝑣𝑔 =

1

2
∙
𝑉𝑝𝑘

2

𝑅

𝑅𝑠ℎ =
𝑉𝑧,0 ∙ 𝑐𝑜𝑠𝜑 ∙ 𝑇𝑇𝐹

2

2 ∙ 𝑃𝑎𝑣𝑔
=

𝑉𝑧,0 ∙ 𝑐𝑜𝑠𝜑 ∙ 𝑇𝑇𝐹
2

2 ∙ 𝜔0 ∙ 𝑈𝑆
∙ 𝑄0

- For TM0n0-modes:

𝑅𝑠ℎ =
𝐿∙𝐸0 ∙𝐽0 𝑟

𝑥0𝑛
𝑅

·𝑐𝑜𝑠𝜑∙𝑇𝑇𝐹
2

2∙𝑃𝑎𝑣𝑔
=

𝐿∙𝐸0 ∙𝐽0 𝑟
𝑥0𝑛
𝑅

·𝑐𝑜𝑠𝜑∙
2

π

2

2

𝜎𝛿
∙𝐸0

2∙𝜋∙
𝜔0𝑛0𝜀𝑅

𝑥0𝑛

2
∙𝐽1 𝑥0𝑛

2∙ 𝑅∙𝐿+𝑅2
=

2𝜎𝛿∙𝑥0𝑛
2∙𝑐𝑜𝑠𝜑2

𝜋3∙ 𝜔0𝑛0∙𝜀 2 ∙
𝐽0 𝑟

𝑥0𝑛
𝑅

𝐽1 𝑥0𝑛

2

∙
𝐿2

𝑅2 𝑅∙𝐿+𝑅2

sh

; 𝑃𝑎𝑣𝑔 =
1

𝜎𝛿
∙ 𝐸0

2 ∙ 𝜋 ∙
𝜔0𝑛0𝜀𝑅

𝑥0𝑛

2
∙ 𝐽1 𝑥0𝑛

2 ∙ 𝑅 ∙ 𝐿 + 𝑅2

; 𝑄0 = 𝜔0 ∙
𝑈𝑆

𝑃𝑎𝑣𝑔

- Shunt impedance depends on surface material properties, as a resistor (R) in the parallel circuit

- Benefit of resonance structures is obvious due to product with Q0

(Q0 is few 1e4 in normal conducting RF structures at room temperature, few 1e10 in superconducting RF structures at 2 Kelvin)

Note: This is the circuit definition of the Rsh (also knows as the EU-definition), 
numerical codes rather calculate twice the circuit shunt impedance (US or linac definition)



Resonator Figures of Merit
Characteristic Shunt Impedance

- The characteristic shunt impedance (short R/Q-value) is defined by

𝑅

𝑄
=

𝑅𝑠ℎ

𝑄0
=

𝑉𝑧,0 ∙ 𝑐𝑜𝑠𝜑 ∙ 𝑇𝑇𝐹
2

2 ∙ 𝑃𝑎𝑣𝑔
=

𝑉𝑧,0 ∙ 𝑐𝑜𝑠𝜑 ∙ 𝑇𝑇𝐹
2

2 ∙ 𝜔0 ∙ 𝑈𝑆

- For TM0n0-modes:

𝑅

𝑄
=

𝐿 ∙ 𝐸0 ∙ 𝐽0 𝑟
𝑥0𝑛
𝑅

· 𝑐𝑜𝑠𝜑 ∙ 𝑇𝑇𝐹
2

2 ∙ 𝜔0𝑛0 ∙ 𝑈𝑆
=

𝐿 ∙ 𝐸0 ∙ 𝐽0 𝑟
𝑥0𝑛
𝑅

· 𝑐𝑜𝑠𝜑 ∙
2
π

2

2 ∙ 𝜔0𝑛0 ∙
𝑅2

2
∙ 𝐿 ∙ 𝐸0

2 ∙ 𝜋 ∙ 𝜀 ∙ 𝐽1 𝑥0𝑛
2

=
4 ∙ 𝑐𝑜𝑠𝜑2

𝜋3 ∙ 𝜔0𝑛0 ∙ 𝜀
∙

𝐽0 𝑟
𝑥0𝑛
𝑅

𝐽1 𝑥0𝑛

2

∙
𝐿

𝑅2

- The characteristic shunt t impedance does not depend on surface material properties, and only on the
geometry of the structure

- This is handy for experimental assessment of the shunt impedance, since the R/Q-value of a mode can be 
readily and accurately calculated with numerical codes since not depending on assumptions of surface 
losses, while one can measure the Q0-values reliably, which includes the real loss mechanisms

; 𝑈𝑒,𝑝𝑘 =
𝑅2

2
∙ 𝐿 ∙ 𝐸0

2 ∙ 𝜋 ∙ 𝜀 ∙ 𝐽1 𝑥0𝑛
2

- One usually aims to optimize/maximize the R/Q-value in normal conducting RF structure (e.g. cavity with 
nose-cones in order to minimize the power losses dissipated at heat in the metal surface 

𝑅𝑠ℎ =
𝑅

𝑄
∙ 𝑄0

- The shunt impedance can also be expressed by 

- This is not as crucial for superconducting RF structure since power losses are comparably small in the walls
 the accelerating cavities then can afford larger beam tubes (good for beam dynamics)



Phase and Group Velocity in Waveguide

𝘷𝑔𝑟 =
𝑑𝜔

𝑑𝑘𝑧

𝘷𝑝ℎ =
𝜔

𝑘𝑧
= 𝑓 ∙ Λ

𝘷𝑔𝑟 =
𝑑𝜔

𝑑𝑘𝑧
=

𝑘𝑧

𝜇𝜖 ∙ 𝜔
=

1

𝜇𝜖

𝜔2 − 𝜔𝑐
2

𝜔
= v ∙ 1 −

𝑓𝑐
2

𝑓2

; in free space 𝘷𝑝ℎ= 𝑐0 due to 𝑘2 = 𝜇𝜖𝜔2

𝑘𝑧 = 𝛽 =
2𝜋

Λ
= 𝜇𝜖 𝜔2 − 𝜔𝑐

2

Phase velocity

𝘷𝑝ℎ =
𝜔

𝑘𝑧
=

𝜔

𝜇𝜖 𝜔2 − 𝜔𝑐
2

=
v

1 −
𝑓𝑐

2

𝑓2

Phase velocity is always > speed of light 

, wherein ωc is the cutoff frequency of
waveguide (see Lecture: Transmission line
and Waveguides)

- This has technical implications for accelerating structures, particularly for long cavity structures
(when requiring high energy gain) since particle velocity can never be synchronous with phase of mode
( poor accelerating efficiency)

- In a waveguide the wavenumber is constrained compared to free space (𝑘 = 𝜇𝜖𝜔)

𝜔 =
𝑘𝑧

2

𝜇𝜖
+ 𝜔𝑐

2

Group velocity (energy flows at group velocity)

Group velocity is < speed of light 



Phase and Group Velocity in Waveguide

Phase velocity is > speed of light 

Group velocity is < speed of light 



- How to reduce the phase velocity to be synchronous with particle velocity ?

- E.g. implement aperture holes  creates multi-cell coupled resonator

- But now we created a series of resonators coupled with each other from a round waveguide

- What is the phase velocity now?

- Due to coupling of RF fields between cells, each mode in a single cell splits into N modes
in multi-cell coupled resonator (N = number of cells)  these N modes form a single passband

- Each mode (TEmnp, TMmnp) exsiting in single-cell resonator is augmented by factor N, and the N 
modes within the same passband differ by a phase advance 𝜑𝑗 per cavity cell period (Lcell)

Lcell

Analogous to coupled pendulum

out of phase by 180 (-mode)in phase (0-mode)out of phase by 180 (-mode)in phase (0-mode)

Example: 2-cell cavity with beam tubes (TM010-like mode)

Coupled Resonators
Phase Velocity and Dispersion



- Periodicity of field is then achieved after 2/𝜑𝑗 number of cells

- The resonator wavelength is then Λ𝑗 =
2𝜋

𝜑𝑗
∙ 𝐿𝑐𝑒𝑙𝑙 𝑘𝑗 =

2𝜋

Λ𝑗

𝘷𝑝ℎ =
𝜔

𝑘𝑗
= Λ𝑗 ∙

𝜔

2𝜋
=

𝜔

𝜑𝑗
∙ 𝐿𝑐𝑒𝑙𝑙- The phase velocity is thus:

Coupled Resonators
Phase Velocity and Dispersion

- How to reduce the phase velocity to be synchronous with particle velocity ?

- E.g. implement aperture holes  creates multi-cell coupled resonator

- But now we created a series of resonators coupled with each other from a round waveguide

- What is the phase velocity now?

- Due to coupling of RF fields between cells, each mode in a single cell splits into N modes
in multi-cell coupled resonator (N = number of cells)  these N modes form a single passband

- Each mode (TEmnp, TMmnp) exsiting in single-cell resonator is augmented by factor N, and the N 
modes within the same passband differ by a phase advance 𝜑𝑗 per cavity cell period (Lcell)

Lcell
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Coupled Resonators
Phase Velocity and Dispersion

- The phase velocity should equal the particle velocity vb for the accelerating mode :

𝐿𝑐𝑒𝑙𝑙 =
v𝑏 ∙ 𝜑𝑗

𝜔
=

𝛽𝑏𝑐0 ∙ 𝜑𝑗

2𝜋𝑓
=

𝛽𝑏𝜆

2𝜋
∙ 𝜑𝑗

v𝑏 = v𝑝ℎ =
𝜔

𝜑𝑗
∙ 𝐿𝑐𝑒𝑙𝑙

- We then obtain solution for cell length resulting in synchronous motion of particle with wave

Example: for a 𝜑𝑗 = 𝜋 mode the cell length should be: 𝐿𝑐𝑒𝑙𝑙 =
𝛽𝑏𝜆

2

- For non-relativistic particles that still significantly change their velocity when accelerated, the cell length 
must then be adapted according to the βb-value

- For e.g. proton SRF linac cavities (such as used in SNS, Oak Ridge), there is only one medium and one 
high beta section each with a fixed cell length (so-called geometrical beta (βg), which for SNS is βg= 0.61 
and βg = 0.81 for the SRF linac)  

- These fixed cell lengths are chosen such to cover the whole particle velocity range, though the TTF-value 
is continuously changing, but covers the peak value in each fixed-beta range for overall efficient energy 
gain

Condition for synchronous acceleration

; normalized particle velocity; βb = c0 /vb
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- Lumped circuit analysis (no derivation here) yields a solution for identical cell-to-cell coupling factor (K) 
using matrix formalism (Eigenwert solution)

Coupled Resonators
Passband Mode Frequencies

- The dispersion relation accounts for dependency of the Eigenfrequency with the phase advance 𝜑𝑗 per cell 

𝜔𝑗 =
𝜔0

1 ± 𝐾 ∙ 𝑐𝑜𝑠𝜑𝑗
- The solution yields:

- Various boundary condition are possible at the end of the cavity and can be accounted for

- Typically these boundary conditions are identical on ends, i.e.

- Electric boundaries (0-mode, no -mode)

- Magnetic boundaries (no 0-mode,  -mode)

- Mixed boundaries are possible

𝜑𝑗 = j ∙
𝜋

𝑁
𝑤𝑖𝑡ℎ 𝑗 = 0,1,⋯ , 𝑁

𝜑𝑗 = 𝑗 −
1

2
∙

𝜋

𝑁
𝑤𝑖𝑡ℎ 𝑗 = 0,1, ⋯ , 𝑁

- Dispersion relation can be best illustrated in Brillouin Diagram 𝜔𝑗(𝜑𝑗)

- What are the Eigenfrequencies of modes in a passband compared to a single resonator cell? 

Dispersion Relation

- Eigen frequencies thus vary in a passband

- Only when j = /2 (i.e. cos j = 0) is the Eigenfrequency equal to the natural frequency of an individual cell  

- The larger the coupling factor K, the larger the spread of frequencies in a passband  
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Coupled Resonators
Dispersion per Brillouin Diagram

- Example: Nine-cell cavity (red dots, e.g. TESLA cavity), curve is for infinite number of cells

ωj

phase advance j (per cell length)

v = v𝑝ℎ =
𝜔

𝜑𝑗
∙ 𝐿𝑐𝑒𝑙𝑙 = 2𝑓𝑗 ∙ 𝐿𝑐𝑒𝑙𝑙

accelerating TM010-like -mode
v ≈ 𝑐0 for electrons

Note: All HOMs excited by the beam are 
parasitic. Those modes close to the 
intersection of the light line with the 
dispersion curve are very synchronous with 
the wave (TTF is maximal)

The group velocity is the tangent on
the dispersion curve

v𝑔𝑟 =
𝑑𝜔

𝑑𝜑
∙ 𝐿𝑐𝑒𝑙𝑙



Field Amplitudes in a coupled 5-cell Cavity
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- Analytical formalism also allows to calculate relative peak amplitudes (Xm) in each cell (m)

𝑒𝑙𝑒𝑐𝑋𝑚
𝑒𝑙𝑒𝑐 = 𝜖𝑗 ∙ cos 𝑚 −

1

2
∙ 𝜑𝑗

𝜖𝑗 =
1

𝑁
𝑓𝑜𝑟 𝑗 = 0; 𝜖𝑗 =

2

𝑁
𝑓𝑜𝑟 𝑗 ≠ 0

𝜑𝑗 = 𝑗 ∙
𝜋

𝑁
; 𝑗 = 0, 1, … , 𝑁 − 1

Analytical solution

Numerical solution (TM010 passband – electric field contours)

PEC PEC

field free field free



Field Amplitudes in a 5-cell Cavity
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- Analytical formalism also allows to calculate relative peak amplitudes (Xm) in each cell (m)

𝑚𝑎𝑔𝑛𝑋𝑚
𝑚𝑎𝑔𝑛 = −𝜖𝑗 ∙ sin 𝑚 −

1

2
∙ 𝜑𝑗

𝜖𝑗 =
1

𝑁
𝑓𝑜𝑟 𝑗 = 𝑁; 𝜖𝑗 =

2

𝑁
𝑓𝑜𝑟 𝑗 ≠ 𝑁

𝜑𝑗 = 𝑗 ∙
𝜋

𝑁
; 𝑗 = 1, 2, … , 𝑁

PMC PMCAnalytical solution

Numerical solution (TM010 passband – electric field contours)

field free field free

-mode is delicate to 

tune! End-cell effect



Adding Beam Tubes for Accelerating Cavities
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- When adding beam tubes, the fields are distorted especially in the end cells

- If fields start to propagate out of beam tubes, the situation becomes more involved 
depending on boundary conditions (can be far away from the cavity ends)

Example: USPAS cavity (3-cell coupled structure)



Elliptical Accelerating Cavity
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- SRF accelerating cavities exhibit elliptical cell contour

- Consequence: RF fields deviate from pure pillbox fields

- No closed analytical expression of fields possible

- Numerical codes required for RF field computations

- Deviations to pure pillbox field can be significant such that e.g. TE-dipole Higher Order Modes
(HOMs) become dangerous as well for beam dynamics since non-vanishing electrical fields in 
longitudinal direction may exist (can kick beam off axis)

TE111



Unloaded/Loaded/External Q
- Typically we measure the loaded Q (Ql) of the RF structure, since all external couplers required 

to feed energy extract power (Pext), which add to the losses

- Power losses in external coupling lines are usually not negligible

- Coupling factor of an external circuit attached to the RF structure under test is given by the ratio 
of the externally dissipated power in the i-th external circuit to the intrinsically dissipated power 

; 𝑄0 = 𝜔 ∙
𝑈𝑒,𝑝𝑘

𝑃𝑎𝑣𝑔

𝑘𝑗 =
𝑃𝑒𝑥𝑡,𝑖

𝑃𝑖𝑛𝑡𝑟.
=

𝑄0

𝑄𝑒𝑥𝑡,𝑖

- The total power dissipation is simply the sum of intrinsic and external losses

- This yields the loaded Q
1

𝑄𝑙

=
𝑃𝑡𝑜𝑡𝑎𝑙

𝜔𝑈
=

𝑃𝑖𝑛𝑡𝑟. + 𝑃𝑒𝑥𝑡,1 + 𝑃𝑒𝑥𝑡,2 + ⋯

𝜔𝑈

- This is equivalent to:
1

𝑄𝑙
=

1

𝑄0
+

1

𝑄𝑒𝑥𝑡
𝑤𝑖𝑡ℎ

1

𝑄𝑒𝑥𝑡
=

1

𝑄𝑒𝑥𝑡,1
+

1

𝑄𝑒𝑥𝑡,2
+ ⋯

- Solving for Q0, yields:
𝑄0 =

1

𝑄𝑙
−

1

𝑄𝑒𝑥𝑡

−1

𝑄𝑙 < 𝑄0, 𝑄𝑒𝑥𝑡

𝑄0 always > 𝑄𝑙

- When Q0-value is very large (i.e. in SRF cavities), then 𝑄𝑙 ≈ 𝑄𝑒𝑥𝑡



Q0 and Reflection Response
Under-coupled and Over-coupled Conditions
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; 𝑘𝑗 =
𝑃𝑒𝑥𝑡,𝑖

𝑃𝑖𝑛𝑡𝑟.

1

𝑄𝑙

=
𝑃𝑡𝑜𝑡𝑎𝑙

𝜔𝑈
=

𝑃𝑖𝑛𝑡𝑟. + 𝑃𝑒𝑥𝑡,1 + 𝑃𝑒𝑥𝑡,2 + ⋯

𝜔𝑈
=

𝑃𝑖𝑛𝑡𝑟.

𝜔𝑈
∙ 1 +

𝑃𝑒𝑥𝑡,1

𝑃𝑖𝑛𝑡𝑟.
+

𝑃𝑒𝑥𝑡,2

𝑃𝑖𝑛𝑡𝑟.
, + ⋯

- Re-ordering terms

- In terms of the coupling factors once then can re-write:

1

𝑄𝑙
=

1

𝑄0
∙ 1 + 𝑘1 + 𝑘2 + ⋯ or 𝑄0 = 𝑄𝑙∙ 1 + 𝑘1 + 𝑘2 + ⋯

- Complex reflection coefficient (S11) can be measured  with Vector Network Analyzer (VNA) 

- In polar chart we see a coupling loop around the resonance

Note:

- If the loop encompasses the origin, then the external 
circuit is over-coupled (Pext > Pintr.)

- If the loop does not encompasses the origin, then the 
external circuit is under-coupled (Pext < Pintr.)
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Ω 𝜔 = 𝑄0 ∙
𝜔

𝜔0
−

𝜔0

𝜔
𝑆11 𝜔 =

1 − 𝑘1 + 𝑖 ∙ Ω

1 + 𝑘1 + 𝑖 ∙ Ω

RF Structure with Single Coupling Probe in Reflection

VNA

with

Amplitude chart of S11

around resonance

Polar chart of S11

around resonance

- Possible conditions:

𝑆11 𝜔 =
1 − 𝑘1

1 + 𝑘1
𝑘1 𝜔 =

1 − 𝑆11 𝜔

1 + 𝑆11 𝜔

𝑘1 > 1 𝑜𝑣𝑒𝑟𝑐𝑜𝑢𝑝𝑙𝑒𝑑, 𝑆11 < 0

𝑘1 < 1 𝑜𝑣𝑒𝑟𝑐𝑜𝑢𝑝𝑙𝑒𝑑, 𝑆11 > 0

𝑘1 = 1 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑆11 = 0

- In resonance S11 is real

𝑉𝑆𝑊𝑅 =
1 + |𝑆11|

1 − |𝑆11|

1/V𝑆𝑊𝑅



Ω 𝜔 = 𝑄0 ∙
𝜔

𝜔0
−

𝜔0

𝜔𝑆21 𝜔 =
2 𝑘1 ∙ 𝑘2

1 + 𝑘1 + 𝑘2 + 𝑖 ∙ Ω
with

Amplitude chart of S21

around resonance

Phase chart of S21

around resonance

𝑆11 𝜔 =
1+𝑘2−𝑘1

1+𝑘2+𝑘1
≈

1−𝑘1

1+𝑘1
for small k2

RF Structure with Two Coupling Probes in Transmission

|𝑆21 𝜔 | =
2 𝑘1 ∙ 𝑘2

1 + 𝑘1 + 𝑘2
2 + Ω2

Amplitude Phase

𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛 −𝑄𝑙 ∙
𝜔

𝜔0
−

𝜔0

𝜔

/2 (ω=0)

/2 (ω)

𝑆22 𝜔 =
1+𝑘1−𝑘2

1+𝑘1+𝑘2
≈

1−𝑘2

1+𝑘2
for small k1

from 
VNA

to
VNA



Measuring the Q-factor with the VNA
- Q-values are convenient measurable with VNA

- Note: S-Parameters signal ~ √P

- Q-definition is equivalent to

- To determine the Q, we search for the amplitude
(S-Parameter) that is reduced by factor 1/√2 of the 
amplitude in resonance, which is equivalent to 1/2 
the energy stored in resonance (or power dissipated)

- Note that in logarithmic scale

- We need to find the points to either side of the 
resonance, where the energy is ½ of that at the 
resonance, which is at 10·Log(1/2)=20·Log(1/√2) = 
≈-3.0103 dB

- Commonly one uses -3 dB points
(though not truly exact)

- Equivalent to measure at phases +45° and -45° apart 
from the resonance in the phase plot 61

𝑄 =
𝜔

Δ𝜔−3.01𝑑𝐵

Δ𝜔−3.01𝑑𝐵 𝑏𝑎𝑛𝑑𝑤𝑖𝑡𝑑ℎ

𝜑0

Δ𝜑 = −45°

Δ𝜑 = +45° 𝑝ℎ𝑎𝑠𝑒 𝑚𝑒𝑡ℎ𝑜𝑑
dB = 10·Log

Pout
Pin

= 20·Log
Vout

Vin

𝑄 =
𝜔0 ∙ 𝑈𝑝𝑘

𝑃𝑎𝑣𝑔
= 𝜔0 ∙ 𝜏0 =

𝜔

Δ𝜔1/2



Experiment related to this Lecture

62
http://www.agilent.com/

- Coupled Cavity Linac – Main tasks:

1) Measure dispersion through S11 measurements using VNA

2) Repeat dispersion measurement with S21 and measure Q values of each mode

3) Measure individual frequency of each cell by detuning other cells

4) Set up manual bead-pull measurement and determine the electric field amplitudes along 
the cavity before tuning

5) Use tuners in each cell to tune cavity to achieve same frequency in each cell

6) Repeat the dispersion measurement and compare with the previously measured 
dispersion

7) Tune cavity cells to flatten field distribution of last passband mode and
determine the electric field amplitudes along the cavity



Appendix



; partial integration  𝑑𝑦𝑓′𝑔 = 𝑓𝑔 −  𝑑𝑦 𝑓𝑔′

Special Proof of Identities for Bessel Function

 𝑑𝑦 ∙ 𝑦 ∙ 𝐽1 ∙ 𝐽1=  𝑑𝑦 ∙  𝑑𝑦 𝑦 ∙ 𝐽0 ∙ 𝐽1

; identity: (𝑦 ∙ 𝐽1)′ = 𝑦 ∙ 𝐽0

 𝑑𝑦 ∙  𝑑𝑦 𝑦 ∙ 𝐽0 ∙ 𝐽1 =  𝑑𝑦 ∙ 𝐽1 ∙  𝑑𝑦 ∙ 𝑦 ∙ 𝐽0 −  𝑑𝑦 ∙  𝑑𝑦 ∙ 𝐽1 ∙ 𝑦 ∙ 𝐽0

; identity: 𝐽0= −  𝑑𝑦 𝐽1 𝑦= −𝐽0 ∙  𝑑𝑦 ∙ 𝑦 ∙ 𝐽0 +  𝑑𝑦 ∙ 𝑦 ∙ 𝐽0∙ 𝐽0

= −𝐽0 ∙ 𝑦 ∙ 𝐽1 +  𝑑𝑦 ∙ 𝑦 ∙ 𝐽0∙ 𝐽0

; identity: (𝑦 ∙ 𝐽1)′ = 𝑦 ∙ 𝐽0

= −𝐽0 ∙ 𝑦 ∙ 𝐽1 +
𝑦2

2
∙ 𝐽0∙ 𝐽0 −

1

2
 𝑑𝑦 ∙ 𝑦2 ∙

𝑑

𝑑𝑦
𝐽0 ∙ 𝐽0

= −𝐽0 ∙ 𝑦 ∙ 𝐽1 +
𝑦2

2
∙ 𝐽0 ∙ 𝐽0 +  𝑑𝑦 ∙ 𝑦 ∙ 𝐽1 ∙ 𝑦 ∙ 𝐽0

= −𝐽0 ∙ 𝑦 ∙ 𝐽1 +
𝑦2

2
∙ 𝐽0∙ 𝐽0 +  𝑑𝑦 ∙ 𝑦 ∙ 𝐽1 ∙

𝑑

𝑑𝑦
𝑦 ∙ 𝐽1

; identity: 𝐽′0= −𝐽1 𝑦

= −𝐽0 ∙ 𝑦 ∙ 𝐽1 +
𝑦2

2
∙ 𝐽0

2 + 𝐽1
2

; identity: (𝑦 ∙ 𝐽1)′ = 𝑦 ∙ 𝐽0

; identity:  𝑑𝑦 𝑓′𝑓 =
𝑓𝑓

2

 𝑑𝑦 ∙ 𝑦 ∙ 𝐽1 𝑦 2 = −𝐽0 ∙ 𝑦 ∙ 𝐽1 +
𝑦2

2
∙ 𝐽0

2 + 𝐽1
2

𝑑

𝑑𝑦
𝑦𝑚 ∙ 𝐽𝑚(𝑦) = 𝑦𝑚𝐽𝑚−1 𝑦 → 𝑦 ∙ 𝐽1 𝑦 =  𝑑𝑦 ∙ 𝑦 ∙ 𝐽0(𝑦)

𝑑

𝑑𝑦
𝑦−𝑚 ∙ 𝐽𝑚(𝑦) = −𝑦𝑚𝐽𝑚−1 𝑦 →

𝑑

𝑑𝑦
𝐽0 𝑦 = −𝐽1 𝑦

Note: ′ =
𝑑

𝑑𝑦

; partial integration  𝑑𝑦𝑓′𝑔 = 𝑓𝑔 −  𝑑𝑦 𝑓𝑔′

Rules:

 𝑑𝑦 ∙ 𝑦 ∙ 𝐽0 𝑦 2 =
𝑦2

2
∙ 𝐽0

2 + 𝐽1
2


