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This Lecture

— The Cylindrical Resonator
. TE and TM Modes Nomenclature
. Derivation of Electromagnetic Fields

. Examples of Mode Pattern
. Lumped Circuit Representation
. Figures of Merit
—  Quality Factor
—  Stored Energy
—  Power Loss
—  Skin Depth
—  Accelerating voltage
—  Transit Time Factor
—  (Characteristic) Shunt Impedance
—  Phase and Group Velocity (Waveguide) and Consequence for Accelerators
. Coupled Resonator
—  Phase Velocity for Synchronous Acceleration
—  Eigen-frequencies
—  Dispersion Relation (Brillouin Diagram)
—  Examples of Field Amplitudes in Coupled Resonators

— Experiment related to this Lecture Jefferdon Lab



Example: Cylindrical Resonator (“Pillbox”)
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RF Mode Nomenclature

 Nomenclature for cylindrical resonator RF modes:
— TE =only Transverse Electric modes, E, =0V z (also named H-modes)
— TM = only Transverse Magnetic, H, =0 V z (also named E-modes)

— Indices describe how many notches field may have in each coordinate direction:

. Index m = azimuthal (@) direction
. Index n = radial (r) direction
. Index p = longitudinal (z) direction

— Mode can be categorized by azimuthal dependency:
. m = 0 is monopole mode
. m =1 is dipole mode
. m = 2 is quadrupole mode
. m = 3 is sextupole mode
. m =4 is octupole mode
. asf.
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Cylindrical Resonator

- Cylinder coordinates are more suitable to describe this problem

R = Radius Laplace operator in cylinder coordinates:
y L = Length Ar 2 2
A Aeiot — [ A |piot ) 10 0 1 0 d
) Ve=Ah=——1|r— | + ") > + >
‘ A, ror\ or) r<dep* 0z
- 104 024 1 924 0924 ,— | wave equation for
VA = o + 572 + 72 02 + 572 Hew A | time—harmonic
fields
_ _ > Henceforth abbreviated
Ansatz (separation of variablesr, ¢, and z): | A = N(r)M(¢@)P(z) w/o variables N, M, P
Jd 0 d
Ly " 1 " " — 2 ; substitute ‘ for y 3, 0T
;NMP+NMP+T—2NM P+ NMP" = —uew“NMP | - ar’ dp Az
1 , ., 1 144 144 , . 1
;N+N +T_2NV+N?=_ME(UN 1 NMP

1NI+NII+1MII+PII_ 2
rN TN Tp2m T p T THEY
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Cylindrical Resonator

1NI+NII+1MII+ 2_ PII 1NI+NII+1MII+ 2_ PII_ 2
rN N Ty THY T FN TN Ty TR =TT

Can only be fulfilled V (r, @, z) if both sides of

Right-hand side function
equation are constant (‘separation constant’)

Left-hand side functions
only depends on z

only depend onrand ¢

- Uses separation constant is -y? (y is called ‘propagation constant’)

Right-hand side P" = Yz P Ansatz: | P(z) = Bie™Y% + Bze+yz
forwards backwards
travelling travelling

wave wave

-y is generally complex| y=a+if [1/m]

- Real part ais therefore a damping term (‘attenuation constant’)

- Imaginary part B is a ‘phase constant’
- B’s are integration constants. Wave will be reflected at endplates, and thus the so far arbitrary

amplitudes must obey B, = B, —Jpx) =8 (7% + e"'yz)
— D1
;strictly only for loss-less case (=0, y = i)

- Periodicity of field is given by phase constant 3 (field changes sign after phase of 2)

— 2_7T A denotes the resonator (not free) wavelength

B = |
2 6 Jgﬂengnn Lab




Cylindrical Resonator

1Nl NII 1 MII 5

Left-hand side 2
——t —+——+ = — 2
rN N rzm TV AT
Nl NII MII
— 4+ 2_+ 2 2 + 2y —
r it (uew” + y*) T

— Again: Can only be fulfilled V (r, ¢) if both sides of equation are constant

- Separation constant m?
M" = —m*M Ansatz: | M(@) = Cie™ "™ 4 Cretime
M(p) = M(¢p + 2m)

Right-hand side

- Due to cylindrical symmetry

- Consequently m is an integer/natural number (m € NY,i.e.> 0)

. NI NII
Left-hand side r—+ 12—+ 1r2(pew? + y?) = m? |- R
of uppr equation N N

r’N"” + rN' + (r*(uew? + y?) —m?)N =0

This is a Bessel’s differential equation
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Cylindrical Resonator

- The only physical solution for integer numbers m that exists (is finite) on the resonator axis (r = 0) is
Bessel function of the first kind J_(r) of m-th order

Io'e) (1)] \/ 5 2m+2j
— T UEW- + Y ,

- One obtains for the possible resonant vector fields (modes) in a pillbox resonator regarding for the
harmonic time dependence:

Ael@wt = eIt N ()M (p)P(2)
—el®t.p | (r\/,uewz n yz) . (Cie™™® + C,et™P) . Be"V7 + B,etV?

- One can distinguish between modes that differentiate by the absence of the electric or
magnetic field component in z-direction

E, = 0V z & TE (Transverse Electric) Modes < no electric field along z-direction

H, =0V z < TM (Transverse Magnetic Modes < no electric field along z-direction

- TM-like modes are used for particle acceleration in resonators
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TM-Modes

- Solving for the electromagnetic fields requires to obey boundary conditions

- Case: Longitudinal dependency P(z) with boundaries applied

Boundary condition on endplates: Tangential E-fields vanish, reflection of E,-field

- Assume ideal (loss-less) conductor, a =0, B, = B, (full reflection at short)

AXE=0

—

n-H=0

nlS

Yy
A

- What is dependency of z-component of electric field for a TM-mode ?

E,(z) x P(z) = P(z) = B;(e”Y* + e*Y%) = 2B,cos(fz)

- This describes a standing wave, i.e. forward and backward wave oscillate with fixed
amplitude in z, the amplitude is twice as strong as each individual wave amplitude

- Boundary condition at the resonator end plates

P(z = end plates) = 2B,

or

cos(fz) = +1

- We remember that periodicity of field is given by phase constant 3
(field changes sign after phase of 2r)

2T

np

'B_ATM=L

p = i%pwithp e N°

Jygff;e-lgnn Lab



- Case: Radial dependency

TM-Modes

N(R) with boundaries applied

- Boundary condition on perimeter: Tangential fields vanish, in this case E.(r = R):

E,(r) « N(R) = Dy Jn (

R pew? + y2) =0

Requires to find roots of Bessel function

- One typically denotes x,,,, as the n-th root of the Bessel function of m-th order

Xmn = R\/.UE(UZ + y?

xl"‘l"‘ll'l

n 1 2 3 4

+ (%)2 — UEW?

10

0E

2.40483

2.22008

8.65373

11.7915

3.83171

7.01559

10.1735

133237 o .. I'.II 5:'.: ,,:. ; 11 ,2

5.13562

B.41724

11.61980

14.79600 0z

w M=o 3

6.38016

9.76102

13.01520

16.22350

(six significant figures)

y=if=2i|uew? —(

Xmn\> ., TP
&) =T

- This yields the resonant frequencies of TM-modes:

0™ = 2 fT™ =

1 2 mn 2
=) )

10

; loss-less (au=0) ;8 = inTp

- Free wavelength is then given by:

v 2T

e

/'[TM —
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TM-Modes

- Considering

R

Xomn\ 2 p
— i =4 2 _ (Zmny _ 4 &
y=if =+ l\/uew ( ) +i 7

- We find that the wavenumber is const

rained according to:

kmn = A2'17"TM = \/,uewz o (XR#)Z

L

- The resonator wavelength is then given by:

ATM 2L

p
1— (ATM i xmn)z
2T R

ATM

—> Resonator wavelength always larger than free wavelength

~Forp=0-> A™=c0, since E, (w) is uniform

11

A> A
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TM-Modes

Case: Azimuthal dependency M(¢) with boundaries applied

E,(9) x M(p) = C1e™"™ + Cre*™?

- Only non-trivial solution for E,(¢p) V ¢ possible if:

;ife=0 -

C]_:CZ

M(p) =C; + C,

M(p) = C, (e "™ +eti™MP) = 2C,cos(my)

- Eventually one obtains:

R

E,(w) =Ey - Jm (7‘ xﬂ) - cos(me) - cos(fz) el®

T™ ¢

- No we finally can solve for the electromagnetic fields

- Knowing E, one can obtain all other field components E,, E, H,, and H, utilizing

s Eo = 4B,C1Dy

104, O0A
the wave equations for field components in cylinder coordinates rop a_;
pxi=| 2 %
19(rd,) 104,

- One requires the curl in cylinder coordinates: ror 1o
02 , 166EZ+_ 0H, 02 , 166HZ+, 0E,
_ ————+ lwu—— — —— —
072 t+k (E(p) | rozae “ar 072 tk (H(p) | roz de Oy

2 — | 2 — | i
a—+k2 H, iwe 0E, n 0 0H, a—+k2 E, iwpu 0H, . 0 0E,
072 r do 0z Or 072 r de 0z Or
-2

JEJ,.I-—EI SUFTT LCALF




TM-Modes

Case: Azimuthal dependency M(¢) with boundaries applied

E,(9) x M(p) = C1e™™? + Cpe*™? | ;ifo=0 -

- Only non-trivial solution for E,(p) V ¢ possible if: | C; = Cy
M(p) = C{(e™"MP e +m®) = 2C, cos(my)

- Eventually one obtains:

T™ ¢

; Eo = 4B,C1 D,

E;(w) =Ey * m (7‘ %) - cos(mg) - cos(fz) - e'®

- No we finally can solve for the electromagnetic fields

- Knowing E, one can obtain all other field components £,, E,, H,, and H, utilizing
the wave equations for field components in cylinder coordinates

r_x‘I%’Ln aZ 67‘ T'_l(l)g';-x‘rznn.a(p
d]m(r) m
E,A = 1 R 9 OE, I R? 0E, dr 7]m(r) — Jm+1(1)
¢ r x2, 0z0¢ <P—_lw3'xrznn'ar
H,=0
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TM-Mode Field Components

Note: H-fields are shifted by -i=e™2 = -90° to E-fields " Je on Lab



Analogous Derivation for TE-Modes
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TE-Modes

E, = 0V z & TE (Transverse Electric) Modes < no electric field along z-direction

- What is dependency of z-component of magnetic field for a TE-mode ?

- H,(z) must vanish at end plates (no perpendicular fields allowed)

H,(z) x P(z) = Bje™ % + B,e*B? = —i2B, sin(Bz)

; B1=—B;

P(z = end plates) = 0

or

sin(fz) =0

- H,(@) is tangential to surface

B = nTpWithpEN,piO

H,(p) x M(¢p) = 2C;cos(mg)

- Azimuthal fields of E(r=R) must vanish at cavity perimeter (V o)
- Together with E, =0 this leads to the condition

SH,(r = R)
=0
or

- That implies

ON(r=R)

16

Proof (use 15t component)

H.) | iwedE, 0 0H, 0 0H,
072 r de 0z Or dz or

02 10 0E oH oH
— 2 7z : 'z . z
5,2 Tk (E(p> | razae TH G _ (“”“ 8r>

62
— 2 = 1
<622 +k )Eq, lwu p

0H,

E,(r=R)=0
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TE-Modes

- One typically denotes x’ ., as the n-th root of the derivative of the Bessel function of
m-th order

X mn 1]
! \/ 2 2 ae | J T
j— YodalE] I \__ -
X mn R HEW + Y n 1 2 3 4 w| Aoinf KON A )
m k J LR , ."r.. ey '._..
0 3.83171 7.01559 | 10.1735 | 13.3237 ERVATE v e # A s
1 1.84118 5.33144 | 853632 | 11.7060 VLY | ; '- z.‘&\__;c,,
! 2 2 305424 | 6.70613 | 996947 |13.17040 L A
X mn 2 3 420119 | 8.01524 |[11.34590 | 14.58580 b
y - i R - Hew (six significant figures) v

y=ipf = ; loss-less (a=0) ;6 = %withpEN,p;tO

, 2
. , (xmn> _ . Tp
[ |UEW= — =0 —

- Due to boundary condition, p = 0 is not allowed (E,, to end plates must vanish)

A

{u 1;

T

g _ 4m_ 2L

B p
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TE-Modes

N
X T
y=i,8=i\/uew2—(%> =i p*0

- This yields the resonant frequencies of TE-modes:

- The free wavelength is then given by:

- The resonator wavelength is then given by:

- 18 Jefferéon Lab



TE-Modes

H, (@) < M(p) = C1e7™M¢ + Cret™® | ;ife=0 > M(p)=Cr+(;

- Only non-trivial solution for H,(¢p) V @ possible if: C1 = (;
M(p) = C{(e™"™P+e+™m®) = 2, cos(me)

- Eventually one obtains:

;HO = _481C1D1 = _lEO

- Knowing H, one can obtain all other field components £,, E, H,, and H, utilizing

the wave equations for field components in cylinder coordinates

19 Je on Lab
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Mode Pattern — Cylindrical Resonator

TM modes
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Mode Pattern — Cylindrical Resonator
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Mode Pattern — Cylindrical Resonator

TE modes

TEp12 TEo13

These modes do not posses longitudinal electric field components parallel to cavity axis
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Resonator Figures of Merit
Equivalent Circuit

- A resonating circuit can be presented by an inductance L and a capacitance C

- A hollow metallic resonator (e.g. accelerating cavity) can therefore be described with
an equivalent circuit single-turn L

L add
T |nductor5 c
C —_— ;

-In an accelerating cavity, the beam excites a voltage along the so-called shunt
impedance, (R = V-/...,), which is described as a resistor added in parallel to L and C

- The total complex impedance of the parallel circuit is

/beam

o]

close ; add

—circumference beam tubes
1 —_—- —_—-

Shunt Impedance I l_i_l_i_l_l_l_l_lwc_l_i
‘seen’ by the beam Z Ry, Zo Z, R iwl
in resonance ~a DR = g L
SN — 1
7 =
1 : 1
. R_sh+ l(a)C —m)
1
- In resonance: wC——=0 — _ 1 _ Z = Ry
wL @o= T ¢

- So in resonance, Z is real and at its maximum amplitade Jgjﬁegﬂn Lab



Resonator Figures of Merit
Equivalent Circuit

- To feed energy to the circuit, we need a generator oscillating at frequency w
- This forces a current to flow in the resonator circuit

current source
(with infinite internal impedance) e

CgL

o

tra nsformermj
T
mJU
1

- There will be a phase difference between the generator and circuit current

B Im(Z) B 1
@ = arctan (Re(Z)) = arctan| R - (a)C — J)

RC
¢ = arctan <Z (w? — wg)) =2

(1)02'6

- In resonance ¢ =0

28 Jgfﬁén%:n Lab



Resonator Figures of Merit

Qualitx Factor, Stored Energy, Power Loss, Skin Deeth

- If the resonator is oscillating freely (shutting off generator), the initially stored energy will decay
due to resistant losses occurring in the metallic wall (heat due to conductive currents)

- The resistant losses can be described as resulting from a real resistor in series with L

- One generally desires to minimize the power dissipated in the wall surface
(normal RF conducting = superconducting RF cavities)

- Average power = energy decay per oscillation cycle T=1/f,

Ry, —_ AU 2w 1
avg — — \ T I'=—=

T w, f

U U
- The quality factor Q, (0 means unloaded, no external losses) Qo = wy = * —21. ASU
of a resonator is defined as: dU avg — (—S)

_aYs _ 9o it T
- This leads to a differential equation: Us Qo
- Solution is exponential decay: _%(t_tf’)

' Us(t) = Us(tp) - e Q

- The stored energy at time t = t, decays with relaxation time T = Qo || Us(to) _ Us(to)
- Used for decay time measurements of Q,, i.e. when energy (O Us(7) e

decays to 1/e of its original value from given time

29 J;]Eﬁéngnn Lab



Resonator Figures of Merit
Qualitx Factor, Stored Energy, Power Loss, Skin Deeth

- The stored energy itself is oscillating between the electrically (in capacitor) and magnetically (in
inductor) stored energy

- The total stored energy in resonance is the sum of the time-averaged electric and magnetic energy

US:UQ-I_Um

- The time can be chosen such the total energy is either fully stored in the capacitor or the inductor

Us = Ue,pk = Um,'pk

o . ) _ 2
- For the resonant circuit at the inductor: Unpk = §L - Lok
. L _ 2 1
- The real power loss in resistor: Ppr = Rs * Iy Pivg =5 Rs - ]ﬁk
1

0 Us 5L Iy L 1 1 L ;
Ozwo.—:wo —_wo. — — . — fwe = |—
Pavg ;RS 15 RS Wy RS -C RS C L-c

J;]Eﬁé@nn Lab



Resonator Figures of Merit
Qualitx Factor, Stored Energy, Power Loss, Skin Deeth

- How can the quality factor expressed by derived RF fields in a cylindrical cavity
- We need the stored energy and power loss in terms of RF field parameters

- The total stored energy is given by the volume integral over the RF field at times
either the electric or magnetic field peaks:

E-E*=|E
Us=U epk__ jj dVE-E*=U mpk__ jj dv H - H* 'ﬁ |pk|
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Resonator Figures of Merit
Qualitx Factor, Stored Energy, Power Loss, Skin DeEth

- For the case of TM,,,, (m=0, p=0) monopole modes in a cylindrical resonator we only get:

Xon
X . 2 —_ — — — —
EZ:EO.IO(rﬂ),elwt 0o - g . weR .afo(TR).eiwt Er—E(p—Hr—HZ—O
R ¢ 0\ x2 or
n
Lo ) ) ) R = Radius
- Therefore we obtain in cylindrical coordinates: y | L=Length

Ue,pk,OnO Z%Ejjj dV.E02 o (T %)2
2 L 21 VR
=2 e-fdz~fd¢.fdrr.]0(rl

m-L-e-Ey” Jdr r]O( x;n)z

Xon

2
R n.
= 7T'L'€'Eoz'<x—> f dy -y - Jo(y)? ; substitutey =r - Ton. g = dy -—

Xon

2
Yon sidentity [ dy -y - Jo)? =2+ (Jo? +1%)
; proof in appendix

0

=TL"L'€'E()2'< ) {— (]o )+ ()’))}
2
7

=m-L-€-Ey° 1 (%0n) ; atlimits: J1(0) = 0,J5(0) = 0, Jo(xon) = 0

2
Uepkono = T-L-€- EOZ ) ’]12(x0n)

Jygff;e_lgnn Lab



Resonator Figures of Merit
Qualitx Factor, Stored Energy, Power Loss, Skin Deeth

- In the metallic surface power losses arise from (eddy) currents induced by the time
varying magnetic fields tangential to the cavity surface
- The time-averaged power loss in the whole resonator surface is given

R. is the effective surface resistance [Q)] of the metal
j f H? - dS

avg H-field is parallel to wall

Note: H is the peak field, the average power is due to factor %

- The eddy currents are opposed to the current inside
the metal, which leads to the skin effect, i.e. the

current density J decreases from the RF surface to the / s SR——
inSide Of the metal ” sur;;ce currents deeper within the metal
- This yields to the surface resistance being ok eml
dependent on the skin depth 1
Ry = —— d is the skin depth
o - 6 I(0)

- What is dependence of J(x) with distance x from surface
that defines the skin depth ?

33
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Resonator Figures of Merit
Qualitx Factor, Stored Energy, Power Loss, Skin Deeth

- In the metallic surface power losses arise from (eddy) currents induced by the time
varying magnetic fields tangential to the cavity surface

fi-ai=[[foas+ [[2.as
=)/ ot
S S

as Z ' Hy(x-0)
—
R -
— 55 H-dl=H, (x +dx)Ab — H,, (x)Ab = ],(x)dxAb
9S - surf/ace RF surface
H, (x +dx) — H,, (x) oH,, (x) 5 2 19
> dx > =Jz (%) - 1) (;,x =] (x) = ok, ]:GE=;E
- A second condition is provided by the magnetic flux
L . d (= . dDg
fE dl=—ajj dS=-W
as S
_ 0H,(x) 0E,(x)  0H,(x)
— | By (DAL= E, (x + dx)Al = —p———dxAL | — 2) [ = = —p—
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Quality Factor, Stored Ener

Resonator Figures of Merit

 Power Loss, Skin Depth

0x Jz (x) = oF; ox ot
. 0,() _ 9H,(x) 01,00 . .
- Combine 1) and 2) gx = uo—- — Gy HOw: Hy,(x) ;Hy, = Hy(x)e't
2
- Differential equation: 07)»(x) —i. . 0] (x) =0
dx2 dx
- General solution: J,(x) = ],(0)e~VEHROWX 4 1 (()g+/ipowx - J,(0) = ], is current density
at RF surface
- Since the current density must be finite for x = oo, /' ,(0) =0
— 1
— | J;(x) = JpeTVEHIOX Note: |Vi=—=(1+1)
V2
With the abbreviation 5= 2 [m] X X
Uow T x)=Jp-e s-e 9
/uw Skin depth Jo _;|atx=0
RS = [— P ]Z(X) =—-.e7! phase changes by 1 radian
20 e — .
per skin depth
Similarl J: O
- Similarly to J: Hy(x)zHO-e - O ~ Pavgz%jfl'[sz'd's ;equivalenttoP=1/zR-/pk2
S

H-field is parallel to wall

J;]Eﬁé@nn Lab



Resonator Figures of Merit
Qualitx Factor, Stored Energy, Power Loss, Skin Deeth

- Example: Skin depth and surface resistance as a function of frequency
for copper and aluminum at room temperature

—skin depth Cu r.t. surface
skin depth (um) —skin depth Al r.t. reistance (mQ)
100 surface resistance Cu r.t. 100
—surface resistance Al r.t.

10 10

V

0 1000 2000 3000 4000
frequency (MHz)

Jygffje-lgnn Lab



Resonator Figures of Merit

Qualitx Factor, Stored Energy, Power Loss, Skin Deeth

- Coming back to power loss P B 1 1 fJ ﬁzdS B 1 ) jj ﬁZdS
wI 2 g6 =2 '\20
S S

- In a cylindrical resonator we can sum up losses over lateral , E:Fad"tﬁ
= Leng

surface and endplates considering symmetry A

Pavg = Platerar + 2 Pendplate

- In cylindrical coordinates (dx-dy =r-dr-dg) we obtain

1
)

1
Pavg —2_'

)
L 2T R 2T
Rojdz-of de - (Hy,*(R) + H,”(R)) + 2Ofdr-r0f do - (H,*(r) + H,*(r))

; with H.(r=R) = 0 on lateral surface ; with H,(r) = 0 everywhere on endplates

Jygfﬁ-e_lgnn Lab



Resonator Figures of Merit
Qualitx Factor, Stored Energy, Power Loss, Skin Deeth

Case Example: TM,,,, (m=0, p=0) monopole modes

- Again we only have the following field components to consider:

x ; Xon
E,=E,=H,=H,=0 || E, = E, ]O(r%) elot u :_iE0_<w8R2>_a]0(r R)_eiwt
(Y 2 or

on

- 15t term of power loss:

L 21
P 12 deo - H,”(R
lateral_z_ _5 2 (p(;(p:t)
0 0

2 Xon 2

_ 1 R 2 a)OnOSR 6]0 (T' R ) . . a]m(r‘xmn) m Xmn Xmn Xmn
=7 5 Lo '2”'< % ) " or identity L = T (v 2n) =g (v 222)
L RLE?n (wonong)z (xOn)  J1 (xon)? X0
_ — . . . . 1 9 Z0n

o) 0 xg, on ; identity ]O(g &) A (T ._xmo) ;r=R

1 WonnER 2 ' ) ’

0no

=—.R-L-E,* - J1(x0n)?

Py 0 ( Xon ) ]1( On)

Jgﬂéngnn Lab



Resonator Figures of Merit
Qualitx Factor, Stored Energy, Power Loss, Skin Deeth

- 2" term for power loss for TM,,, (m=0, p=0) monopole modes

P

1 R T
— 2
—g-jdr-rj de - H,"(r,9,0)

endplates
0 0 .
R X
1 2 O)OnOgRZ 2 a]O (r%)
_.EO .27-[. > .fd'r.r
) Xén , ar
R
L g2 gn. (QonotR” z-fd” (Xﬂ) e xﬂ)z
o8 ° xXg, R 1 R
0
2 Xon 2
R RN dom?
— Eo 27T< ) ) dy -y o (R) J1 ()
0
Xon
WonoeR?\
g EOZ-Zn-< g ) | vy
on 5
1 2 Wono€ 2\*
o5 B 2w (=] 1=l -y Jl(y)+— Uo* ) +1* )
on
2
1 (l)OnOgRZ xOn
— . E.%2.21. . . 2
o5 Do 2m < 2 > J1(xon)
2
1 (l)onOng
_'EO2 Tl"<— ']l(xOn)z

Xon

0

; symmetry of fields

; identity: jm(y) ]m(Y) Jm+1(Y)
a]o(’" %) _ Xon Xmo
> =T ()
; substitutey = r - ==, dr = dy - xi
on
. Lo dfo(y)
s identity: syy =—h1)

2
sidentity [ dy -y - J1()* = ~Jo -y - J1 + 2 (Jo® +]1%)
; proof in appendix

; at limits: J1(0) = 0,J5(0) = 0, Jo(xon) =0

Jgfﬁén%:n Lab



Resonator Figures of Merit

Quality Factor, Stored Ener

 Power Loss, Skin Depth

Combining both terms this yields:

Pavg = Plateral + Pendplates ™ 1 Xon 2
1 2 (UOnOeR g 2 1 2 wOnO‘?RZ ’ 2 wono - ( )
—— .R-L-E2.7- : — . EZ.7. : \UE R
s R-L-Ey"-m ( o ) J1(xon)* + s Ey'-m Yon J1(xon) u
1 Wono€R\’ 2
0no .
Pavg =—5Eo” -1 < ik ) - J1(xon)? - (R- L+ R?) 5= |— Skin depth
o) on UO W
Total stored energy (Note: does not depend on metal surface (conductivity, skin depth))
= R” L - Ey° 2
epk = L-Ey”m-e- ] (xopn)
Quality factor
RZ 2 2
Qo = Uepk w'T'L'EO -7 - € J1(Xon) a8 - x> L
0 = . = —_— .
P . £+ R\? 2 wopo+€ (R-L+R?
avg i . EOZ ST - (—wOHO € R) Ji(xor)? - (R L+ R?) 0no ( )
0-5 Xon

. g xonz L
Qo = 2U®w Wono € (R-L+ R?)

efferdon Lab




Resonator Figures of Merit
Accelerating Voltage and Transit Time Factor

- A beam particle experiences an acceleration along or parallel to the beam axis by the electric field

- For a given beam current (/), the accelerating voltage (V = I'R,) should be maximized, wherein R, is the
shunt impedance (similar to Ohm’s law)

- TM-modes can be used for acceleration since TE-modes have no electric field component along the axis
field

E,(w) =Ey *Jm (r x}%) - cos(me) - cos (%z) L elo™t

- Efficient for acceleration are monopole modes (TM,,,) with near constant field around the cylindrical axis

-If we neglect time-dependence for now, voltage ‘seen’ by a particle traveling parallel to
resonator axis:

1 1
+

Vo = f_fLL dz - |E,| = Eo - Jo (r 222) - fi dz - cos (" z)

R
2 2

1

5o (2 - on (22))

in (TP
2L1 =L.E0 .]O(rxﬂ),smﬂ(pz)

T[p TMOlO TMOll 7-/\4012
V,o=L-Ey -] (ern).Sin(T) Note: lim%—l
z,0 — 0 0 R @ : p—0 TEZ_P -
2
Xon .
- Maximum value for TM,,,-mode: Voo=L-Ey - Jo\T — onaxis >V, o= L - E, :
010 z,0 o "Jo ( R ) ,ﬂe gnn Lab



Resonator Figures of Merit

Accelerating Voltage and Transit Time Factor

- However, we need to take into account the change of the field amplitude during the transit time of the beam
- For symmetry reasons let us shift the zero to the center of the cavity

+L/2 +L/2
s is ph lative t t of field
Vyer = f dz - Re[E,(w)] = E, - ]0( f dz- cos(sz) cos(w - £+ @) ; @ is phase relative to crest of fie
—-L/2 -L/2

- Depending on velocity of the beam, the experienced fields may vary, so it is a function of z | t(2) =f !
- Moreover: velocity increases while beam is accelerated (v(z))

Vb (2)
If velocity increase is however small (v,
2 t(z) = z/v, with v, = B,-c,

constant, e.g. already relativistic beam or short accelerating gap)

(D) (21100 z_ > <2n-z+ )

cos(w = CcoS . = C0oS
X Bpco © Y

ABp
Vaerr = Eo - ]0( xT) f+; dz - cos(sz) cos(wt + @)

1 . .
Xon SL ) ) o i ; identity:
=Ey - Jo (r ) f 1 dz - cos( ) (cos(wt) - cosp — sin(wt) - sing) cos(c+8) = cosa-cosB - sinarsinG
Xon oL D . %L p . ; If a particle is at center of
=Ey - Jo (1 T) cosQ + f dZ cos (—Z) cos(wt) — sing - f_lL dz cos (—Z) sin(wt) resonator when the field peaks
(electrical center), then:
=E, -] xﬂ - COSQ + dz cos (£2) - cos(wt) L
0o Jo ( R f (L ) f_zlL dz cos (lez) sin(wt) =0
2
1
Xon ;L Ey ']o(T' xoTn) fif dZ-COS(%Z)'COS(wt)
Vaerf = COSQ - Jo (r —)f dz - cos ( 5 ) -TTF || TTF = i =
Eq- ]O(r xo—") le dz- cos( Lpz)
2

Jgfﬁén%:n Lab



Resonator Figures of Merit
Accelerating Voltage and Transit Time Factor

- Since we already solved the integral without time dependence:

Veerf =Vzo - cos@ - TTF

Xon

sm(np

T 2) cosg - TTF

Vzerr=L-Eo - Jo (7” o

) :

2

TTF = —2

1
[ sz dz - cos (% z) - cos(wt)

] iL dz - cos (1TL_p Z)

TTF = transit time factor

- For TM,, ,-modes

TTF
10

%L 2T Z
4, dz-cos (gt + o)
TTF = —2

L
L
?\,8,, {sm (211 Z )} 2

= O

L
~ sin (—T}[\ﬁbL + (p)
- - L

ABp

0.8

<p)

0.4

; cos(wt) = cos (iT +

0.2
0.0
-0.2

0.4

2
TTF =—
L

/

1 2\_/4 5

cavity length in BpL/2

- Unless argument of sine is small (short accelerating gap L and ¢ = 0) an efficient acceleration is achieved, when sin(~) =1

Bb

- L = 7kand<p—0

Vaers == L Eo o (r 222)

R

2
TTF = Bb_—z0.636
Lt Tt
,forL>ﬁ’2’ TTF<—

J;]Eﬁe on Lab



Shunt ImEedance

Resonator Figures of Merit

- For accelerating resonators the longitudinal shunt impedance is an important figure of merit

- It defines how effective a particle beam is accelerated by a given electric field along the
resonating RF cavity = shunt impedance for accelerating mode should be maximized

- We previously defined the shunt impedance as a resistor (R;,) in the parallel circuit

* 2 2
Rsh 9 2 R
DRSh::C %L > >
S (V0 - cosg - TTF) _ (V0 - cosg - TTF) 0 = wy -2
sh — = 4 ’ P
@ Z.Pavg Z'wO'US avg
Note: This is the circuit definition of the R, (also knows as the EU-definition),
numerical codes rather calculate twice the circuit shunt impedance (US or linac definition)
- Shunt impedance depends on surface material properties, as a resistor (R) in the parallel circuit
- Benefit of resonance structures is obvious due to product with Q,
(Qq is few 1e4 in normal conducting RF structures at room temperature, few 1e10 in superconducting RF structures at 2 Kelvin)
- For TM,,,-modes:
(Lo Jo(r222)-cos -TTF)2 (LEo Jo(r 222)-cos -3)2 2 2 (Jo(rEem) g 2
= 0Jo\T" g ¢ _ 0 Jo\" T P __ 206-Xgp“-cos@ .(0 R ) : L
sh — . = R\ 2 o 3. .£)2 2(R. 2
2-Pavg %-Eoz-n-(%) J1(Xon)?-(R-L+R2) 3 (wono*€) J1(xon) R*(R-L+R?)
po =L p2. . (@meR)? 2.(R-L +R?
;Pavg o8 EO T ( Xon ) ]1(x0n) (R L+R )

J;]Eﬁé@nn Lab



Resonator Figures of Merit
Characteristic Shunt Impedance

- The characteristic shunt impedance (short R/Q-value) is defined by

R Ry, (Vyo-cose-TTF)" (V- cosg -TTF)

Q_QO_ 2'Pavg - 2-wo-Us

- The characteristic shunt t impedance does not depend on surface material properties, and only on the
geometry of the structure

- One usually aims to optimize/maximize the R/Q-value in normal conducting RF structure (e.g. cavity with
nose-cones in order to minimize the power losses dissipated at heat in the metal surface

- This is not as crucial for superconducting RF structure since power losses are comparably small in the walls
- the accelerating cavities then can afford larger beam tubes (good for beam dynamics)

R

- The shunt impedance can also be expressed by Ry, = a Qo

- This is handy for experimental assessment of the shunt impedance, since the R/Q-value of a mode can be
readily and accurately calculated with numerical codes since not depending on assumptions of surface
losses, while one can measure the Q,-values reliably, which includes the real loss mechanisms

- For TM,,,-modes:

X 2 X 2\2 X 2
o bt ) cmr) (i) e D) o (1)
0" . . = 2 = 3. e "p2
Q 2 wono * Us 2 Wong * RZ L. EOZ N R RIACTOL T2+ Wono * € J1(xon) R

R

5 i
; Ue,pk = o L- EOZ ‘M- & -]1(x0n)2 J;ff-El%ﬂl'l Lab



Phase and Group Velocity in Waveguide

-In a waveguide the wavenumber is constrained compared to free space (k = \/uew)

i , wherein w, is the cutoff frequency of
Z . . .
—+ (Uc waveguide (see Lecture: Transmission line

UE
and Waveguides)

Ity (energy flows at group velocity)

2T 5 )
kz=,3=T=w/ME w* — Wg w =
dw
VgT:de Group ve
Cdo kz‘_/1 D
Vgr_dkz_ye-w_\/ﬁ w T F

Group velocity is < speed of light

Phase velocity ;infreespace v,,=c, dueto k* = pew?

w v
7 VHEN 02 — w? ; f2
’1_L
2

Phase velocity is always > speed of light

- This has technical implications for accelerating structures, particularly for long cavity structures

(when requiring high energy gain) since particle velocity can never be synchronous with phase of mode
(= poor accelerating efficiency)

J;]Eﬁégnn Lab



Phase and Group Velocity in Waveguide

Vgr/ Y, Vop/V —vgr/v —vph/v —v
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

Phase velocity is > speed of light

Group velocity is < speed of light

11
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Coupled Resonators

Phase Velocitx and DisEersion

- How to reduce the phase velocity to be synchronous with particle velocity ?

- E.g. implement aperture holes = creates multi-cell coupled resonator

- But now we created a series of resonators coupled with each other from a round waveguide

- What is the phase velocity now?
- Due to coupling of RF fields between cells, each mode in a single cell splits into N modes
in multi-cell coupled resonator (N = number of cells) 2 these N modes form a single passband

- Each mode (TE TM_ ) exsiting in single-cell resonator is augmented by factor N, and the N

mnp’ mnp

modes within the same passband differ by a phase advance ¢; per cavity cell period (L)

Example: 2-cell cavity with beam tubes (TM,,-like mode) Analogous to coupled pendulum

in phase (0-mode) out of phase by 180° (n-mode) in phase (0-mode) out of phase by 180° (nt-mode)

WYY



Coupled Resonators
Phase Velocity and Dispersion

- How to reduce the phase velocity to be synchronous with particle velocity ?

- E.g. implement aperture holes = creates multi-cell coupled resonator

JRA44444s

- But now we created a series of resonators coupled with each other from a round waveguide

- What is the phase velocity now?

- Due to coupling of RF fields between cells, each mode in a single cell splits into N modes
in multi-cell coupled resonator (N = number of cells) 2 these N modes form a single passband

- Each mode (TE,,,,, TM ) exsiting in single-cell resonator is augmented by factor N, and the N
modes within the same passband differ by a phase advance ¢; per cavity cell period (L)
- Periodicity of field is then achieved after 2n/¢; number of cells

- The resonator wavelength is then

- The phase velocity is thus:

A; =2_T['Lcell — |k =2_T[
Pj A,
w W

Vphzk_jzAj'%z(’Tj'Lcell

Jygfﬁ-e;gnn Lab



Coupled Resonators
Phase Velocitx and Dispersion

- The phase velocity should equal the particle velocity v, for the accelerating mode :

w

Vb = Vpn = 97 *Leen Condition for synchronous acceleration
]

- We then obtain solution for cell length resulting in synchronous motion of particle with wave

Vo i _ BvCo * @ .Bb/1. |
w 2nf o ¥

; normalized particle velocity; By, = ¢4 /v,

Lcell —

Gif

Example: for a ¢; = m mode the cell length should be: | Leey = N

- For non-relativistic particles that still significantly change their velocity when accelerated, the cell length
must then be adapted according to the B, -value

- For e.g. proton SRF linac cavities (such as used in SNS, Oak Ridge), there is only one medium and one
high beta section each with a fixed cell length (so-called geometrical beta (B,), which for SNSis B,= 0.61
and B, = 0.81 for the SRF linac)

- These fixed cell lengths are chosen such to cover the whole particle velocity range, though the TTF-value
is continuously changing, but covers the peak value in each fixed-beta range for overall efficient energy
gain

50 Jgjﬁén%nn Lab



Coupled Resonators
Passband Mode Frequencies

- What are the Eigenfrequencies of modes in a passband compared to a single resonator cell?

- Lumped circuit analysis (no derivation here) yields a solution for identical cell-to-cell coupling factor (K)
using matrix formalism (Eigenwert solution)

Wo
w; =
/ J1EK-cosp;

- The dispersion relation accounts for dependency of the Eigenfrequency with the phase advance ¢; per cell

- The solution yields: Dispersion Relation

- Eigen frequencies thus vary in a passband

- Only when ¢ = 1t/2 (i.e. cos ¢ = 0) is the Eigenfrequency equal to the natural frequency of an individual cell
- The larger the coupling factor K, the larger the spread of frequencies in a passband

- Various boundary condition are possible at the end of the cavity and can be accounted for

- Typically these boundary conditions are identical on ends, i.e.

- Electric boundaries (0-mode, no m-mode) T
Qi =] N withj=0,1,--,N

- Magnetic boundaries (no 0-mode, © -mode)

z ithj =0,1 N
NWl _]_); )

1
- Mixed boundaries are possible @ = (j —E).

- Dispersion relation can be best illustrated in Brillouin Diagram w; (¢;)

51 J;]Eﬁén%nn Lab



Coupled Resonators
Dispersion per Brillouin Diagram

- Example: Nine-cell cavity (red dots, e.g. TESLA cavity), curve is for infinite number of cells
. — S The group velocity is the tangent on
' the dispersion curve

dw
Vgr = % “Leen

/ Note: All HOMs excited by the beam are
parasitic. Those modes close to the
intersection of the light line with the
dispersion curve are very synchronous with
the wave (TTF is maximal)

Passband

\ accelerating TM,,-like m-mode

v = ¢ for electrons

phase advance ¢ (per cell length)
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Field Amplitudes in a coupled 5-cell Cavity

- Analytical formalism also allows to calculate relative peak amplitudes (X ) in each cell (m)

PEC

Analytical solution PEC
1n/5-Mode « 2n/5-Mode « 3n/5-Mode 41t/5-Mode
0.6 m 0.6 m 0.6 m 06 m
0.4 0.4 0.4 04
0.2 0.2 0.2 02
mo mo 5 mo . 3 4 m 0 0 3 3
-0.2 -0.2 0.2 -0.2
0.4 0.4 04 -0.4
0.6 0.6 0.6 0.6

Numerical solution (TI\/Im passband — electric field contours)

field free 53 field free
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Field Amplitudes in a 5-cell Cavity

- Analytical formalism also allows to calculate relative peak amplitudes (X ) in each cell (m)

Analytical solution PMC

1n/5-Mode 2n/5-Mode 3n/5-Mode 4rn/5-Mode n-Mode
Xm X X

06 0. 0. .
04 0. 04 _
02 0. 0.2 .
m 0 2 3 m 0= 5 M 055 34 m 0= 3 5
0.2 0. 02 0.
0.4 0. 04 0.
06 0. 08 -0.

Numerical solution (TMm passband — electric field contours)

" B W Brd D
!

- mode is dellcate to
tune! End-cell effect

field free fleld free
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Adding Beam Tubes for Accelerating Cavities

- When adding beam tubes, the fields are distorted especially in the end cells

- If fields start to propagate out of beam tubes, the situation becomes more involved
depending on boundary conditions (can be far away from the cavity ends)

Example: USPAS cavity (3-cell coupled structure)

— S
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Elliptical Accelerating Cavity

- SRF accelerating cavities exhibit elliptical cell contour

- Consequence: RF fields deviate from pure pillbox fields
- No closed analytical expression of fields possible
- Numerical codes required for RF field computations

- Deviations to pure pillbox field can be significant such that e.g. TE-dipole Higher Order Modes
(HOMs) become dangerous as well for beam dynamics since non-vanishing electrical fields in
longitudinal direction may exist (can kick beam off axis)

56 ._l,gff';gun Lab



Unloaded/Loaded/External Q

- Typically we measure the loaded Q (Q)) of the RF structure, since all external couplers required
to feed energy extract power (P,,,), which add to the losses

- Power losses in external coupling lines are usually not negligible

- Coupling factor of an external circuit attached to the RF structure under test is given by the ratio
of the externally dissipated power in the i-th external circuit to the intrinsically dissipated power

Pext,i — QO . Q — w - Ue,pk

Pintr. Qext,i » <0 Payg

k; =

- The total power dissipation is simply the sum of intrinsic and external losses

1 P Pintr. + Poxt1 + Poxea + -
-This yields the loaded @ | 5 = o = e
This is equivalent to 1 ! + 1 ith 1 1 + 1 +
- . — = Wl = Q < Q ;Q
Ql QO Qext Qext Qext,l Qext,z l O ext

- When Q,-value is very large (i.e. in SRF cavities), then Q; = Q¢

- Solving for Q,, yields: 00 = < 1 1 >_1
0 Ql Qext

Q, always > @,

J;]Eﬁén%nn Lab



Q, and Reflection Response
Under-coupled and Over-coupled Conditions

- Re-ordering terms

+ j
p intr. p intr.

51 WU wlU wlU

Pintr.

1 P Pier. + P + P + - P P P Pext,i
__ Ttotal _ Tintr. ext,1 ext,2 _ lintr. <1 n ext,1 ext’2’+...> o, = Lext

- In terms of the coupling factors once then can re-write:

1 1
al:—o-(1+k1+k2+---) or [Qo=0Q; 1+k +ky,+-)

- Complex reflection coefficient (S;;) can be measured with Vector Network Analyzer (VNA)

- In polar chart we see a coupling loop around the resonance

’:\lS“((i))'

Note:

- If the loop encompasses the origin, then the external

circuit is over-coupled (P, > P,

ext mtr.)

] \J{[Sl 1 (('))]
- If the loop does not encompasses the origin, then the

external circuit is under-coupled (P, < P,

ext mtr.)
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RF Structure with Single Coupling Probe in Reflection

[Syi(w)| S[S)1 ()]

s 1 k=05 ____—

0,8

min
ISy (@:f)] =S (0:Fy)
1-k

=|l+k "M e
- s i . ~ w21 [GHz]
1,2998 1,2999 1,3000 1,3001 1,3002
Amplitude chart of 5, Polar chart of S;;
around resonance around resonance

with

- Possible conditions:



RF Structure with Two Coupling Probes in Transmission

Q.
s * /2 (w=0)
Yhk
1+k1+k2

£
/ 5
Il
=
Y
e

-0 /2 (W 2 00)
W, -
Amplitude chart of S, Phase chart of 5,,
around resonance around resonance

with

Amplitude Phase

o
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Measuring the Q-factor with the VNA

- Q-values are convenient measurable with VNA $21 (dB)
[
- Note: S-Parameters signal ~ VP 10 | [ = Q=100
- Q= 1000
Q-definition is equivalent to 201 i
wg * Upg w > :
Q = P— = W Ty = Aw -40 A Aa)_3_01dB bandwitdh
avg 1/2 50 ) /\
To determine the Q, we search for the amplitude = /—\
(S-Parameter) that is reduced by factor 1/V2 of the o] Lo 5
amplitude in resonance, which is equivalentto 1/2 : ] |

. L " : ' s ' ' frequency (MHz)
the energy stored in resonance (or power dissipated) > 274 1 % b w0 s s
phase (deg.) ! '

Note that in logarithmic scale % :
P V. Ap = +45° phase method
dB = 10-Log( °“t> = 20-Log( °“t)
Pin Vin |
Po
We need to find the points to either side of the L I—— : — . frequency (MHz)

3014

resonance, where the energy is % of that at the

resonance, which is at 10-Log(1/2)=20-Log(1/V2) = | _ -
~-3.0103 dB - Ap = —45
Commonly one uses -3 dB points Q= Aw_3 0148 | ="

(though not truly exact)

Equivalent to measure at phases +45° and -45° apart
from the resonance in the phase plot 61 Jgjiﬁén%:n Lab



Experiment related to this Lecture

- Coupled Cavity Linac — Main tasks:

1) Measure dispersion through S,; measurements using VNA

2) Repeat dispersion measurement with S,; and measure Q values of each mode
3) Measure individual frequency of each cell by detuning other cells
)

4) Set up manual bead-pull measurement and determine the electric field amplitudes along
the cavity before tuning

5) Use tuners in each cell to tune cavity to achieve same frequency in each cell

6) Repeat the dispersion measurement and compare with the previously measured
dispersion

7) Tune cavity cells to flatten field distribution of last passband mode and
determine the electric field amplitudes along the cavity

http://www.agilent.com/
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Special Proof of Identities for Bessel Function

d
Note: ' = —
dy

fd)’ ()= fd)’ : (f dy(y ']0)) 1 ;identity: (v - J1) =¥ - Jo

fdy-<f dy(y-]o)>-]1 = fdy-h-fdy-(y-]o)—fdy'(f dy-h)-(y-]o) ; partial integration [ dyf'g = fg— [dy fg'

= —]0 .fdy.(y.]0)+ dy.(y-]o‘]()) ;identity:]0= _deI1(3’)
;identity: (v - J1) =¥+ Jo

; partial integration [dyf'g = fg— [dy fg’

2

1 d
=—Jo'y +y7‘]0‘]0 _EfdJ"yz 'EUO “Jo)

2
=—Joy +y7']0 “Jo +fd3’ yvJi-Y-Jo ;identity: J'o= —J;1 ()
;identity: (y - J1)' =y * Jo

2 d
=—Jo'y' +y7']0']0 +fdy -] '@()’ J1)

d d d
E(ym I @) =Y 1Y) 2y 1 () = J dy-y-Jo(¥) d—y(y‘m Jm() = =y -1 (y) - d_y]o(J’) =—51 ()
\;_E_uml_cﬂl}

Rules:




