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Pumping mechanism

• Electrical discharge takes 
place in crossed electric and 
magnetic fields.

• The Titanium cathode is 
bombarded by positive ions.

• Titanium is sputtered on to 
to the walls of the anode.

• Gas chemisorbs to the 
sputtered Titanium.

• Gas is buried in the Titanium 
cathode.
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Sputter Ion Pumping Mechanisms

Physisorption - atom burial deep within a lattice, atom
burial under sputtered material.

Chemisorption - removal of atoms due to the formation of 
chemical bonds.

Diffusion - hydrogen diffuses into the bulk of the metal.
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Sputter-ion pump characteristics
• Pumping speed - is sensitive to gas species, inlet size, pressure, and 

history of pump
• Starting pressure - ion pumps must be roughed to 20 milliTorr or less 

before starting (should be more like 10-6 Torr)
• Capacity - sputter ion pumps are gas capture type pumps and do have 

a limited capacity

• Ultra clean
• Quiet Advantages
• High pumping speed for water, hydrogen

• Gas species sensitive
• Limited capacity Disadvantages



USPAS June 2002
Ion Pumps
Page 6

Characteristic Parameter of Penning

Penning Cell Sensitivity

Where I+ = ion current (Amps)
P = pressure (Torr)

P
I = S
+
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Parameters that effect Penning 
Cell Sensitivity and typical values

Anode Voltage V 3.0 - 7.0 kV
Magnetic Field B 0.1 - 0.2 T
Cell Diameter d 1.0 - 3.0 cm
Cell Length l 1.0 - 3.2 cm
Anode/Cathode Gap a 0.6 - 1.0 cm
Pressure (Pn) P 1.05 < n < 1.5 Torr
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Penning cell sensitivity as a function of 
magnetic field and anode potential

l = 1.62 cm
d = 1.8 cm
a = 0.6 cm

(Ref., Welch, SLAC, 1969)
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Penning cell sensitivity as a function of 
magnetic field and anode-to-cathode spacing

l = 1.62 cm
d = 1.8 cm
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Types of sputter-ion pumps

• Diode - best for UHV systems where 98% of the gas is 
hydrogen. Diodes have the highest hydrogen pumping speed.

• Differential (Noble Diode) – a compromise for hydrogen 
pumping speed with limited argon stability. This pump has 
reduced hydrogen pumping speed.

• Triode/Starcell - good hydrogen pumping speed, also pumps 
argon well. Good choice for pumping down from higher 
pressures often.



USPAS June 2002
Ion Pumps
Page 11

Diode sputter-ion pump



USPAS June 2002
Ion Pumps
Page 12

Argon Instability
• Diode ion pumps produce large periodic 

pressure fluctuations while pumping air 
or gas mixtures containing inert gases.

• These fluctuations are called “argon 
instability.”

• Argon instability occurs both when 
pumping air at HV or UHV (1% argon 
by volume) and pure argon or other 
inert gases.

• Argon instability occurs when 
implanted or buried gases are released 
by sputtering.

• An “argon-stable” pump is one that 
can pump against a 100% argon leak 
without becoming unstable.
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Differential Ion (Noble Diode) Pumps
• The differential ion (D-I) pump design 

provides both air-stability and argon-
stability, in a single pump.

• Most inert gases are pumped on the anode 
structure and at the peripheral areas of 
the cathode where the sputtering rate is 
so low that total reemission does not 
occur.

• These peripheral areas and the anode 
surfaces are readily reached by energetic 
reflected neutrals because the neutrals 
are not affected by the magnetic field.

• With a higher rate of energetic, 
reflected neutral formation, inert gas 
pumping speed is increased.

• To achieve high inert gas pumping speeds, 
differential pumping elements with one 
cathode chosen for good energetic neutral 
production (tantalum) and one chosen for 
its chemical reactivity (titanium) are used.
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Pumping speeds of ion pumps for selected 
gases

90%90%Light Hydrocarbons

2%15%He

5%20%Ar

100%100%H2O

70%70%O2

85%85%N2

100%100%CO2

220%160%H2

DiodeNoble 
DiodeGas
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Triode ion pump
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Starcell Electrodes

• Varian Starcell pump is a variation of 
the triode design.
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Speed curve for an ion pump

(Ref: Varian Vacuum)
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Pump speed degrades with time

(Ref: Varian Vacuum)
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Speed comparison of different 
styles of ion pumps

(Ref: Varian Vacuum)
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Commercial sputter-ion pumps

(Ref: Varian Vacuum)
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Sputter-ion pump controller

(Ref: Varian Vacuum)
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Sputter ion pump current may be used to 
measure pressure in the pump body

• Pressure is linearly proportional 
to current.

• At low pressures (<10-9 Torr), 
the leakage current effects the 
pressure reading.

• The displayed current is the 
total of the leakage in the power 
supply, cable connectors, 
feedthroughs, insulators, internal 
discharge, and working current.

• The new controllers with variable 
voltage capability improve this 
feature.

7 KV

3 KV

5 KV

(Ref: Varian Vacuum)
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“Variable Voltage Control” also improves 
pump performance

7 KV

5 KV

3 KV

(Ref: Varian Vacuum)
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• It is important to match the 
power supply to the ion pump.
— Too large a power supply can 

create overheating in the 
electrodes.

— Too small a power supply will 
not be able to drive the pump 
at higher pressures.

• The power supply must provide 
voltage and current to the ion 
pump under a variety of 
conditions.

(Ref: Varian Vacuum)

Electrical characteristics of ion pumps
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Example – Ion Pumped Vacuum 
System SNS Linac

Current Design Features:

Accelerator Length

DTL: 36.5 m
CCL: 56.5 m

Design Vacuum Level: 10 -7 Torr
(with redundancy)

Total Ion Pump Speed: 20,000 L/s

Number of Roughing/Turbo Carts: 15
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• Distributed ion pumps are 
often incorporated into 
storage rings.

• Distributed ion pumps 
utilize the stray magnetic 
field of the arc bend 
magnets.

• They provide effective 
distributed pumping close 
to synchrotron radiation 
gas desorption.

Distributed Ion Pumps (DIPs)
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Pump Sensitivity (Discharge Intensity)
vs. Magnetic Field
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Formalism of Ion Pump Design

In cases where the magnetic field lines are misaligned with the cell 
axis, the electron cloud will be smaller than the anode radius.

l
ra

rΦ

Φ

ΦΦ=Φ sin0.5-cosr  a λr

Ref. “A new approach for computing diode sputter-ion pump
Characteristics”, Hartwig and Kouptsidis, JVST, Vol. 11, No. 6, 1974
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Formalism of Ion Pump Design (continued)

Magnetic Field at the Ignition Point

Effective Cell Length

Magnetic Field at the Transition to HMF-mode

ar
300  ====iB

where a = gap (cm)
ra = cell radius (cm)
la = anode length (cm)
P = pressure (Torr)
Ua = anode voltage (V)
B = magnetic field (Gauss)

05.0
a

a

r
U7.63

  
P

Btr ====

αααα0.5l a ++++====effl
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Formalism of Ion Pump Design (continued)

Unsaturated Nitrogen Pumping Speed of one cell

Saturated Nitrogen Pumping Speed (after Q = 2 x 10-6S Torr-liters/sec)
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Formalism of Ion Pump Design (continued)

Nitrogen Pumping Speed for n cells

Effective Nitrogen Pumping Speed due to conductances of the 
gaps between the anode and the two cathodes.

1nS====nS

sides two on open is pump if 0.5                                                             
side one on open is pump if 1 factor  k                                             

(cm) gap                                              
(cm)unit  pump of length  b                                            
(cm)unit  pump of depth  a                                            
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Formalism of Ion Pump Design (continued)

Effective Nitrogen Pumping Speed for N units at the flange 

c)(liters/sechamber  pump the of econductanc C             
units pumping ofnumber   N            

c)(liters/se speed pumping nitrogen effective  S  

C
1  

NS
1  1

p

eff
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++++====

where

Sp


