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ABSTRACT

This is one packet of notes accompanying a course Mechanics and Elec-
tromagnetism in Accelerators, offered as part of the U.S. Particle Accel-
erator School, Yale University, summer, 2002. This packet is perhaps an
appendix. In it conversion factors between M.K.S. and Gaussian units are
derived for the benefit of students disadvantaged by have learned E.&M.

using Gaussian units.



1. Electromagnetic Equations in M.K.S. and Gaussian Units

By now most accelerator papers use S.I. units, which in electromagnetic theory are usually
referred to as M.K.S. units. It causes considerable difficulty when “fundamental physics”
analyses are performed using c.g.s. Gaussian units and then the derived formulas have to
be put to practical, “engineering” use. For this reason this packet will be devoted to the
subject. Apart from this practical consideration, discussion of the units entering various
formulas gives an excuse for reviewing various formualas that all students should have
encountered in the past, but may have forgotten.

Units conversions in E. & M. are noticeably more confusing than units conversions
from, say, inches to centimeters, or B.T.U.’s to joules, or dynes to newtons. The formulas
of mechanics that include the quantities having these units, are identical in all systems of
units. For example, F' = ma has the same form in all systems of units. Here the word
form is emphasized since the word has a quite important technical sense when applied
to a physical equation. This is most significant in relativity theory; the requirement that
equations have the same form in different frames of reference already encompasses an
appreciable fraction of the theory. Similarly one can say that Newton’s law is form-
invariant to change of units. In contrast the equations of E. & M. do not have the same
form in Gaussian and M.K.S. units. (They are relativistically correct, however.) Another
consideration affecting units and the form of the equations is that of “rationalization‘.
There are only two systems in common use; c.g.s., Gaussian, unrationalized, (Gaussian for
short) and M.K.S. | rationalized, (M.K.S. for short.)

By and large, people who apply the formulas of E. & M. for “engineering” applications
use S.I. units. This is because the practical electric units of volts for voltage, coulombs for
charge, amperes for current, joules for energy, watts for power, ohms for resistance, and
so on, belong to the S.I. system. Because of this, most undergraduate E. & M. texts use
S.I. units. Probably, therefore, most students are more comfortable with S.I. units than
with Gaussian units. The following table gives conversion factors. Many of these will be

derived and/or discussed in the rest of this packet.



TABLE 1. M.K.S. / Gaussian Conversion Factors. “3”= 2.99792456

Quantity Symbol | M.K.S. = S.I. Unit Factor Gaussian Unit
Length [ m 102 cm
Mass m kg 103 gm
Time t sec 1 sec
Frequency v hertz(Hz) 1 1/s
Force F (N)ewton 10° dyne
Energy(work) w (J)oule 107 erg
Power P (W)att 107 erg-sec™ !
Charge q (C)oulomb “3”x 109 statcoul
Charge density p C-m—3 “3” x 103 statcoul-cm ™3
Current I (A)mp “3” x 107 statamp
Current density J A-m~—2 “37 % 10° statamp-cm 2
Electric field E V-m™! 1074/43” statvolt-cm ™!
Electric potential V (V)olt 1072/43” statvolt
Polarization P C-m~—2 “37 % 10° dip.mom.-cm ™3
Electric Displacement, D c-m 2 4 “37 % 10° statvolt-cm ™1
Conductivity o mho-m~! “37 % “37 x 109 sec-cm ™!
Resistance R ohm(Q) 1071 /(437 x «3) sec-cm ™!
Capacitance C (F)arad “37x “3" x 101 cm
Magnetic flux o weber(Wb) 108 gauss-cim?
Magnetic induction B (T)esla 104 gauss
Magnetic field H A-turn-m~! 4rx 1073 oersted
Magnetization M A-m~! 1073 mag.mom.-cm =3
Inductance L (H)enry 10711 /(437 x “3”) | Gaussian e.s.u.




2. Converting Maxwell’s Equations to Gaussian Units

One reliable way to obtain correct equations in Gaussian units is to look them up in a
reliable source such as Jackson. Nevertheless it is worthwhile to see what is involved in
deriving the equations from first principles, (where “first principles” here means “starting

with M.K.S. equations”.) In M.K.S. units the Maxwell equations are

0B
VXxE=—"=
% ot’
OE
vV-E=2,
€0
V- B =0,

where all symbols are assumed to be familiar. From now on the last equation will be

dropped, since its units are unimportant.

Following Purcell, to shorten formulas, we introduce the conventional number “3” =

2.99792456 so that
1
c=/ = 43" x 108m/s , 2.2
[40€0 / (22)

and “9” = “3” x “3”. In terms of the defined quantity pg, one easily obtains

Ho 7 H
2107 =
4 m’
107 107°F
4 = = _ 2.3
TE C2 44977 m’ ( )
107 107'F
4:7'['600 = = 5y -
c 37 s

Note that pg is just a number, arbitrary chosen, and not measurable, but with units.t
In going from M.K.S. to Gaussian units three distinct steps have to be taken. We will
proceed step by step, introducing new values which leave the numerical value of each term

unchanged.

t1tis certainly an inelegant feature of M.K.S. units that an arbitrary number carrying dimensions appears
g g
in the most fundamental equations. This would not be necessary if H were the fundamental magnetic field,
but it seems to be non-controversial that B is the fundamental magnetic field.



1. Multiply Egs. (2.1) by factors such that the dependent variables become 10 3E4meqc,
1073B47 /g, 10Jc and 10pc. Using Eqgs. (2.3) this yields

10(107°B4
V x (10_3E47T6()C) =~ ( 1 W/NO))
_3 B 13 (10_3E47T6()C) _44_7r
V x (107°Bdn/pg) = - 5 +107°—
V- (1073E4nmegc) = 10~ 44 (10pc),

which begin to resemble the Maxwell equations in Gaussian units, though all quantities

(2.4)

(10Jc¢),

are still in M.K.S. units.
2. Tt is impossible to “justify” the next step as being logical or well-motivated; it would
probably not be accepted nowadays, but it is the step that Giorgi, the inventor of M.K.S.
units, took. Though charge and current do not appear in the Maxwell equation, both
charge density and current density do appear. Let us change the unit of charge by a
dimensionless factor equal to “3” x107—even though this factor begs to be interpreted as
ten times the speed of light in M.K.S. units, it is, to repeat, just a dimensionless number.
It is this replacement of a dimensional quantity ¢, a velocity, by a dimensionless number
that forces the occurrence in the electromagnetic equations of an arbitrary number, gy,
which carries dimensions.

Introducing the symbols @@, and I, for charge and current measured in the new units

we have

Qg = “3" x 10°Q, I, =“3" x 10°1I. (2.5)

When measured in these units, but with all other units unchanged, let us use the sym-
bols ', I', J' and p’ for the quantities proportional to charge. Also let us introduce
abbreviations for the quantities in parentheses in Eqgs. (2.4)

1074

— _E,

“377 (2.6)
B, = 107°Bdr/uy = 10*B.

(For the moment the right hand equations, obtained using Eqs. (2.3) are superfluous, as it

E, = 10_3E47T6()C =

is the abbreviations on the left that are to be used.) Then the Maxwell equations become

10B
VxE, = — -2
* Hy c Ot
1 0E 4
vxB, = 180 gl y (2.7)
c Ot c

V-E, = 10 44y



Except for the novel unit of charge, these equations are still in M.K.S. units. In particular
the unit of distance is the meter.

3. Consider next the effect of changing length units from meters to centimeters. If a
term containing the derivative operator V is reckoned with the unit of distance being the
centimeter it will be altered by the factor 1072; to compensate V would have to be replaced
by 102V. But in the first equation the factor 1/c on the right hand side will change by the
same factor 1072 when c is reckoned in cm/sec. Therefore the first equation is unchanged
in going from meters to centimeters.

The inhomogeneous terms (i.e. terms containing p or J) in the other equations require
different treatment. Since the units of charge density and current density depend on the
unit of distance, these terms require extra factors. Since .J is current per unit area, it
needs to acquire a factor 10* for its numerical value not to change when J is reckoned on
a centimeter basis. The J term therefore needs another factor 10%. For the same reason

the pc term in the third equation needs a factor 10°. The resulting equations are

1 0B
VxE;= — —7
Cem /s ot
1 OE 4
V xBy = g 4 T Jg, (2.8)
Cem/s ot Cem/s
V- -E, = 4mp,,

where
J, = 1074 = “3” x 10°7,
(2.9)
pg — 10—6pl — 44377 % 103p7
which include the appropriate conversion factors for transforming densities from meter to
centimeter length units. (Again the right hand equations should be temporarily ignored.)
Since this completes the conversion from M.K.S. to Gaussian units, the subscripts can

be dropped to give the Maxwell equation in Gaussian units

10B
E= — -
VX c Ot’
V xB= 13_E+4_7r.]7 (2.10)
c Ot c
V- E = 4mp,

Also Eq. (2.5) and the right hand sides of Egs. (2.6) and (2.9) give some of the conversion

factors contained in Table 1.



3. Converting Force Equations to Gaussian Units

The top few entries in Table 1, for length, mass, time, frequency, force, work and energy,
and power come from mechanics and need no further explanation. Conversions of () and
I were defined by Eq. (2.5), and their densities p and .J can be converted using Eq. (2.9).
E and B are converted using Eq. (2.6). It is appropriate to survey some of the other
equations of electromagnetism to confirm that no contradictions have arisen.

The most fundamental law is Coulomb’s, which reads

_ Qq _ Qg4 “9” 1 —10-° Qg4
Ameqr? “9” % 1018 109 10_41“3 rg '

Refering to the force conversion in Table 1, we obtain the (well-known) Gaussian version

(3.1)

of Coulomb’s law.

Qq
The very definition of electric field,
F “3” x 107 F,
E=" =10"0F,—2 "0 = «37 x 104°2, (3.3)

q dg dg
along with Eq. (2.6), confirms that the definition E = F/q is form invariant. (Suppressing

angular dependence) the fundamental magnetic force (the Lorentz force) is given by

g -2, 10-4B — 10-5 Y9 —10-5, Y
WIO ’Uglo Bg =10 qngQ =10 Qgng- (34)

One hates to replace a dimensionless (arbitrarily assigned) number by a dimensional (mea-

F=quB =

surable) quantity, as has just been done, but in Gaussian units the magnetic force equation
is therefore

F= q%B, (3.5)
As the experimental value of the speed of light changes the ratio between units changes.
It was therefore not correct to say that the factor “3” is arbitrarily assigned. Rather this
factor has to be taken from the best known value of the speed of light (with power of 10
such that the value is close to 3). The fact that the Lorentz force equation is not form
invariant is (at least philosophically) a troublesome aspect of the change of units. For a
fully relativistic particle the Gaussian unit relation F' = ¢B is independent of the speed of
light while the M.K.S. unit relation F' = qcB depends on the speed of light. This makes it

very confusing to decide which equations are “fundamental” and which are “derived”.



4. Integral Relations

Gauss’s law is the integral equation equivalent of the third Maxwell equation. Also it is
equivalent to Coulomb’s law. By now we have learned how to convert both of these, so

conversion is straightforward. The M.K.S. version is

1
/E-dA: —/pdV, (4.1)
A € Jy

The left side gives the electric flux through closed surface A, and the right side is the

charge contained in the volume V bounded by A, divided by €;. The Gaussian version is

!AEwM:AWAp (4.2)

The main purpose of “rationalization” was to achieve the dubious virtue of moving 47
from Gauss’s law to Coulomb’s law; it is the same 47 that enters the formula for the
area of a sphere. In optics and microwaves, where there are no free charges, and where
Maxwell’s equations are everywhere, this is a good bargain. Perhaps this accounts for the
universal adoption of M.K.S. units (in the 1930’s and 1940’s I believe) by radio physicists
and engineers.

Ampere’s Law. In M.K.S. units Ampere’s Law in free space is
B
j{H-dl: Bla-r (4.3)
C Ho
the line integral of H along closed curve C is equal to the current I “linked“ by C. The

usual manipulation yields the Gaussian unit version,

4

%BmzlL (4.4)
C C

Vector Potential. By definition, in both M.K.S. and Gaussian units, the vector potential

A is related to magnetic field B by

B=VxA. (4.5)

Free Space Energy Density. The usual manipulations, starting with the M.K.S. version

of energy densities

1 1
= —¢E? =B’ 4.6
ug 2‘50 y UM 2/10 ’ ( )
yield the Gaussian versions
[ [

Ug = —F 5 Up = — B~. (4.7)
™



5. Energy and Momentum of Atomic Particles

It is conventional and convenient to measure the energies of atomic particles in electron-
volts, a unit that belongs neither to the M.K.S. nor to the Gaussian system. At the same
time, it is convenient, at least in relativistic situations, to express particle masses not as

masses but as rest energies; e.g. for electrons and protons

mec® = 0.511003MeV

) (5.1)
myc” = 938.28 MeV.
Energies, masses and momenta are related by
% = p*c + mich (5.2)

For connecting these quantities with electromagnetic quantities, it is convenient to group
these quantities as £ /e, pc/e, and mc? /e, all of which are measured in volts, and can hence
be regarded as belonging to the S.I. system. Thus, for example, to obtain the bending
radius p, of a particle of momentum p, in a magnetic field B, the formula to use in M.K.S.

units reads (ve/e) V]
pc/e) |V
¢[m/s] B[T] (5:3)

Some accelerator physicists prefer to rearrange this equation to work with a kind of “par-

plm] =

ticle momentum” called the Bp value,

B[T]p[m] = (p/e)[S.L ], (5.4)

where the right hand side is worked out in S.I. units initially, and then subsequent relations

are expressed in terms of Bp.



