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The luminosity in flat-beam circular colliders is known to “saturate” at some “threshold” beam
current above which (because the beam height grows) the luminosity varies (only) linearly with beam
current, making both the “specific luminosity” (luminosity/current) and the “beam-beam tune shift
parameter” &, independent of current. The purpose of this paper is to calculate £, analytically with
the goal of maximizing the luminosity. A zero parameter application of the theory to 13 existing
storage ring configurations yields theory/experiment equal to 1.26 &+ 0.45 for &, max.. Parameter
values (especially tunes @z, @y, and Q;) expected to maximize £, are given. The most-favored tune
combinations seem not to have been tried so far in colliding beam facilities.

The vertical beam growth is ascribed to “parametric pumping” of the vertical betatron amplitude
of each individual particle by its own (inexorable) horizontal and longitudinal oscillation. A unique
determination of the distribution of all particles then follows from a saturation principle which
asserts that the beam height adjusts itself to the smallest value for which the least stable particle (of
probable amplitude) is barely stable.

The difference equation describing the pumping can be solved by numerical iteration or, because it
is (almost) linear, it can be solved analytically, at least for amplitudes small enough that resonances
remain isolated. Because of the “aliasing” characteristic of accelerators, this equation exhibits an
even richer spectrum of resonances than the Mathieu equation, which the present theory generalizes.

Contrary to the “lore” of the field (which motivates the intentional increase of J, using wigglers)
the theory presented here predicts the dependence of luminosity on d, to be quite weak. This is
not inconsistent with actual collider performance according to a survey by Rice[1] of colliding rings

built so far.

PACS numbers: Valid PACS

I. BEAM-BEAM OBSERVATIONS FROM
EXISTING E+/E- STORAGE RINGS

This paper is concerned with “saturation” of the spe-
cific luminosity, a phenomenon best understood by refer-
ring to experimental data. Luminosity data collected in
1985 by Seeman|2] for a variety of colliding rings (VEPP-
2M, DCI, ADONE, SPEAR, CESR, PETRA, and PEP
3B) is shown in Fig. 1. In almost all cases “saturation” is
observed—above some threshold the luminosity increases
only linearly with current, and &, is correspondingly con-
stant.

This saturation phenomenon is consistent with obser-
vation (using synchrotron radiation) of beam shapes. For
example, in an early observation at CESR, independent
of beam current, the beams had r.m.s. width 1.4 mm
and r.m.s. height not greater than 30 um (diffraction lim-
ited) when the beams were separated; after being brought
into collision the widths were sensibly unchanged but the
r.m.s. beam heights were 58 um and the beam height
then increased proportionally with beam current. This
causes the beam-beam tune shift parameter £, to satu-
rate and no longer increase with increasing beam current.
That the horizontal profiles are unaffected corresponds
to the assumption in this paper that this motion is “in-
exorable” and the beam height enlargement is ascribed
to the “parametric pumping” of vertical oscillations by
horizontal oscillations.

Luminosity behavior of LEP is described by D. Brandt
et al.[3] Saturation of &, is again observed. (There is a

suggestion also of saturation of &, in one case. This is
mentioned only because, if true, it would contradict a
fundamental assumptions of the present paper—that the
horizontal motion is, except for modest tune shifts to be
explained later, independent of beam current.) When
running LEP at highest energy, 100 Gev, no saturation
was observed up to the highest possible beam current.
This would tend to contradict the model being presented
except that the authors note that the coupling coefficent
could not be reduced below k = 0.8%. According the
present paper, saturation of &, would set in already at
arbitrarily small beam current in a perfect ring but this
behavior is masked by any beam height o, present due
to single beam effects, especially coupling or vertical dis-
persion. This picture is supported by observed behavior,
for example at CESR and PETRA, in which reducing the
coupling reduces the threshold current at which satura-
tion sets in.

In 1983, extrapolating empirically from existing rings
to predict future behavior for LEP, Keil and Talman[4]
conjectured that the damping decrement 6, = 1/(2kf7)
(where k is number of bunches, f is revolution frequency,
and 7 is damping time) would strongly influence the lumi-
nosity saturation behavior. Plotting &, max against d, for
rings operating at the time (mainly PETRA and CESR)
for values mainly in the range 0.5x 107> < §, < 2x 107>
a “strong” power law dependence &npax ~ 8y *® was found.
The luminosity projection for LEP obtained by extrap-
olating this fit turned out to be almost a factor of two
too low at lowest energy but roughly correct at higher
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FIG. 1: Tune shift parameter “saturation” observed (pre-1985) at various e+/e- colliding beams. Copied from Seeman.[2]

energies. This suggested a power law exponent consider-
ably smaller than 0.38. Surveying the dependence of &,
on J,, for numerous modern rings, Rice[1] has produced
Fig. 2. This data shows that the power law dependence
(to the extent it is applicable at all) could be as weak as
gmax ~ 62'05-

The present paper attempts to clarify the influence of
damping decrement on luminosity. The (theoretical) con-
clusion will be that the dependence is “weak”.

II. QUALITATIVE DESCRIPTION OF THE
PARAMETRIC PUMPING MODEL

It is not surprising that the (tiny) beam height is much
more sensitive to the beam-beam interaction than is the
(large) width. Since the horizontal motion is “hot” and
the vertical “cold” any mechanism that couples these
motions tends to affect the vertical motion a lot, with-
out necessarily affecting the horizontal motion notice-
ably. The model proposed in this paper accepts this
feature without further justification; that is, the hori-
zontal motion of every individual electron is inexorable,
independent of interaction with the other beam (except
for a modest tune shift that allows for an increase in hor-
izontal tune spread as the opposing beam currents are
increased.)

Quite the opposite comments apply to the vertical mo-
tion. In an ideal electron storage ring, if there were no
cross-plane coupling or other extraneous source of verti-
cal excitation, £, would be infinite because the vertical
beam height would be zero.[10] In this ideal limit any
&y-dependent instability threshold whatsoever would be
exceeded for any finite beam current. In particular, the
resonance emphasized in this paper, parametric pump-
ing of vertical oscillations by horizontal oscillations, is
certain to occur. (The “pumped-parameter” here is the

vertical betatron tune @, = p,/(27).) In this process,
if the threshold is exceeded for any particular electron,
then the vertical amplitude of this electron will increase
up to a well-defined level that depends on &, and on a,,
the horizontal amplitude of the particular electron. Fur-
thermore, most of the particles must be “under the in-
fluence” of some such amplitude build up. If some large
class (e.g. all particles below one half sigma horizontal
amplitude) were free of perturbation, their vertical am-
plitudes would damp strongly, again causing unphysically
large beam density.

Electrons in one beam do not interact directly with
each other, but the result of their simultaneous interac-
tion with all the particles in the other beam is a global
equilibrium in which all electrons are at least marginally
stable against the parametric pumping. The total effect
is that the beam height will have increased to a non-zero
value such that &, is just low enough for this marginal sta-
bility to be achieved for (essentially) all electrons. The
saturation theory (or more properly, saturation princi-
ple) now expounded is that the beamn height adjusts itself
to the smallest value for which the least stable particle
is barely stable.[11] To turn this principle into a practical
theoretical calculation that can predict the vertical beam
height it is necessary to qualify the statement slightly
by limiting it to particle amplitudes having appreciable
probability. What is to be calculated is the saturation
value of the beam-beam tune shift parameter, &as. or
equivalently, the beam height o, which is proportional
to 1/§sat.-

Single beam (noncolliding) distributions, both hori-
zontally and vertically, are observed to be Gaussian-
distributed. This is well understood as being the result of
a competition between quantum fluctuations and damp-
ing, both of which are due to synchrotron radiation. It is
implicit in assumptions already made that the horizontal
distribution is unaffected by the beam-beam interaction.
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FIG. 2: Survey by Rice of the dependence of beam-beam tune shift parameter (alternate approximations are indicated &, and
DQv) on damping decrement §, (labeled as d) observed at various, not too ancient, colliding rings. Note the relatively weak

dependence on J,.

But the parametric pumping, at a minimum, introduces
a correlation between horizontal and vertical amplitudes,
and is capable, therefore, of causing the vertical distri-
bution to become non-Gaussian. An electron pumped
to large vertical amplitude will tend to stay “locked” on
resonance in spite of its damping, for a length of time
comparable with the synchrotron radiation equilibration
time (typically thousands of turns). On a longer time
scale the particles will tend to be knocked off resonance
by quantum fluctuation. But, because the parametric
pumping mechanism is (initially) exponential, the am-
plitude of each particle subject to resonance grows to its
limiting value within tens of turns. This paper makes
no attempt to analyse the complete dynamic evolution,
which is clearly very complicated. Rather it is assumed
that the equilibrium distributions remain Gaussian, so
the entire current dependence of the distribution is en-
capsulated in the dependence on beam current of a single
parameter, oy.

The leading parametric resonance in mechanical os-
cillators occurs for drive frequency equal to twice the
natural frequency; the result is a response that is a “sub-
harmonic” of the drive. The theory of this phenomenon
has a long history going back at least to Lord Rayleigh.[5]
The equation of motion is known as the “Mathieu equa-
tion” or, in greater generality, the “Hill equation.”[6]
The leading behavior is clearly analysed by, for exam-
ple, Landau and Lifshitz;[7] other than employing dif-

ference equations rather than differential equations, the
present treatment mirrors their treatment. The need for
difference equations arises because of the impulsive na-
ture of the beam-beam interaction. For the same rea-
son the phenomenon of “aliasing”, without changing the
essence, increases the number of possible resonances and
alters the vocabulary. There are striking similarities be-
tween Mathieu domains of instability[6] and storage ring
domains of instability. (See Fig. 12, which is explained
in an Appendix B.) Because the bunch distributions are
symmetric horizontally the vertical tune modulation oc-
curs at tune 2@,. Because of the subharmonic nature
mentioned in the previous paragraph this causes reso-
nance at @y = (2Q.)/2 = Q.. Even though this is the
same condition as for the so-called “difference resonance”
(or “coupling resonance” in accelerator physics jargon)
the nature of the resonances are completely different, for
example because the coupling resonance is driven by skew
quadrupole forces. Furthermore parametric resonance is
comparably effective for both sum and difference reso-
nances, @, + ), = integer.

Except for “detuning” at large vertical amplitudes
the equations governing parametric pumping are linear.
The detuning can be accounted for using well-established

mathematical approximations, for example as described
by Migulin.[8]
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FIG. 3: Dependence of vertical deflection Ay’ on vertical dis-
placement y. The deflection of an “equivalent” quadrupole
of strength ¢ = —4n&/ is also shown. For an e+e- collider
£>0.

III. DIFFERENCE EQUATION FOR VERTICAL

MOTION

As illustrated in Fig. 3 the vertical deflection of an
electron passing through the other beam at a location

(l/' - yAy'/2> P <

and a similar equation can be written for backwards prop-
agation from ¢ to ¢t — 1. Note that y' is evaluated at
the center of the other beam. I am using the notation
Coy = cos g and Sy = sin pg. For these two maps the top
equations are

exp(+0)ys+1 = (Co +aSo)ys + BSo(y' + Ay;/2), (3)
exp(—=0)yi—1 = (Co — aSo)ys — BSo(y" — Ay;/2). (4)

Treating § as small and adding these equations to elimi-
nate y' yields[15]

_ 2Coy: —yi1(1 = 0) + BSoAyi (x4, Yt 5¢)
o1 = 1446

G

This formula is extremely convenient for numerically
evolving y into the future by simple iteration; the only
substantial calculation required is the determination on
each iteration of Ay; (whose dependence also on on trans-
verse coordinate x; and longitudinal coordinate s; will
be introduced shortly.) This evolution can be stable or
unstable in ways to be analysed. Once Ay; has been

Co + aSy
—7So

with lattice function f is[12][13]

where the vertical distribution has been assumed to be
Gaussian with r.m.s. size ¢ and the error function depen-
dence results from direct application of Gauss’s law as-
suming o << o,. That the appropriate numerical factor
has been introduced so that £ is “beam-beam tune shift”
for a small amplitude particle can be seen: a quadrupole
of strength ¢ causes deflection Ay’ = gy which causes
small amplitude tune shift AQ = —fq/(4n).[14] The lin-
ear part of the beam-beam deflection is labeled “equiva-
lent quadrupole” in Fig. 3.

To account for the damping that accompanies syn-
chrotron radiation one introduces a small “damping
decrement” ¢, so that the once-around transfer map in
“Twiss form” is

BSo Yy
Co—OéSO y’+Ay’/2 t

spelled out explicitly, Eq. (5) represents the entire satu-
ration theory—~&g,s. is the largest value for which all am-
plitudes (except those negligibly far out in the “tails” of
the distribution) are stable. This calculation can be per-
formed numerically by checking the stability of Eq. (5)
for a sufficiently representative selection of amplitudes
and a sufficiently large number of turns.

Within the limitation of the model (for example the
uncertainty in picking what constitutes a “probable am-
plitude” in the saturation principle) the numerical pro-
cedure just described can be arbitrarily accurate but, be-
ing numerical, it provides little intuitive guidance as to
the essence of the process. For such guidance an ana-
lytic solution of difference Eq. (5) is useful, even if it is
quantitatively inaccurate. It is convenient to set § = 0
for the moment, planning to account for damping later;
to approximate the error function according to the final
version of Eq. (1); and to move the linear part of the
deflection to the left hand side of the equation. Then the



equation of vertical motion is

2

Y (6)

Yt+1 — QCyt + Yt—1 = 5471'5 &7 Y.

Here we have defined C' = cos(ug + 27€), S = sin(uo +
27€) in order to incorporate the linear part of the beam-
beam deflection into the “unperturbed motion”. If the
r.h.s. is evaluated for “zero’th approximation” motion
Yt = ay cos ut, and only the “fundamental” Fourier com-
ponent (varying as cos ut) retained, the result is

5 U—g ay cos jut. (7)
Resubstituting a, cos ut = y;, this term can be incor-
porated approximately into the equation of motion by
defining an amplitude-dependent coefficient,[16]

Swé ai
T o MO (me(ry)).

(8)
This transforms the equation of motion into

Yir1 — 2Cy: +yi 1 = BS Ay, 9)
where Ay; is any not-yet-included perturbation. (It is
not necessary to replace S by corrected value S since this
factor appears only in the perturbing term.) Though C
will be obtained directly from Eq. (8) when it is needed,
the tune at amplitude a can be expressed directly by
expanding Eq. (8);

2 a

i = po+27é (l—é (1-exp(=—5

(10)
The amplitude-dependent part becomes increasingly neg-
ative as a increases, which causes the tune shift to be
less positive than would be given by the linearized fo-
cusing force alone. Until amplitude-dependent detuning
becomes an issue there will be no need to distinguish
between C' and C since instability thresholds occur for
amplitudes small enough that C' ~ C.

The dependence of horizontal tune on horizontal am-
plitude will be much like that for the vertical motion. The
leading variation of Az’ is proportional to 1 — 22 /(202);
(just as in Eq. (1).)

IV. “SUBHARMONIC” PARAMETRIC
EXCITATION OF VERTICAL OSCILLATIONS

We now turn to the mathematical analysis of beam-
beam distortion. From a pedagogical point of view the
reader unfamiliar with difference equations might profit
from first reading Appendix A, which uses difference
equations to solve for betatron response to an external
shaker. Because that drive is “direct” the analysis is sim-
pler than this section requires. Higher order parametric
resonances are analysed in Appendix B.

TN = n=E (exp(~ ).

TABLE I: Fourier coeflicients By, (a.) as given by Eq. (13).

n Bn(0) Bn(1) Bn(2) Bn(3) Bn(4) Bn(b)
0 2. 1.58 .932 575 414 .326
1 0. .196 416 422 .358 .299
2 0. .0122 .0999 .199 .235 231
3 0. .000509 .0163 .0680 122 151
4 0. .0000159  .00201 .0180 .0519 .0854
5 0. .397e-6  .000200 .00390 .0185 .0420
6 0. .827e-8  .0000165 .000710 .00566  .0182
7 0. .148e-9 .118e-5  .000112  .00151 .00703
8 0. .231e-11  .733e-7 .0000154 .000359 .00245

The vertical beam-beam deflection, given previously
by Eq. (1), actually depends also on both the horizontal
and longitudinal displacements. Because the beams are
ribbon-shaped, and both profiles are Gaussian, the y-
linearized deflection on turn ¢ is given by[17]

_4mg

Ay, = 5

2 2 t
exp(_w) 1+ a2 (ﬁ)z cos? it us,
2 B;
(11)

where units have been chosen so o, = 1. £ is now to be
interpreted as the value of the tune shift parameter at x =
s = 0. For much of this paper, in the interest of keeping
the formulas simpler, I will concentrate on the transverse
motion by taking as; = 0. The same formulas derived for
x motion can be easily transcribed to incorporate s when
needed. Of course including another degree of freedom
introduces many more resonances. Since ps << i, it will
be natural to regard the new resonances as “satellites”
of the horizontal resonances.

It is appropriate to Fourier expand the Gaussian factor
in Eq. (11);[18]

o0

(Z (% + By, cos(2np,t))) ys-

n=0

_dn¢

Ay, = 3
y

(12)

The coefficients B,, can be evaluated in terms of (modi-
fied) Bessel functions I,, using an integral from Watson,
Bessel Functions, 6.22(4); the result is

2
By, = 2exp(— ) I,(- %2, (13)
Values of B,, are given in Table I. The first row and
first column are shown only for completeness. By can
(and will) be set to zero as far as the mechanism of this
paper is concerned. (This is consistent with the formula-
tion described previously, where the leading effect of the
beam-beam interaction was defined to be part of the un-
perturbed motion.) As stated earlier, because the “effec-
tive tune” of the vertical gradient acting on the particle
under study is 2, the leading “subharmonic” resonance
occurs for p, & p.
We hypothesize the response of an individual electron
to the parametric drive to be betatron motion for which



the dominant part is sinusoidal, with a frequency i to be
determined;

Yyt = a cos((+en)t)+b sin((pu+en)t) = a cos fit+b sin fit.

(14)
Here ¢,, to be defined shortly, is a “small” frequency
deviation from the natural frequency. It is possible for
any of the terms in the sum (12) to “resonate with” (and
hence cause) this motion. The quantity p + £, has been
replaced by & in Eq. (14) and from here on, even though
this suppresses the (essential) index n. The coefficients
a and b are “variation of constants” coefficients whose

“Ay; <
AmélB nz::l
00 B,
- nz::l -
00 B,
+ Z:l 7

Any term in these sums can potentially cause resonance.
The frequency offsets 553) quantify “phase offsets from
nearest resonances” by the following relations (for which

the overall signs are not significant)

(+)

np, +p+ett) = —(utel), or el =np. +p,
np, —p—cl,) = +(utel ), orel ) =np, —p.
(17)

Presumably a particular one of these possibilities, say n,—

will dominate over all others. From here on the index n

will be specialized to indicate this particular dominant

case. Then, dropping all other terms Eq. (16) becomes
47 By,

Ay; = 5 2 (a cos(fit) — bsin(fit)). (18)

Substitution into Eq. (9) yields

Yir1 — 2Cy;: + yi—1 = —S2m€ By, (acos(fit) — bsin(jit)).

(19)
(As mentioned earlier it is initially unnecessary to distin-
guish between C and C'.) Including the time variation of
a and b, Eq. (14) yields

Yt+1 = (a + a)(cos ficos(fit) — sin i sin(fit))
+ (b + b)(sin jicos(jit) + cos fisin(/it))
yi—1 = (a — a)(cos fi cos(fit) + sin fisin(fit))
+ (b— b)(—sin ficos(fit) + cos fisin(fit)). (20)

Substituting into Eq. (19), and requiring the sine and
cosine term coefficients to vanish separately yields the

variation will be arranged shortly to satisfy the equa-
tion of motion. They are assumed to vary slowly with ;
that is, their fractional changes per revolution are small
compared to 1. If they are treated as depending on a
continuous variable ¢, then

ai+1 N Qg + dt, and btﬂ:l ~ bt + i)t. (15)

From here on the t-subscripts on a and b will be su-
pressed.

Combining Eq. (12) (with constant term dropped) and
Eq. (14) yields

By, cos(2nu,t) (a cos(fit) + b sin(fit))
(acos((2npte — p — el )t) = bsin((2npe — p — e ))1))

(acos((2npt, + p + D)) + bsin((2np, + p + eG)E)). (16)

equations
—asinfi +bcosfi —Cb— SwEB,b =0
bsinfi+acosji—Ca+ StéBpa =0.  (21)

Seeking a solution for which a and b exhibit time depen-
dence of the form exp(iwt) yields

. cos i—C—S € B,
( o i ) (“) =0. (22)
—cos i+C—S 7€ B, - -
Tﬁﬂa —iw b

The requirement for nontrivial solution to exist is that
the determinant formed from the coefficients must van-
ish; this yields

,_ (cosji—C)? = (S&B,)*
w’® = S f . (23)
In this form the condition for stable motion is that w? be
positive (since the alternative yields one exponentially-
growing solution.) Making the assumptions &, << 1
and C' = C allows the approximations cos i — C' ~ —Sk,
sin i & S. Then setting w = 0 to determine the edges of
a “stop band” yields[19]

e? = (€ B,)?, or —7¢B, <e<wéB,. (24)

By setting ¢ to zero we have so far been neglecting
damping and have found that, even with no damping,
if € lies outside the stop band, the motion will be sta-
ble. In fact there is damping, as represented by § # 0.
The threshold of instability is therefore determined by



requiring the growth rate given by Eq. (23) to be equal
to §;

V=2 + m2€2 B2 = 6. (25)

The band of instability is therefore given by

where ¢, = /w262 B2 — 2. (26)

For § > w¢B,, there is no unstable band at all. It is
probably in this resonance-suppressing role that ¢ has its
greatest potential influence on luminosity.

The prediction so far is that the motion is either
stable or that, within a limited band, the amplitude
grows exponentially without limit. Such growth would
eventually invalidate the small amplitude assumption on
which the equation is based and, in fact, the amplitude-
dependent detuning analysed earlier limits the growth.
Because of the nonlinearity, as well as the state of equi-
librium with af = 0 there is a state of equilibrium with
aj = a® +b> # 0. Substituting for C' from Eq. (8),
Eq. (23) with w? = —62 depends on the amplitude pa-
rameter a,. After rearrangement the condition becomes

—g <e<egyp,

T ﬂ2 2
e= +/m?B2¢ —§% — Z5 (1 — exp(—252))

o2

2
~ +/m? B2 — 52 - IE L (27)
If there is an unstable band then 72 B2 £2 — §? is positive
so picking the positive-sign square root yields a positive
value for a® throughout the stop band of Eq. (26). This
equation sets the amplitude at which the growth of ver-
tical amplitude is limited by the amplitude-dependent
detuning. The vertical amplitude of any particle whose
tunes place it in the range Eq. (26) will be pumped im-
mediately to the value given by Eq. (27). The functions
of Eq. (27) are plotted schematically in Fig. 4. It can
be seen that stable motion with a # 0 is even possible
for ¢ < —g;. This asymmetry in € will be important
in interpreting numerical solutions of the master differ-
ence equation. In particular it seems to account for the
numerically-observed superiority of values ), just above

resonance compared to values just below.

For the special case § = 0 the band limits are at
€ = £mw{B, so the amplitude lies in the range 0 < a, <~
2y/2By0. From Table I one notes that values of B,, likely
to be important vary over the range from, say, 0.05 to 0.5,
depending on a,, so the limiting amplitude ranges from
close to zero up to about 20. As the particle oscillates
its loss of vertical amplitude due to radiation damping
will tend to be replenished immediately by the pumping
mechanism and the particle will oscillate rather stably
for many turns. But the particle’s random walk in hori-
zontal phase space will eventually disrupt the resonance.
Positive damping (§ > 0) reduces the limiting amplitude
(though typically very little) and, as noted previously,
reduces the stop band width.

There is a certain self-consistency here—whatever the
beam height is, at least approximately, the pumping
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FIG. 4: Plot of Eq. (27). Open circles mark stable motion;
a temporary excursion to larger a, moves the system away
from “exact” resonance which tends to reduce a,. Crosses
mark unstable motion. The broken curve indicates the sort
of dependence to be expected from a more detailed theory
including other nonlinearity.

mechanism provides the support for just that beam
height. This “natural” relationship provides corrobo-
rates the identification of detuning as the amplitude-
establishing mechanism since the height scale on which
detuning occurs is about the same as the beam height it-
self. Just what this height o is remains to be determined.
The further relation that, in principle, fixes ¢ is that &
depends inversely on ¢. The relation can be written as

£=—. (28)

where I’ is the beam current, as measured in units picked
to make the constant of proportionality be 1. The factors
entering this relation are all well known in practice.

Though it is still too encumbered with limitations to
give an accurate picture, and it is not clear what form
of averaging is appropriate, Eq. (27) can be manipu-
lated to express this self-consistency semi-quantitatively.
Since the beam height is supposed to be ascribable to
the pumping mechanism that the equation describes, one
has to suppose a = o is typical. With this assumption
Eq. (27) determines ¢ according to

€ ¢ e? 4 42
4w B2 2n2B2

~ 0, assuming 16B% >>1,
(29)

2
3¢

which can be solved to give

. N ——— (—2
e 2By 228,

Then o is determined by Eq. (28). To be valid at all this
formula assumes that a known resonance is dominant and
that e corresponds to that resonance. The structure of
this formula predicts that the dependence of &,ax. On 6 is

+Ve2 182, (30)



more complicated than the power law dependence men-
tioned earlier. In any case the main purpose of Eq. (30)
is to illustrate an “in-principle”, parameter-free, determi-
nation of the limiting tune shift parameter. Since § << e
is typical, Eq. (30) exhibits only a very weak dependence
on ¢. This contrasts with the threshold tune shift value
which, according to Eq. (48), depends sensitively on §.

V. OTHER RESONANCES

Eq. (14) was not the most general possibility for para-
metric resonance. For example, suppressing the ¢ sub-

Ay 2
i€, /B, Bn

These lead to definitions, like those in Eq. (17), that pick
out tune combinations for which the perturbed frequency
matches the fundamental frequency. Recalling that p, +

scripts (as before) to free up a position for Fourier indices,
let us seek a solution of the form

3 3
y=ao+ Z am cos(mfiyt) + Z bm sin(mfiyt), (31)

m=1 m=1

truncated, at least for the time being, at m = 3. Extra
terms appear in Eq. (16). Suppressing the summation
over n,

= 2ag cos(2np,t)+ E?n:l Ay COS(2npy — Mflyt) + anzl Ay COS(2Npty + Mifiyt)

- E?nzl b sin(2np, — mfyt) + E?n:l b SIn(2npi, + mfiyt). (32)
[
From the first equation we obtain
Sy &y By
=————q. 37
ao —c, “ (37)

En = My,

2npe — (s + ity = fiy, or 2npe = (2+5)fiy, (33)

where s is another integer. This is not the only possibility
and the notation no longer identifies the particular offset
€ that is being defined. Then Eq. (32) becomes

“Ay, 2

4m€y /By Bn

+aq cos(s + 1)fiyt + az cos(s + 0) iyt + as cos(s — 1) fi,t
+a1 cos(s + 3)fiyt + az cos(s + 4) iyt + az cos(s + 5)fiyt
—by sin(s + 1)fiyt — b sin(s + 0) iyt — bgsin(s — 1)fa,t
+by sin(s + 3)fiyt + by sin(s + 4) iyt + bz sin(s + 5) fiyt.

= 2ag cos(s + 2)fi,t

(34)
The case s = 0 was previously called “lowest order”. Let
us try s = —1, 50 2np; = [iy, OF €, = 2Ny — [Uy;
—Ay;, 2

e, n T =@t (2ap + a2) cos(fiyt) +
+(a1 + ag) cos(2fiyt) + by sin(fiyt) + by sin(2f,t)(35)
where higher terms have been dropped. Egs. (20) now
acquire extra terms and Eqgs. (21) generalize to multiple
equations;
ap — Cyag + Sy &y By, (a1) =0,
—ay sin fiy + by cos iy, — Cyby + Sy w€y By, (b2) = 0,

by sin fiy + a1 cos fiy, — Cyar + Sy &y By, (2a0 + a2) =0,

—as sin 21, + ba cos 2fiy, — Cybs + Sy €y By, (b1) =0,
by sin 2fi, + as cos 2fi, — Cyas + Sy 7€, B, (a1) = 0(36)

As mentioned in an earlier footnote, at the stability limits
the derivative terms vanish. Using this and cosfi, =~
Cy — Syen and cos 2fi, ~ cos 2, these equations become

bien, = _'ﬂfy B, b2>
a1en, = —mE€y By (2a0 + a2),
b2 (Cy — cos2fiy) = Sy &€y By b1,
—as(Cy — cos2fy) =  —Syw€y Byai,
(38)
which yield
S, B S B
ay = Oy g = ST By, (g
Cy — cos 2fiy Cy — cos2fi,
The stability limits are unbalanced;
— =Sy (7"§an)2
En1 = TCy—cos2fiy
En2 = Sy(ﬂ'gan)Q(lfcy + oy,clos 2ﬁy)‘ (40)
This “higher order” resonance, with n = 1,s = —1, re-

quires the same relation between @), and @)y as the “low-
est order” resonance with n = 2, s = 0, but the numerical
factor and resonant denominators are different. Com-
pared to the limit given in Eq. (24) these acquire factors
of order 7§, B,,. Referring to values of B,, given in Ta-
ble I, and expecting the factor m&, to not exceed, say,
0.3, the only values of n likely to be significant will not
exceed a few unless one of the denominators is anoma-
lously small. Several parametric resonances are therefore



TABLE II: The leading linear parametric resonances, including aliases. These resonance lines are plotted in Figure ?77.

n s 22+”S Q- aliases - 22+"S Q- aliases
n s 7= Qq aliases s Qu aliases
1 0 P +.5, +0, -.5 -Qz +1.5, +1, +1.5
2 0 2Q. +.5, 40, -.5, -1, -1.5 2Q. +2.5, +2, +1.5, +1, +.5
1 -1 2Q. +.5, 40, -5, -1, -1.5 2Q. +2.5, 42, +1.5, +1, +.5
1 1 2Q:/3 suppressed (Figure 12) -2Q:/3 suppressed
candidates to dominate the growth of the vertical beam  Both limits are given by
size, even without including longitudinal oscillations.

To incorporate damping decrement J, one should first
solve the determinant equation for the growth rate. This 1
should then be set equal to the §, to find the stability en = Sy(m&yBp)? (——=—). (45)
limits in the presence of damping, as in Eq. (25). Simpler cos 2ty — Cy

is to mimic Eq. (26) by interpreting €2, as the square of
a real frequency shift and to equate it to 65 which is the
(negative) square of an imaginary frequency shift. (Doing
the same with €2, will not yield quite the same value.
This reflects the fact that the threshold of instability need

not occur at exactly € = 0.) The first estimate yields

¢ = 6;/2 Cy — cos2fiy (41)
V" B, sinfi,

For s = 1 the resonant tune relation is 2nu, = 3(uy +¢5)
or e, = (2/3)npg — py.

7A ! B ~
Twe, /5, B = 200 08(3fiyt) + ar cos(2fiyt) +

+as cos(fiyt) + az — by sin(2fi,t) — by sin(fiyt). (42)
The analogs of Egs. (36 are
—ay4 sin fiy + by (cos fiy — Cy) + Sy &y By, (—b2) =0,

by sin i, + a1 (cos fi, — Cy) + Sy 7€y By (az) = 0,
—as sin Qﬂy + by cos Qﬂy — Cybg + Sy ﬂ'fy B, (—bl) =0,

by sin 241, + as cos 2ji, — Cyas + S, 7€, By (a1) = 0(43)

which yield

en =7 B
as(cos2fy, — Cy) = =Sy w&, By a1,

a2
n g0

En = 7T£y B, g_f;
ba(cos2fi, — Cy) = Sy m€y By by. (44)

As usual the resonances can be identified with straight
lines in a resonance diagram such as Figure 5. The alias-
ing can be implemented using “periodic boundary condi-

The implication of equality of these limits is presumably
that the stopband width is of higher order in ¢ than has
been used in the calculation. This probably makes this
resonance unimportant and accounts for the absence of
s =1 stop band in Figure 12.

It is tedious to extend this calculation to higher order.
In Appendix B this extension is made more systematic
by using complex exponentials.

VI. IMPORTANT RESONANCES AND
FAVORED REGIONS

The master formula governing exact resonance is
Eq. (B7). Expressed in terms of tunes it is

Q=+, (46)
where n is a positive integer and s is any integer except
-2. The aliasing is such that multiples of 1/2 can be
added (or subtracted) from either @, or ). The leading
possibilities are tabulated in Table II.

tions”. When a line terminates on an integer boundary
another line with the same slope starts from the same
location on the opposite boundary.
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FIG. 5: Linear parametric beam-beam resonances from Table II. In all cases tunes are tune advances per IP. None of the
operating points are even close to regions labeled “GOOD REGION” on the basis of the saturation principle, numerically

investigated.

The essential feature of the parametric growth mecha-
nism that has been analysed is that there is stability up
to a threshold above which the amplitude grows rapidly
to an amplitude limited by detuning. To avoid resonance
the tune ranges to be avoided have to be expanded by
the range of horizontal tunes. There is also a spread of
vertical tunes but this mainly leads to detuning that has
to be modeled explicitly, as has been discussed; this effect
is automatically included in the numerical investigation
described in the next section.

The single resonance model assumes that it is impos-
sible to avoid all resonances and that, for any given op-
erating conditions, it is necessary only to identify and
analyse the dominant resonance. In this case the onset
of beam growth is controlled by §. For the lowest order
(s = 0) resonance, according to Eq. (26), the instability
sets in at

)
7B’

&no = (47)

where the second subscript stands for s = 0. This is a
special case of formulas for &,¢. derived in Appendix B
which take the form

1

bns = —— O/ HED T/ 419D,
n

(48)

where T}, ; is a trigonometric function of the tunes, whose
value is approximately 1. For example, from Eq. (B19)

Cy —cos2fi
Sy '

For this resonance the power law exponent is 0.5.

51/2
B,

€n,—1 = (49)

Tune combinations for which s = 0 yield such small
values of &, nr. it seems reasonable to suppose they have
always been, and will always be, avoided operationally.
One might say therefore that for “unfavorable” tunes the
power law exponent is ~ 1 since &y ¢nr. ~ 0, For “once-
removed” resonances, s = *1, { ¢nr. ~ /0y and the
power law exponent is 0.5.

The single resonance model may give a good descrip-
tion in regions where a single resonance is dominant, but
in these regions the saturation threshold is necessarily
very low. Such regions are avoided in practice since the
goal of colliding beams is high luminosity and there is
too much operational overhead to spend machine studies
time investigating unpromising tune combinations. As
a result there tends to be little data with which to test
the single resonance model. In practice the tunes are ad-
justed to be roughly equidistant from the two or three
nearest, resonances, invalidating the single-resonance as-
sumption. The numerical approach, to be descibed next,
automatically includes the effects of overlapping reso-
nances.
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VII. SOLUTION OF THE DIFFERENCE
EQUATION BY NUMERICAL ITERATION

than one resonance is significant. Then a numerical ap-
proach is required. The difference equation (5) and de-
flection formula (1) can be combined into a formula that
The analytic solution given so far breaks down when  makes turn-by-turn iteration easy;

the particle amplitude increases to a value such that more

2 2
Yir1 = ﬁ (200yt—yt1(1—5)—47rfsox exp(— 2% (“m(gm)(t”m))) \/1 + (;—2)2 a2 cos? (s (t + ts)t) \/gerf(%)

After substituting for u,(a;) from Eq. (10) this formula
is completely explicit.[20] Since Eq. (50) gives the cor-
rect dependence of Ay’ on y it includes effects nonlinear
in y, such as island overlap and chaos, but this paper
concentrates on small amplitudes where such effects are
expected to be unimportant.

My procedure in using Eq. (50) has been to fix Q.,
@y, a, and as and to increase £ in steps until “insta-
bility” occurs. Note that for some “small enough” am-
plitude, for example ymin. = 0.0010, the equation is es-
sentially linear and the motion is stable—the Courant-
Snyder (CS) invariant of the motion even decays because
0 > 0. Furthermore Eq. (50) is pseudohomogeneous in
the sense that y; = 0 for all time is a solution, no mat-
ter how large ¢ is. This makes it necessary to assign a
small starting “seed” amplitude yui,., which may or may
not grow due to parametric pumping. The “instability
boundary” is defined as folows: as ¢ is increased from
zero, a smallest value &y, is found for which ¥ > ymax.
for some value of ¢t within a “large” number of turns,
for example N; = 1000; here, for example, ymax. = 0.10
is an assigned “large” amplitude. (To partially suppress
possible artificial correlations among @, @, and Qs the
parametric drive oscillations were given random start-
ing t-indices in the range from 0 to -100. This is in-
dicated by t, and ¢, in Eq. (50).) The value £ deter-
mined in this way will be called &g,¢. to distinguish it
from the differently-calculated, single-resonance thresh-
old &inr.- For most studies the definition of what con-
stitutes “probable amplitudes” was taken to be the nine
combinations of the points a, = 0.50,,1.50,,2.50, and
as = 0.504,1.50,2.505. Bringing this up to sixteen com-
binations by including a, = 3.50, and as = 3.50 did not
change the results markedly.

The procedure just described was performed for all
points in the transverse tune plane, in steps of 0.01,
for various choices of the other parameters. Results are
shown in the following series of figures. Figure 6 shows
results with synchrotron oscillations absent (i.e. a5z = 0)
for § = 10~*. The starting and instability-defining ampli-
tudes here were (Ymin., Ymax.) = (0.0010y,0.10,); that is,
instability was defined to mean parametric pumping from
0,/1000 to ¢, /10. (Though the blow-up factor is large,
the blown-up amplitude is relatively small.) In this and

(50)

delta=.1e-3, ximinmax=.3

xire

© < N
o o o
FIG. 6: For all points in one quadrant of the transverse tune
plane the lowest value of &sat. (a2 ), for a representative sample
of a,-values, has been selected and plotted. In this and future
cases the numerical value of &sa¢. is to be obtained using the
grayscale which multiplies the maximum value as recorded
above (or below) the figure. (0.3 in this case.)

following figures the horizontal amplitude choices were
a, = 0.50,, a, = 1.50,, and a, = 2.50,. At each point
the worst case is plotted. By the saturation principle
this gives the tune plane dependence of &,y.. In this
case synchrotron oscillations are assumed to be absent.
The most favorable region seems to be in the vicinity of
(Qz, Qy) = (0.40,0.17) where &t = 0.19. Using the four
quadrant symmetry in the fractional tune plane, equiv-
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(ax,as,delta) = (.5,2.5,.1e-3), ximinmax=.300

0.5 ]

0.4

0.1

0 01 02 03 04 _ 05
(ax,as,delta) = (.5,.5,.1e-3), ximinmax=.300

FIG. 7: For § = 10_4, the tune plane dependence of &sat is
shown for as increasing from bottom to top in this column
(and similarly in Figure 8 in the adjacent column) with a,
increasing in going from Figure 7 to Figure 8. The grayscale
on the previous page is to be used to extract numerical values.
According to the saturation principle the maximum specific
luminosity at each point in the tune plane is obtained by
picking the lowest value from a sufficiently comprehensive grid
of data sets such as these.

alent examples are (Q.,Q,) = (0.40,0.67), (0.90,0.17),
and (0.90,0.67). (The two cases with (), ~ 2/3 may well
be contraindicated for reasons unrelated to the present
paper, but the “good regions” are probably larger than
typical nonlinear stop band widths.)

The effect of the simultaneous presence of horizontal
and longitudinal oscillation is shown in Figures 7 and 8§,
again for the case § = 107%. The synchrotronl ampli-
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0 01 _ 02 03 .04 05
(ax,as,delta) = (2.5,2.5,.1e-3), ximinmax=.230

0.5 1

0.4

0.1

0 01 02 03 04 _05
(ax,as,delta) = (2.5,.5,.1e-3), ximinmax=.300
FIG. 8: The relationship of these figures to those in Figure 7
(in the adjacent column) is explained in the caption to Fig-
ure 7. The systematically superior performance on the more
positive @, side of resonances is ascribed in section IV to the
response illustrated in Figure 4

tude a, increases from bottom to top in steps of 20 and
the horizontal amplitude a, increases from left to right
in steps of 20,. The worst case values from these plots
have been selected and plotted in Figure 9. Figure 10
is obtained similarly, but with § = 1072. Note the close
similarity of these figures and therefore the comparatively
weak dependence on §. Apart from the modest increase
of “maximin” value from 0.19 to 0.20 (shown at top of
each plot) and a slightly “brighter” region in the lower
right hand corner with 6 = 1072 the plots are qualita-
tively similar.



delta=.1e-3, ximinmax=.190
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0.1 0.2 qx 0.3 0.4 0.5

FIG. 9: At each point in the tune plane the worst case from
a complete grid of data sets like those in Figures 7 and 8 is
picked and plotted. § = 0.0001.

delta=.1e-1, ximinmax=.200

O T T T T T T T T T T T T T

0.1 0.2 qx 0.3 0.4 0.5
FIG. 10: At each point in the tune plane the worst case from
data like that of Figures 7 and 8 but for 6 = 0.01 is picked and
plotted. Comparing with Figure 9, note that the dependence
on ¢ is weak over the entire tune plane.

IX. PREDICTIONS AND CONCLUSIONS

Predictions based on Eq. (50) for the performance of
various proposed rings are shown in Table IV. The entries
labeled CESR-1.9 are for the “CESRc” reconfiguration of
CESR, currently in progess.

As expected there is extreme sensitivity to tunes, in-
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VIII. COMPARISONS WITH EXISTING RINGS

Tune combinations for numerous existing colliding
beam facilities are shown in Table III as well as in
Figure 5. Most of the entries in the table come
from Rice.[1] The column labeled AQy exp. contains the
experimentally-determined quantity most directly com-
parable with &y, ; (though it is determined indirectly)
AQy,exp. is the vertical tune shift of a minimum ampli-
tude particle, including the effect of the perturbation of
the beta function at the crossing point due to the beam-
beam force. Theoretical values &,. are determined by
numerical iteration as explained in section VII. In most
cases the (minimal) Monte Carlo aspect of the procedure
results in no fluctuation in &y, ; exceptions are noted by
a  symbol.

In constructing Table III, to account for multiple IP’s,
the tunes, as well as § have been divided by the num-
ber of IP’s, putting the calculation on a “per IP” basis.
The measured LEP tune shifts, all with 4 IP’s, fall far
below the theoretical values and a PEP-6IP point, not
shown, shows even greater disagreement. Within the as-
sumptions of the current model these points should agree,
absent reasons that invalidate the comparison. But even
small ring asymmetries invalidate the per-IP basis. Usu-
ally in rings with multiple IP’s the optics of the various
IP’s are not identical and the phase advances between
IP’s are not constant; these effects invalidate the present
theory. Furthermore, since tune shifts from different IP’s
add directly, it is possible for the total tune shift in a
ring with several IP’s to approach 1/2 or even 1, and the
implications of this have never been understood theoret-
ically. Legitimate or not the more-than-2-IP theory to
experiment ratios have therefore been dropped from the
averaging which then yields theory/experiment equal to
1.26 £ 0.45. The 1-IP average is 1.12 £ 0.43

cluding synchrotron tune ()s. For CESR-1.9 the very
high proposed value Q; ~ 0.11 appears to limit &, seri-
ously. Reducing Qs (which is possible, at least in prin-
ciple, for example with a third harmonic cavity) gives a
big improvement. Choosing optimal tunes is even more
important. In the full tune scans exhibited (as well as
others not shown) the regions labeled “GOOD REGION”
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TABLE III: Parameters of some circular, flat beam, e+e- colliding rings, and the saturation tune shift values predicted by
Eq. (50). fFrom Brandt[3]. *Ion effect blow up of low energy beam may prevent beam-beam saturation; §Theory value
is erratic. § Unequally-spaced IP’s. For points not excluded by one of these factors the mean and standard deviations of
theory/experiment (the last column) are 1.26 £ 0.45.

Ring IP’s Q. /1P Qy /TP Qs/IP Os /3; 10453/ Eth. AQy exp. Ein. /AQy exp.
VEPP4 1 8.55 9.57 0.024 0.06 0.12 1.68 0.028 0.046 0.61
PEP-1IP 1 21.296 18.205 0.024 0.021 0.05 6.86 0.076 0.049 1.55
PEP-2IP 2 5.303 9.1065 0.0175 0.020 0.14 4.08 0.050 0.054 0.93
CESR-4.7 2 4.697 4.682 0.049 0.020 0.03 0.38 0.037 0.018 2.06
CESR-5.0 2 4.697 4.682 0.049 0.021 0.03 0.46 0.034 0.022 1.55
CESR-5.3 2 4.697 4.682 0.049 0.023 0.03 0.55 0.029 0.025 1.16
CESR-5.5 2 4.697 4.682 0.049 0.024 0.03 0.61 0.027 0.027 1.00
CESR-2000 1 10.52 9.57 0.055 0.019 0.02 1.113 0.028 0.043 0.65
KEK-1IP 1 10.13 10.27 0.037 0.014 0.03 2.84 0.046 0.047 0.98
KEK-2IP 2 4.565 4.60 0.021 0.015 0.03 1.42 0.048 0.027 1.78
LEP-46 48 22.58 19.04 0.016 0.0076 0.05 0.958 0.128 0.034
LEP-65 48 22.57 19.04 0.019 0.009 0.05 2.7 0.086
LEP-98 48 24.59 24.05 0.029 0.0110 0.05 8.6 0.129 0.052
PEP-LER 1 38.65 36.58 0.027 0.0123 0.0125 1.17 0.044 0.044 1.00
PEP-HER 1 24.57 23.64 0.045 0.0115 0.0125 1.98 0.056 0.026*
KEK-LER 1 45.518 44.096 0.021 0.0057 0.007 2.34 0.042 0.032 1.31
KEK-HER 1 44.525 42.135 0.019 0.0055 0.007 2.18 0.060 0.018%*
BEPC 1 5.80 6.70 0.020 0.05 0.05 0.16 0.068 0.039 1.74

TABLE IV: Parameters of some proposed rings and the satu-
ration tune shift values predicted by Eq. (eq:Numerical.1). In
all cases 05 = ;. The dependencies are far too complicated
to be faithfully represented by such a limited set of data and
small changes of tunes may yield substantially different values
of &tn.. Y Theory value is erratic.

paper by the parametric resonator response illustrated
in Figure 4. Amplitude build-up occurs preferentially on
the negative @), side of resonances.[21] Those resonances
expected to be important in Table II are in fact visi-
ble in the tune plane plots, such as Figure 8. Including
synchrotron oscillations complicates the pattern consid-
erably and favors low Q).

Ring IP’s Q./IP Q,/IP Q./TP 10%, & ) o

CESR-1.9 1 1052 957 0.11 055 0.0169 If one accepts the saturation principle and the numer-
1 0.03 0.026 ical results of this paper there is potential for large in-
1 0.0 0.022 crease in specific luminosity compared to existing operat-
1 10.42 9.17 0.11 0.030 ing points. Unfortunately large specific luminosity does
1 0.03 0.096 not guarantee large maximum luminosity, as nonlinear ef-
1 0.0 0.100 fects may limit the amount by which the beam currents

VLLC(e) 1 59 05 0.11 100 0.044 can be increased above their threshold values. If the total
1 0.03 0.104 beam current is limited, there may be favorable compro-
1 0.0 0.098 mises, using more, but smaller, bunches, to exploit high

VLHC(p) 1 .59 .05 0.03 1.0e-8 0.056 ) ’ ’ ’

in Figure 5 appear to be more promising than other re-
gions. And yet, as least as far as cases documented in Ta-
ble III, these regions have never been tried operationally.
Even within the present model there is resonant struc-
ture within these regions and effects not included, espe-
cially nonlinear resonances, would make it necessary to
probe around for best operating points. For starters the
fact that @, = 0.67 sits exactly on third integer reso-
nance would seem to contraindicate the upper two quad-
rants. But the so-called “good regions” are considerably
larger than typical nonlinear stop bands, so the “good
regions” in all four quadrants are candidates for good
performance.

The location of good regions has been explained in this

specific luminosity.

For VLLC(e), (Very Large Lepton Collider) entries in
Table IV the tunes have arbitrarily been taken to be the
same as for LEP-98 even though more favorable points
exist (within the present model.) The achievable tune
shift values are consistent with projections by Sen, Norem
and others,[9] even though the extrapolation procedure
on which their values were based has been argued to be
invalid.

The damping decrements ¢ of hadron colliders are some
ten orders of magnitude less than for electron machines.
In spite of this big factor the maximum beam-beam tune
shifts in proton machines are typically one tenth of those
in electron machines. For this reason, because ¢ has been
thought to be important, it has usually been thought
that entirely different mechanisms must be responsible
for the limits. One effect contributing to the (relatively)



large value ¢ values achieved in proton machines is the
fact that their beams are round rather than flat. But the
(relatively) large £ value may also be partly explained by
the relatively weak § dependence claimed in the present
paper. To pursue this line of reasoning, the bottom entry
of Table IV shows the result of applying the formulas of
this paper to the Very Large Hadron Collidr VLHC(p).
Comparing with the second VLLC(e) entry, changing the
value of § by ten orders of magnitude, only alters £ by
factor 0.54. This is consistent with a dependence £ ~
§0-96 " Since this is not inconsistent with the dependence
observed in electron machines (Figure 2) it is possible
that the physics of the beam-beam interaction may be
much the same in proton as in electron colliding rings.
If so, the luminosities of next-generation proton colliders
may be much greater than current projections suggest.
That said, the value &, = 0.056 given in the table for
VLHC(p) is undoubtedly too optimistic; other effects,
such as diffusive beam growth, which depends strongly
on 4, are likely to overwhelm the parametric pumping
effect on which Table IV is based.

APPENDIX A: EXCITATION OF VERTICAL
BETATRON MOTION BY AN EXTERNAL
SHAKER

To illustrate the difference equation method it will be
used in this section to calculate the vertical motion in-
duced by the “direct drive” due to an external “shaker”.
As well as introducing the method of analysis, the equa-
tions of motion and an example of aliasing, this intro-
duces the important damping decrement J, and shows
how it influences the motion. (But the influence of d, on
parametric drive need not be the same.)

The deflection caused by the external drive on the ¢’th
turn is

Ay; = Fg cos ugt. (A1)
We postulate a small “damping decrement” d,, so that
the once-around transfer map in “Twiss form” is

y  exp(
(v-40r), oy P

Cy + aySy By Sy y
X( Sy Cy—ayS,) \y 4 Ayy2) (A2

and a similar equation can be written for backwards prop-
agation from ¢t to ¢ — 1. Note that y' is evaluated at
the middle of the shaker. We are using the notation
Cy = cospy and Sy = sinp, and are intentionally us-
ing the subscript ¢ as a turn index to be suggestive of
the time measured in units of the revolution period. It
will however always be an integer. Proceeding as in the
derivation of Eq. (5) yields

Yir1 — 20yt + Yi—1 = BySyAy; — 0y (yes1 —ye—1). (A3)
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After solving this for y; it will be possible to obtain y;
from the equation

R S et 75 20y Syys + 0y (Y1 + Yi—1)

(A4)

As usual with driven oscillations we expect a response
at the drive frequency. i.e.
yt = Acosugt + Bsin ugt, (A5)
where any “transient” (i.e. any solution of the homo-
geneous equation which is obtained by setting the drive
term of Eq. (A3) to zero.) has been neglected. In elec-
tron accelerators this neglect is justified by the existence
of true damping. Even in proton accelerators where true
damping is negligible, it can be justified by decoherence,
or, as it is also called, Landau damping. Substituting
into Eq. (A3) and equating the “in-phase” and the “out-
of-phase” coefficients separately to zero, one obtains

_ BySy(Cr=Cy)/2
A = @Ere s I

J— ,BySyS 6y/2
B =g tasy e (AG)
For near-resonance analysis we define[22][23]
€= HUE — My (A7)

Substituting into Eq. (A5) and neglecting terms contain-
ing €6, we obtain

” .
Y = %-%2 [—e cos ppt + 0y sin ppt]

FEBy

= —W COS(,UEt‘{‘ ¢),
where ¢ = tan71(5y/5), sing = 5@//\/524'5@3’ and

cos¢ = g/4/e? +07. Taking a, = 0, the slope is given
by

(A8)

Y = 51;3-/625 (0y cos ppt + € sin pgt)

= Qfﬁ sin(ugt + ¢). (A9)
These equations should be reminiscent of driven simple
harmonic motion though they are the solution of the dif-
ference equations Eq. (A2). Except nearly on resonance,
the “in-phase” cosugt term of Eq. (A8) is dominant,
but for small e, the “out-of-phase” sin ugt dominates.
The response always “lags”, with phase angle ¢ varying
from zero to —m as the drive frequency varies from zero
to infinity. With ¢ = —x/2 at resonance, the response
changes sign in passing from below to above the reso-
nance. The Courant-Snyder (CS) invariant of the motion
is

€y,CS = 67 (AIO)



For small deflections the averaged change in €, cs due to
the shaker is

s
(Aeyis) ~ (29, Ay;)
= (f;’TF(% (0y cos ppt + € sin pugt) Fg cos upt)
yF238,/2
- %. (Al1)
The averaged fractional change is therefore
Ae(s)
(e cs (A12)

€y,CS> = 25y .

This can be compared to the fractional change due to
damping

A (D)
Z90S g,

(A13)
€y,CS

The fact that these changes are equal but opposite is
consistent with the equilibrium.

APPENDIX B: HIGHER ORDER PARAMETRIC
RESONANCES

From Eq. (A3) the equation of motion is
Yer1(1—06) = 2Cy; +yi—1 (1 +0) = BSAy; (w4, ;). (B1)

Here quantities without subscripts (8, u, C = cos py, S =
sin pt,, and 0) implicitly refer to y-motion. Eq. (14) was
not the most general possibility for parametric resonance;
let us seek a solution of the form[24] [25]

Yy = Z G €Xp Mit, (B2)

where i = p + € is “close to” p in a sense to be spelled
out below. The phase advance fi can be shifted by an in-
tegral multiple of 27 without altering Eq. (B2). Actually
there is further degeneracy. The replacement p — p + 7
is equivalent to reversing the signs of both C' and S. This
reverses the signs of the y and y’ outputs from the one-
turn map around the storage ring. Since the deflection
Ayy is an odd function of y;, the next beam-beam deflec-
tion is also reversed. This means that the replacement
i — u+ 7 is equivalent to toggling the sign of y; every
turn so the y-axis points up for ¢ even and down for ¢ odd.
The phase advance i can therefore be shifted by hn (h
being an integer) without altering Eq. (B1). We therefore
permit arbitrary half integer additions to or subtractions
from g but require p and fi to have the same “fractional
parts”,

0 < ptrac., fitrac. < ™, fl = p+e, where fr—[frac. = b—[frac. -

(B3)
Here the term “fractional” has been generalized to mean
“modulo half-integers”. A resonance condition will pre-
sumably be met for ¢ sufficiently close to zero. This being
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a “variation of constants” method, the coefficients a,, are
to be permitted to vary, but only slowly with time. Fur-
thermore, since we are seeking “normal modes” of the
system, they are assumed to have the common time de-
pendence exp(iwt). Therefore Eq. (B2) yields

Yir1 = Dy G (14 iw) ™ eimit

Yim1 = 9o, G (1 — iw) e imA gimit, (B4)

Suppressing the summation over n, Eq. (16) now takes
the form

/5 b = O [l +mi)t) +

m

+exp(i(—2np, + mi)t)]. (B5)

Like p, p, is subject to degeneracy; for arbitrary inte-
ger k, we define 0 < pg frac. < m, and permit p, =
kT + g frac.. Again the fractional parts are defined mod-
ulo half-integers. In this case the degeneracy is due to the
fact that the deflection is an even function of xz. When
longitudinal motion is included there is a similar degen-
eracy in the choice of Q5. In simulating performance I
will simply take @ to be fixed at a “small” value of order
0.1 or less.[26] The fractional ranges to be investigated
are therefore

0<Q, <05, 0<Q<0.5, @s=fixed. (B6)
The other three quadrants of modulo-integer fractional
tunes will be identical. A “resonance condition” takes
the form

2
or,forn #0, = i% (u+e),
n

(B7)
where s is a positive or negative integer. The integers h
and k entering p and p, to permit this condition to be
satisfied are not in general the same. The tune degenera-
cies will be reflected by the fact that the coefficients in the
equations are sinusoidal functions of the tunes and are
therefore invariant to certain translations of the tunes.
Also there is other redundancy. For example the replace-
ment s - —4 — s has the same effect as an overall sign
change.

It is these degeneracies (also known as “aliasing”)
which make the spectrum of resonances “richer” than is
the spectrum of resonances of the Mathieu equation. Any
particular resonance can be identified by a (non-unique)
combination of h, k, s, . Even two different values of n
can contribute to the same resonance, in which case two
different values of B,, will enter the solution. The various
ambiguities can, to some extent, be hidden, and a partic-
ular resonance isolated, by re-expressing the (externally
controllable) parameter p, in terms of £, as in the sec-
ond of Egs. BT7), allowing s to take all values except —2
(in which case there is no time varying parametric drive)
and requiring € << 1.



Using Eq. (B7) the r.h.s. of Eq. (B1) can be manipu-
lated into the form

—27€SB, Z (@m—2—s + Qmtats) exp(imjit).

m

(B8)

Substituting into Eq. (B1), dropping (small) terms con-
taining wd and setting the coefficients of exp(imjit) indi-
vidually to zero yields, for —oo < m < oo,

(L+iw—08) ™t —2C + (1 —iw+6) e”™)a,y,
= 21§ SBy (am—2—s + ami24s)- (BY)

These equations reduce to

(Cp = C — 'Sy

= —m§SB, (am—2—s + am+2+s)7 (BIO)

(éM - C - wIS'M) ap =
(Cry1 —C —w'Sy 1) ay—1 =
(é’l - C - w'gl) 0,1:

(]. -C ap =

(C’l — C+W’Sl)a,1 =

(Crprr —C+w'Sy1)a_pe1 =
(éM — C’+w’5'M) a_p =
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where some abbreviations have been introduced;

= w_Z(s,

sinjfi = sinj(pu + ¢€),

S g
Il

= cosjji = cosj(u +e). (B11)

For any particular integer s # 2 and any positive integer
n, Egs. (B10) form an infinite set of equations, one for
each integer m. To truncate this set we pick an arbitrarily
large positive integer M and retain only the equations for
—M < m < M;[27]

—m€SBy, (aM—2—s + AMt2+5),

_’/Té-SBn (aM73fs + aM+1+s);

_Fé.SBn (a—l—s + a3+s)7
—m€SBy (a2 5 + az45),
_WESBn (a73fs + a1+s)>

_’/Té-SBn (anflfs + a7M+3+s);

—m€SB, (a,M7275 + a,M+2+s). (B12)

Coefficients with indices outside the range —M < m < M are to be set to zero. Since these are linear, homogeneous
equations, the solvability of the equations is governed by the determinant A of the matrix formed from their coefficients.
Some properties of A can be obtained using a special case, M = 2,s = 0, as a model;

Co—C —w'S, 0 T¢SB, 0 0
0 Ci—C—-wS 0 €SB, 0
Alp,e,w'”, ) =det| w¢SB, 0 1-C 0 €SB, (B13)
0 €SBy, 0 Ci—C+uwS; 0
0 0 T¢SB, 0 Co—C+w'S,
[
Since the ag equation does not depend on W', it can be a function only of (w — i8)?, the substitution w’ = —ié

solved for ag which can then be eliminated from the other
equations. Reversing the sign of M obviously leaves the
equations invariant, but the following observation is more
essential: Just reversing the signs of the indices (e.g.
am = b_m) can, on the one hand, not alter the solv-
ability of the equations and, on the other hand, produces
the same set of equations except with the sign of w' re-
versed. It follows that the characteristic determinant is
a function only of w' > That A depends only on &2 can
be inferred by multiplying both one row, say the second,
and the corresponding column by -1. This is equiva-
lent to reversing the sign of ¢ but leaving the equations
and the determinant otherwise unaltered. Because A is

yields A(u, e, —62,£?), a polynomial in §2 and £2 with all
coefficients real.

The simplest example of Egs. (B12) has s = 0, M =
1. Dropping the m = 0 equation (because it does not
contribute to lowest order) yields

(él - C - w'S’l) ap =
(CN'fl —-C - w'S',l) a_1 =

—£S (a—y + as),
—fS ((3473 + al). (B14)

Terms to be dropped because they bring in coefficients
outside the range being retained are indicated with cir-
cumflexes (*). (The rationale behind this approxima-
tion is that the retained terms a; and as describe the



dominant vertical motion, perturbed only in lowest or-
der by the parametric pumping. Since neither of these
coefficients appears in the m = 0 equation, that equation
can be dropped—the error made is “higher order” in the
small parameter 7€£SB,,.) Continuing with the example,
the condition to be satisfied for homogeneous Eqgs. (B14)
to have a nontrivial solution is

C,—C—-uw'S s

T s Ci—C+w'$,

=0. (B15)

From Eq. (B3) which defined &, we can approximate C; ~
C—eS,5 =85, toget

(w—i8)? =&* — &, (B16)
This agrees with Eq. (23) and is even a slight improve-
ment in that the damping has been handled explicitly
and does not need to be inserted “by hand”. Expressed
in terms of system parameters using Egs. (B2) and (B7),
the motion is stable if

ére\/gz’ - (g’fo _ 2 < (B17)
|
(02—0)/5’2—wl - 0 -
0 (Cl —C)/Sl —w'
det _55/5,1 0
0 —55/52

The four solutions of this equation for w’ are the expo-
nents of the possible homogeneous motions of the system.
The elements of this matrix have been obtained by read-
ing coefficients directly from Eq. (B12). For fixed n, s
and p, since fi = 2np,/(1+ s), each of these eigenval-
ues is a function of u, and &,. Unstable regions of the

Alp,e, —6%,6%) = Doo(p, &) + A1o(,€)E% + Ao (1,€)8% + A (1,)6%0% + ...
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If 6 = 0 (no damping) the limits of the band of unstable
motion are obtained more directly by setting w’ = 0 in
Eq. (B15);

Ci—C ¢S
&S G -C

=0, or —¢<e<t (B18)

To obtain a more accurate formula (for the same s = 0
resonance) one must retain more terms. (For this case
the determinant needed for the next approximation was
already exhibited in Eq. (B13).) In general, after elimi-
nating ag, there are 2M equations in 2M unknowns. For
fixed n, s and u, the determinant is a function of € and
£. The vanishing of the determinant formed from the co-
efficients determines the stability boundaries in the (g, &)
parameter space.

The stability of motion can be formulated in terms of
the eigenvalues of a matrix. To illustrate this, and to
exhibit a different resonance, consider the case s = 1,
M = 2. In this case the central equation can be dropped
(to lowest order) since it does not “couple” ag to any of
the retained coefficients. Solvability requires the vanish-
ing of the determinant

£S/8, 0
0 ¢SS _
(G~ )G — o 0 ! =0. (B19)
0 —(éz—C)/gz—w’

(12, &n) parameter space are characterized by at least one
of these eigenvalues having a positive real part.

Since instability boundaries are marked by the van-
ishing of A for w = 0, we will be interested primarily
in the case of “small” ¢ and §. We therefore define an
expansion|[28]

(B20)

This series terminates; the termination depends on M which is fixed. Because of the aliasing discussed previously,
Eq. (B20) has a very complicated “global” dependence on . To help in identifying “local” resonances, and because
we cannot simply set € = 0, we must also expand for small €.

A(p,e,—6%,€%) = A1oo(1)€ + Aoro ()0 + Ar1o(0)E36% + -+ + Aro1 (1) €% + Aor1(p)6%e + A11 ()E26% + -+ +

+A002 (1)e? + A1oa(1)€2€2 + Agi2(p)6%e% + Aq1o(n)€26%€ + ...

There is no leading term Aggo(p,€) since that term cor-
responds to the absence of perturbation. The coefficient
Ago1(u,€) also vanishes since, in the no perturbation

(B21)

limit, A is an even function of ¢.

The A’s are trigonometric functions of u. They are
plotted as functions of p in Figure 11. Some sample
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formulas for M =1, s = 0 are

Ag1o = (—2+cosp + 2cos2u — cos3u)/4,
Ag11 = (sinp — 2sin2p + sin3u)/2,

(B22)

and for M = 2, s = 0 the corresponding formulas for
Aow and A011 are

16Ag10 = —6+3cospu+4cos2u + 2cos3u — 2cosdp
—4 cosbu + 4 cosbu — cos Ty,
8Ap11 = (—3sinp — 6sin2u + 2sin3p + 2sindp

+8sin5u — 10sin b6y + 3sin 7. (B23)
This shows that the coefficients themselves do not “get
small” as M is increased. Their magnitudes roughly cor-
respond to setting &, § and ¢ approximately 1, settings
which are all far beyond the range of applicability of the
theory. There seems, therefore, to be no value in picking
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M any larger than is necessary to retain a term propor-
tional to £ in the outermost rows and columns of the
fundamental matrix; in other words, M = |s| + 1.

The very complicated dependencies of the coefficients
on p will (presumably) cause the resonance strengths to
exhibit erratic global variation. This complication can
be hidden formally by treating the A;j;; coefficients as
constants; i.e. by holding p fixed. For example, as &
increases from zero, with € sufficiently small, a “nearby”
instability boundary is encountered for

&=
_ Aoo2e”+A0100°+(Ao116+Ap125>) 5>
A1o0+A1016+A11002+A 10262+ (A1116+A11262)02 "

(B24)

The leading part of the denominator, Ajgpg + Ajg1€, is
either negative or can be made negative by choosing the
appropriate sign for ¢; then the overall expression is pos-
itive (for sufficiently small §) in those cases for which
Aggz > 0. This makes £ real which implies true reso-
nance, at least in this case, and there are other possibil-
ities.

To study the resonances in greater detail it is appro-
priate to proceed in close analogy with traditional treat-
ments of the Mathieu equation. That is, holding p and
0 fixed, let us plot € as a function of ¢ for the curve
or curves separating stable and unstable regions, as they
emanate from the origin (¢ = e = 0). For this purpose an

expansion more compact than Eq. (B21) is (suppressing
u and ¢ arguments)
Apus(e,€) =To(€) +T1(§e +T2()e +...  (B25)

These coefficients I';(§) are obtained simply from the
Ayjk(p) coefficients defined previously. Setting A =
and solving Eqs. (B25) (keeping only the terms shown)
yields

—T'1 (&) £ /T3(¢)
PA) (f)

The dependence of these roots €,,+ on £ for particular
values of 0 and p are plotted in Figure 12. Values of ¢
for which the roots are complex do not show up on these
plots. This plot is strikingly similar to the plot of the
instability boundaries of the Mathieu equation.[6]

The “threshold value” &y, satisfies

T3 (&nr.) — 4T (Enr.)To(Eenr.) = 0.

Eu 6(5) 4F2 §)F0 (5) .

(B26)

(B27)
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[10] The assumption of negligible beam height uses the result
that synchrotron-radiated photons are emitted precisely
in the forward direction; since their typical angle is 1/
this is an excellent, but not perfect assumption.

[11] The instability to be described causes non-destructive
growth to a well-defined amplitude, not unlimited ex-
ponential growth. Therefore the term “barely stable” in
the “saturation principle” could more accurately be re-
placed by “barely unstable at zero amplitude”. In the
picture being promoted most of the particles are oscil-
lating more or less stably (with random, uniformly dis-
tributed, phases) at the amplitudes to which they have
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been pumped. The amplitude of any particle that “loses
lock” from its own pumping decays toward zero until the
particle gets caught up again.

[12] From here on in this paper quantities without subscripts,
such as &, B, Q and o, will implicitly refer to y motion.
The one exception, to avoid a clash of symbols later on,
will be ay.

[13] The beam-beam deflection also depends on horizontal po-
sition z and longitudinal position s; these dependencies
will be incorporated later.

[14] “Tunes” @ and phase advances per turn p = 27@Q will
be interchanged as convenient, and without warning, and
either may be referred to as a “frequency”.

[15] The fact that Eq. (5) generalizes the Mathieu equation
can be seen by re-expressing it as (ye—1 + ye+1 — 2y¢) +
3(Ye+1 — ye—1) + 2(1 — Cy)y: + BSoAy' () = 0. In the so-
called “smooth approximation” (fractional changes per
turn assumed small) the first term reduces to §, and the
second to 2dy, the “damping” term in simple harmonic
motion. The term 2(1 — Cy)y; generalizes the “restoring
force” term. The term BSoAy’, proportional to y: for
small y;, makes the system nonautonomous through its
dependence on z: and s¢, and provides the parametric
drive.

[16] The dependence on amplitude a has been incorporated
into the ad hoc factor (1 — exp(—a’/c?)) in Eq. (8) has
been included in Eq. (8) to recover the correct tune shift
at large a while retaining the leading (~ a?) behavior.

[17] The longitudinal factor in Eq. (11) results from the de-

pendencies: beam height ~ /3, (s), tune shift ~ 3,(s)x
charge density, B,(s)/8,(0) = 1 + (s/B,(0))2. A strictly
faithfull treatment would convolve the square root factor
in Eq. (11) with the longitudinal density distribution, but
this has not been done.

[18] In the jargon of ordinary differential equations introduc-
ing the Fourier series of Eq. (12) converts a “Mathieu
equation” into a “Hill equation”.[6]

[19] The stability limits (24) (though not the growth rate in
the interior) could have been determined by setting a =
b =0 in Eq. (21). The justification is that the amplitude
neither grows nor shrinks at the ends of the stop band.

[20] The effect of dependence of us on as has not been inves-
tigated.

[21] For same-sign colliders £ < 0 and the negative-Q, side is
the “good side” of resonances. This has been confirmed
numerically.

[22] It is the equality of cosines, rather than the equality of
tunes, that causes resonance. To handle this all tunes can
be aliased into fractional tunes in a range from 0 to 0.5.
This effectively reduces the resonance-free fractional tune
landscape by a factor of 2.

[23] Note the distincion between the symbol € for frequency
deviations and the symbol e for Courant-Snyder invari-
ants.

[24] Unless otherwise noted, summations over m run over all
integers from —oo to co.

[25] Ordinarily an ansatz like Eq. (B2) would be made in
preparation for finding nonlinear harmonics, intending to
truncate higher Fourier terms. Here, because the drive is
parametric, the equations will remain linear. There will
be a certain amount of “leakage” if the series is truncated,
but this is mainly a question of convenience, and there
is no possibility of the chaotic motion that characterizes



nonlinear equations. This may be somewhat academic as
the growth the equations exhibit can lead to amplitudes
for which nonlinearity becomes important and the linear-
ity assumption loses validity.

Though the synchrotron and horizontal oscillation fre-
quencies are certain to be incommensurate in practice,
without care they are likely to be commensurate in a
simulation in which both values are “put in by hand”.
This could lead to unphysical resonant artifacts.
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[27] For a parametrically-driven mechanical system, de-
scribed by a non-autonomous differential equation such
as the Mathieu equation or the Hill equation, Eqs. (B12)
would be known as “Hill equations”.

[28] For convenience in all subsequent formulas we set 7B, =
1. This is equivalent to having redefined &, so the factors
can be restored by the replacement & — wBR€. As it
happens 1 is a typical value for 7B,,.



