Microwave Physics and Techniques

IU/UPSAS P671D – Homework 1 Due Tuesday 6-17-03

Problem1. Consider the set of equations

$$x(t) = 2b\cos t$$

$$y(t) = b \sin t$$

(b>0 is a parameter) describes a family of ellipses with the same ratio of semi-major to semi-minor axis. (i) Give an implicit equation F(x, y) = C = const and an exact differential equation for this family of curves. (ii) Show that the differential equation

 $2x\sin y\dot{x} + \left(x^2\cos y + \sin y\right)\dot{y} = 0$

is exact. Express the general solution in implicit form F(x, y) = C = const.

Problem2. Use the method of separation of variables to solve $u_t = u_{xx}$ in -1 < x < 1 with boundary conditions

$$u(-1,t) = u(1,t)$$

$$u_x(-1,t) = u_x(1,t)$$

and initial condition $u(x,0) = 1 + 4\sin 2\pi x + \frac{1}{2}\cos 5\pi x$.

Problem3. Find the Fourier series representation for $f(x) = x^2$ in $-\pi < x < \pi$ and plot the sum obtained for $-2\pi < x < 2\pi$.

Problem 4. Find the function given by $H(z) = \int_0^z f(x) dx$, $z \ge 0$ where

$$f(x) = \begin{cases} x & \text{if } x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$$

Problem 5. Find c, such that the function $f(x) = ce^{-x^2}$, $x \ge 0$ becomes a density function.

Problem6. The magnetic field of a TV broadcast signal propagating in air is given by

$$\overline{H}(x,t) = \hat{x}0.1\sin(\omega t - 9.3z)mA - m^{-1}$$

(a) Find the wave frequency. (b) Find the corresponding $\overline{E}(z,t)$.

Problem7. The electric field component of an electromagnetic wave in free space is given by

$$\overline{E}(y, z, t) = \hat{x}E_0 \cos(ay)\cos(\omega t - bz)$$

(a) Find the corresponding magnetic field. (b) Find the relationship between the constants a,b,c, and ω such that all the Maxwell's equations are satisfied. (c) Assuming that this wave may be regarded as a sum of two uniform plane waves, determine the direction of propagation of the two component waves.

Problem8. The electric field component of a communication satellite signal traveling in free space is given by $E(z) = [\hat{x} - \hat{y}(1-j)] 12e^{j50\pi z} V/m$. (a) Find the corresponding H(z). (b) Find the total time-average power carried by this wave. (c) Determine the polarization (both type and sense) of the wave.