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Lecture 6
Transmission Line II and Matching

June 18, 2003
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Types of Transmission Lines:
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Transmission Lines are “Guiding” devices for carrying 
electromagnetic waves to and from antenna, etc.

Transmission Line behavior occurs when the wavelength of the 
wave is small relative to the length of the cable. 

We have already shown that in a loss-less line (zero resistance 
along conductors, infinite resistance between them), the 
propagation speed is given by

where L and C are the inductance and capacitance per unit length. 
The characteristic (specific) impedance is given by:
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Transmission Lines with Unmatched Termination:

ZL

X=-l X=0

Z0

( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )xjrxjitj

xj
r

xj
i

tjxtj
r

xtj
i

xtj
r

xtj
i

e
Z

e
Z

xiexitxi

eexvexveetx

e

e

ββ−ω

ββ−ωβ+ωβ−ω

β+ω

β−ω

ν
−

ν
==

ν+ν==ν+ν=ν∴

ν

ν

oo

 where  :Similarly

  where 

 :Wave Reflected

:Wave  Incident
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Notice minus sign in reflected current component: Energy flows in 
opposite direction to incident wave.
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Transmission Lines with Unmatched Termination:
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Transmission Lines with Unmatched Termination:
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Transmission Lines with Unmatched Termination:
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Transmission Lines with Unmatched Termination:
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Transmission Lines :
Example- Suppose we want to match a 75Ω transmission line to a 37 Ω Marconi 
Antenna. 

4
λ 4

λ

Ω= 75sZ

Ω=×== 68527537 .LsZZZ o
Ω= 37LZ

The matching cane therefore be achieved using a Quarter-
Wavelength section of 50 Ω Transmission Line.
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Now consider a short circuit termination: (ZL=0)
Transmission Lines :
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Now consider an open circuit termination: (ZL=∞)
Transmission Lines :
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Transmission Lines :
Problem
Suppose we have a load with an impedance of (40+j80)Ω which we need 
to match to a 100 Ω transmission line. (c 3x108m/s and f=130 MHz).
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100 Ω ZL=40+j80 Ω

Looking in here, we 
see a resistive load 
of 440 Ω . We can 
match this to 100 Ω
using a 1/4λ
matching section. 0.31 m
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100 Ω ZL=40+j80 Ω
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Transmission Lines :
Problem

Find the length, position and characteristic impedance of the quarter-wavelength 
transformer required to match an antenna with an impedance of (30-j40)Ω to a 75 
Ω transmission line. The operating frequency of this system is 100MHz and the 
insulator in the transmission line has a dielectric constant of 10.
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Transmission Lines :
Problem

From the Smith Chart, we find that we need to move 0.86λ away from the 
load (i.e., towards the generator) in order to eliminate the reactance (or 
imaginary) impedance component. At this point, the resistive (real) 
element is 0.29. Thus:

Ω=× 752175290 ..

75Ω Ω=× 3940752175 .. 75Ω 30-j40 Ω

0.25×0.949=0.237m 0.086×0.949=0.816m
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Stub Matching :

We showed how a quarter-wavelength matching section can be used to 
impedance-match a load to a line. However, this technique has a major 
disadvantage: it is unlikely that one can find a transmission line with exactly the 
right characteristic impedance to perform the matching.

An alternative method is known as “Stub-Matching”

Using the parameters of example 1 

Stub Matching requires us to convert from impedance Z to admittance Y.

Suppose we have a load with an impedance of (40+j80)Ω which we need 
to match to a 100 Ω transmission line. (c 3x108m/s and f=130 MHz).
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Stub Matching :
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Stub Matching :

mm 7340318032
10130

103
6

8
... =λ⇒=

×
×

=λ

100Ω YL(n)=0.5+j1.0

0.318 λ=0.734m

1.0+j1.65

Looking into the line at the point X, we see a normalized admittance 
(1+j1.65).

If we introduce a reactive admittance of –j1.65 in parallel with the line at 
this point, the overall admittance will be 1.+j0 and the matching will be 
achieved.
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Stub Matching :

A pure reactance can be created by means of a “Stub”,i.e.,a length of 
transmission line with a short-circuit termination. 

l

Zin yL(N)=∞

We showed before that the input impedance of a short-circuited line is 
given by

lβ= tanojZZ in

l
l
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j
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100Ω

ZL= 40+j80 Ω0.318 λ=0.734m

Stub Matching :

100Ω0.2 m

100Ω

Short Circuit Stub

100Ω
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Transmission Line

z
LS

ZL
Source Load

l

We assume the line is characterized by distributed resistance R, inductance L, capacitance C, and 
conductance G per unit length.

• •

• •
v v + dv

z + dz

i + di

z

Rdz Ldz
Cdz Gdz

i
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Applying Kirchhoff’s voltage law to the small length dz:

t
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Applying Kirchhoff’s current law to the small length dz:
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t
dvv
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z
i

∂
∂
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∂
∂ 

These basic equations are difficult to solve for non-sinusoidal waves in the general 
case. We only consider 

1) transients on lossless lines 

2) sinusoidal waves on lossy lines.

Transmission Lines
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Transmission Lines (Lossless Lines)
In a lossless line we put R-0 and G=0. 
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If we eliminate i we obtain the one-dimensional wave equation

2

2

2

2

t

v
LC

z

v

∂
∂

=
∂
∂  

The general solution contains forward and reverse traveling waves of arbitrary shape, 
and has the form

( ) ( ) ( )ctzVctzVtzv rf ++−=,

Exercise: Verity this solution satisfies the wave equation.
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Transmission Lines (Lossless Lines)

V (t)

t

at z = 0 at some  z > 0

z/c

V (z)

z

at some  t > 0

z = ct

t
v

C
z
i

∂
∂

−=
∂
∂

Relation of voltage to current

Substitute v back into the equation and integrate with respect to time, 

( ) ( ) ( ) ( )zfctzVctzVtzi
C
L

rf ++−−=, f’(z)=0         f(z)=const

( ) ( ) ( )
C
L

ZctzVctzVtziZ rf =+−−= 00   ,,
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The current can be written as the sum of forward and revese components as

( ) ( ) ( )ctzIctzItzi rf ++−=,

where
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Reflection

We consider a simple transmission line 
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Voltage reflection factor

We define the voltage reflection factor of the load as 
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The input resistance of the line when there is no reflected wave is 
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The input resistance of an initially uncharged line is 
initially equal to the characteristic impedance.
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Example

S L

Z0 ZL

z

vL○
○ Zs

Vs
vs

is

l

At z = S
( ) ( )tSVtSVv rfS ,, +=

and

( ) ( )tSVtSViZ rfS ,, −=0

vS and iS must satisfy the boundary conditions provided by 
the source viz.

SSSS iZVv −=

If we eliminate vs and iS from the equations above, we obtain
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Example
From the load end ( ) ( ) ( ) ( )       

ZZ
ZZ

LLtLVtLV
S

L
vvfr +

−
=ΓΓ= ,,,

ZS ZLZ0VS u(t) vL

( )tu
ZZ

Z
V

S
S 








+ 0

0

( )Ttu
ZZ

Z
V

S
S −








+ 0

0

( ) ( )TtuL
ZZ

Z
V v

S
S −Γ








+ 0

0

( ) ( )TtuL
ZZ

Z
V v

S
S 2

0

0 −Γ







+

( ) ( ) ( )TtuSL
ZZ

Z
V vv

S
S 2

0

0 −ΓΓ







+

( ) ( ) ( )TtuSL
ZZ

Z
V vv

S
S 3

0

0 −ΓΓ







+

( ) ( ) ( )TtuSL
ZZ

Z
V vv

S
S 32

0

0 −ΓΓ







+

( ) ( ) ( )TtuSL
ZZ

Z
V vv

S
S 42

0

0 −ΓΓ







+

 

( ) ( ) ( )TtuSL
ZZ

Z
V vv

S
S 422

0

0 −ΓΓ







+



29
Microwave Physics and Techniques                UCSB –June 2003
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Example
Lattice Diagram

This has the form of a geometrical progression with common ration                    . For large 
values of t the final value of the load voltage may be shown by summing the geometrical 
progression above to be 
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Example

T 3T 5T5T 7T 9T
t

vL(t)









+ LS

L
S ZZ
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V

( )[ ]L
ZZ

Z
V v

S
S Γ+
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




+

1
0

0 ( ) ( )SL vv ΓΓ Times the previous step. Could be 
positive or negative.

1. No activity at the load until the time T

2. The initial step at that time is the product of two factors, initially launched forward wave on 
the line and the sum of the unity and the reflection factor at the load known as the 
transmission factor at the load junction.

3. Each of the subsequent steps is a common factor times the amplitude of the preceding step.

4. The steps become progressively smaller so that the eventual load voltage converges towards 
a value which is recognizable as the value the load voltage would have if one simply 
regarded the source impedance and load impedance as forming a voltage divider delivering 
to the load a fraction of the source voltage.
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Special cases

T 3T 7T5T 9T 11T
t

vL(t)
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Waveform for a line matched at the load end.
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Waveform for a line matched at the source end.

T 3T 7T5T 9T 11T
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vL(t)

SV2

Waveform for an open circuit line.

SV
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Non-resistive terminations

○ ○
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( ) ( )  tLVtLVv rfL ,, +=

( ) ( )tLVtLViZ rfL ,, −=0

Adding these, we obtain
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With              ,CZ 0=τ

( ) ( )( ) teTtuVv Tt
SL ∀−−= τ−−    1

The reverse wave produced at the load end can then be found from

( ) ( ) ( )tLVtvtLV fLr ,, −= and is 

( ) ( ) ( ) teTtuVtLV Tt
Sr ∀






 −−= τ−−  

2
1,

To find Vr at some point z<L we add a further delay time T-t´ where t´= z/c to obtain

( ) ( ) ( ) teTttuVtzV Ttt
Sr ∀






 −−′+= τ−′+−  2

2
12,

The total voltage on the line at any point and time is then obtained by adding to this 
backward wave the forward wave 

( ) ( )ttuVtzV Sf ′−=
2
1,

( ) ( ) ( ) ( )( )( )τ−′+−−−′++′−= Ttt
S eTttuttuVtzv 2212

2
1,

to obtain
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ct cT
z

0<t<T

v(z)

1/2VS

1/2VS

cT
z

VS

v(z)

T<t<2T

v(z)
VS

cT

t >2T



35
Microwave Physics and Techniques                UCSB –June 2003

Analysis in Frequency Domain

( ) ( ){ }tjezVetzv ωℜ=,

V(z) is a complex phasor representing peak value. 

( ) ZIILjR
dz
dV

−=ω+−=

( )    YVVCjG
dz
dI

−=ω+−= CjGjBGY
LjRjXRZ

ω+=+=
ω+=+=

Solution:

Eliminating I 

( )( )CjGLjRZYV
dz

Vd
ω+ω+==γγ=    2

2

2

complex propagation constant

( ) z
r

z
f eVeVzV γ+γ− +=
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Vf represents the amplitude and the phase (at the origin) of a forward wave, while Vr
represents the amplitude and phase (both at the origin) of a reverse wave).

β+α=γ j is the complex propagation constant. 

attenuation constant
phase constant

The current I z) is 

( ) [ ]z
r

z
f eVeV

Z
zI γ+γ− γ+γ−−=

1

Substituting for γ

( ) [ ]z
r

z
f eVeV

Z
Y

zI γ+γ− −=

[ ]z
r

z
f eVeV

Z
γ+γ− −=

0

1

where we introduced  

CjG
LjR

Y
Z

Z
ω+
ω+

==0 characteristic impedance of line
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imag

Re

γ

-γ
α

jβ

Argand Diagram for γ

x

jy

Z0

-Z0

Argand Diagram for Z0

fV

( ) ( ){ }ztjz
f eeVetzV β−ωα−ℜ=,

z
f eV α−

tt δ+= 0 

0=t

z
z

rV

z
r eV α( ) ( ){ }ztjz

r eeVetzV β+ωαℜ=,

Forward wave on a line Reverse wave on a line
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We define the complex voltage reflection factor Γv(z) at any point on the line as 

Γv(z) =                                                             
complex amplitude of the reverse voltage wave at z

complex amplitude of the forward voltage wave at z

( ) ( ) z
vz

f

z
r

v e
eV

eV
z γ

γ−

γ
Γ==Γ 20

When z = L, i.e. at the load, we denote Γv by Γv(L), the reflection factor of the load. 
When z=S, i.e. at the source, we denote Γv by Γv(S), the reflection factor looking into the 
line at the source end. 

( )
( )

( ) l

 
 γ−−γ−

γ

γ
===

Γ
Γ 22

2

2
ee

e

e
L
S SL

L

S

v

v
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Impedance

We define impedance at any point by 

( ) ( )
( ) z

r
z

f

z
r

z
f

eIeI

eVeV
zI
zV

zZ γ+γ−

γ+γ−

+
+

== V(z) Z0,γ ZL

ZLZ(z)ZI

S z L z

Iz

( ) ( )
( )z
z

Z
zZ

v

v

Γ−
Γ+

=
1
1

0
( ) ( )

( ) 0

0
ZzZ
ZzZ

zv +
−

=Γ  

Combine steps to find ZI

l

l

γ−

γ−









+
−

−









+
−

+
=

2

0

0

2

0

0

0 1

1

e
ZZ
ZZ

e
ZZ
ZZ

Z
Z

L

L

L

L

I

ll
ll

γ+γ
γ+γ

=
sinhcosh
sinhcosh

L

LI

ZZ
ZZ

Z
Z

0

0

0
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Matching

If a line is terminated in its characteristic impedance (which is complex for an arbitrary 
lossy line), i.e. if ZL=Z0, then 

ZI = Z0 for any l

Lossless TL

We assume R = 0 and G = 0:

 0=α

    LCω=β

  
LCp
1

=
β
ω

=ν

LCg
1

=
β∂
ω∂

=ν

i.e. no attenuation

i.e. no dispersion

= constant

= same constant

Z0 in now real and independent of frequency:   
C
L

Z =0 
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We find that the voltage reflection factor

( ) ( ) zj
vv ez βΓ=Γ 20

changes in phase nut not in magnitude as we go along the line. It advances in phase 
along +z direction toward the load. At the source

( ) ( ) lβ−Γ=Γ j
vv eLS 2

distance l back from the load the voltage reflection factor is retarded in phase as 
we make the line longer and move back from the load.

ll
ll

β+β
β+β

=
sincos
sincos

L

LI

jZZ
jZZ

Z
Z

0

0

0

Special cases

i.e. s/cOpen circuit λ/4 line

Open circuit load

i.e. o/cShorted λ/4 line

Short circuit load

ImpedanceCase
    lβ= tan0jZZ I

∞→IZ

lβ−= cot0jZZ I

0=IZ
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Quarter wave lines
When l = λ/4, βl = π/2. Then

L
I Z

Z
Z

2
0=

This important result means λ/4 lines can be used as transformers.

Example λ/4

ZL
ZSVS

Transmission line

Z0

LI ZZZ =0 ( )( ) Ω=ΩΩ= 770501000 .Z

Normalized impedance

0Z
Z

z =    
1
1

+
−

=Γ
z
z

v
v

vz
Γ−
Γ+

=
1
1
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Admittance Formulation

For every impedance Z we have a corresponding admittance Y=1/Z. It is easy to 
show that

ll
ll

β+β
β+β

=
sincos
sincos

L

LI

jYY
jYY

Y
Y

0

0

0

Special cases

i.e. o/cShort circuit λ/4 line

Short circuit load

i.e. s/cOpenλ/4 line

Open circuit load

ImpedanceCase
    lβ= tan0jYYI

∞→IY

lβ−= cot0jYYI

0=IY

Quarter wave lines

L
I Y

Y
Y

2
0=

v

v
v y

y
y

Y
Y

y
Γ+
Γ−

=
+
−

=Γ−=
1
1

1
1

0
                 

Normalized admittance
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Current reflection factor

( ) z
f

z
r

i
eI

eI
z γ−

γ
=Γ

Substituting for If and Ir in terms of Vf and Vr, we find:

vi Γ−=Γ

   
1
1

+
−

=Γ
y
y

i

i

iy
Γ−
Γ+

=
1
1

Then

( ) ( ) zj
ii ez βΓ=Γ 20

or

( ) ( ) lβ−Γ=Γ j
ii eLS 2
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Voltage Standing Wave Ratio

We look at the way the total voltage V(z) varies along the lossless line. We have, with 

γ = jβ

( ) zj
r

zj
f eVeVzV β+β− += Vf and Vr are complex numbers

Vmax

Vmin

z

( )zV 

λ/2 λ/4

rf

rf

VVV

VVV

−=

+=

min

max

rf

rf

VV
VV

V
V

S
−
+

==
min

maxVSWR:

  
1
1

+
−

=Γ
S
S

v
v

vS
Γ−
Γ+

=
 
 

1
1
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Line Parameters

Maximum and minimum values of impedance along the line can be related simply to S. 
When                is in phase with                    we have a simultaneous voltage maximum and 
current minimum. Thus  

zj
f eV β− zj

reV β+

( ) 0
0

SZ
ZVV

VV
I
V

Z
rf

rf =
−

+
==

min

max
max ( ) S

Z
ZVV

VV
I
V

Z
rf

rf 0

0
=

+
−

==
max

min
min

2a 2b
 








π
µ

=
a
b

L ln
2

0

      







πε

=

a
b

C
ln

2 







ε
µ

π
==

a
b

C
L

Z ln0
0 2

1

and

The complex propagation constant is 
LCjYZj ω==β+α

There is no attenuation since we assumed there are no losses and the 
velocity c = ω /β is

µε
==

11  
LC

c
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Consider a twin line
s

d

      ds
d
s

d
s

arL >>







π
µ

≈







π
µ

=
200 lncosh

        







πε

≈








πε
=

d
s

d
s

ar
C

2lncosh
ds

d
s

Z >>







ε
µ

π
=     21 0

0 ln

Common values of Z0 are 300 Ω for communication lines, 600 Ω for telephone 
lines and slightly higher values are found for power lines.
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Matching of T.L.

We recall from lumped circuit theory the maximum power transfer theorem for a.c. circuits 
which indicates that a sinusoidal steady state source of fixed internal voltage Vs and source 
impedance ZS will deliver maximum power to a load impedance ZL when ZL is adjusted to 
be the complex conjugate of the source impedance ZS, that is 

*
SL ZZ =

Matching of the T.L. at both ends makes power transfer between the source and the load 
take place at minimum loss, and also makes the system behavior become independent of 
the line length. 

ZS

Z0

ZLVS

Transmission line

Matching system Matching system


