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Field Expressions For TE Modes — Rec. WG
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Field Expressions For TE Modes — Rec. WG
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Field Expressions For TM Modes — Rec. WG
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Field Expressions For TM Modes — Rec. WG
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Determine the lowest four cutoff frequencies of the dominant
mode for three cases of rectangular wave guide dimensions b/a=1,
b/a=1/2, and b/a =1/3. Given a=3 cm, determine the propagating
mode(s) for /=9 GHz for each of the three cases.

The expression for the cutoff wavelength for the TE,_  mode where m=0,1,2,3,..
and n=0,1,2,3,.. But not both m and n equal to zero and for TM__ mode where
m=1,2,3,.. And n=1,2,3,.. is gi\ien by 1
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The corresponding expression for the cutoff frequency is
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The cutoff frequency of the dominant mode TE,; is 1/ 2a A/ L€ . Hence
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Hence for a signal of frequency f=9GHz, all the modes for which is

less that 1.8 propagate. These modes are: [ C]TEIO
TE,p, TEq, TM,,, TE,, for b/a=1

TE,, for b/a=1/2

TE,, for b/a=1/3

So for b/a<1/2, the second lowest cutoff frequency which corresponds to that of
the TE,, mode is twice of the cutoff frequency of the dominant TE,, . For this
reason, the dimension b of the a rectangular wave guide is generally chosen to
be less than or equal to a/2 in order to achieve single-mode transmission over a
complete octave( factor of two) range of frequencies.
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Rectangular Cavity Resonator

x¥ Add two perfectly conducting walls in z-plane separated by a
distance d.

x For B.C’s to be satisfied, d must be equal to an integer
multiple of A/2 from the wall.

* Such structure 1s known as a cavity resonator and is the
counterpart of the low-frequency lumped parameter resonant
circuit at microwave frequencies, since it supports oscillations
at frequencies foe which the foregoing condition, that is

d=[)\,/2, 1=1,23,... is satisfied
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Rectangular Cavity Resonator

Substituting for A, and rearranging, we obtain

2d _ A
P \/1 - (x/kc )2

2
48
2oL \2d

Substituting for A, gives
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Quality Factor Q

The quality factor is in general a measure of the ability of a resonator to store

energy in relation to time-average power dissipation. Specifically, the Q of a
resonator is defined as

Ymum energy slored |44
Q j— 27‘[ % — (Do Str
Enengy dissipated per cycle B,
VVW w.+w,

Consider the TE,;; mode:
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The time average stored magnetic energy can be found as

W, =k . +\HZ\2dV

_H H2 J J j < _sin’ 0052 4 cos? | T |sin?| &2 dxdydz
d a d

00 0 ) )
2 2
I/7ngzba’uHo a
16 d?

Note that the the time- average electric and magnetic energies are precisely
equal. This should be true in general simply follows from the complex Poyting’s
theorem. Physically, the fact that energy cycles between being purely electric,
partly electric and partly magnetic, and purely magnetic storage, such that on the
average over a period, it is shared equally between the electric and magnetic
forms. The total time-average stored energy is

Microwave Physic.si and Techniques UCSB -June 2003 !3""3
¢ 111



We now need to evaluate the power dissipated in the cavity walls. This
dissipation will be due to the surface currents on each of the six walls as
induced by the tangential magnetic fields, that is js — fx H . Note that the

power dissipation is given by - andthat |J,|=|H,,,|
_ is the surface resistance.

Vs
P = —Sj H ds =
wall 2 ) ]]‘ tan‘

2 _gdsdy 2| ||H 2 _odvdz+2
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|
(\®)
(O ey T~
O e
(O =y
O e O
(O )
O )

/

ﬁoanac]{ ngb?, left top, bottom

/ /

Microwave Physics and Techniques UCSB -June 2003 !3"‘3
13 o



After completing the integration steps, we obtain:

P :RSHoza’z a i‘l—l N 2D a3+1
wal. 4 J dz J d3

Therefore the quality factor Q, is

2
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Substituting for f,,,, gives nzn b d?
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For a cubical resonator with a = b = d, we have

: -1 : 1 1 1
101=a +/1/(2ue) ( 1015 101 dzj

mulpra _ ap - 1)
Qeube = 101% 8:(7[](“1116) / ]

3R 3u,,0 %

Skin depth of the
surrounding  metallic
walls, where p is the
permeability of the
metallic walls.

Microwave Physics and Techniques UCSB -June 2003 !3"3
15 o



Air-filled cubical cavity

We consider an air-filled cubical cavity designed to be resonant in TE,;, mode at
10 GHz (free space wavelength A=3cm)with silver-plated surfaces (c=6.14x10’S-
m1, u_ = p,. Find the quality factor.

1 1 1 c A
Hor=a J1/(2ue)=a= = =—=2.12cm
o1 Ak 101\ 20680 fio1N2 2

At 10GHz, the skin depth for the silver is given by

9 7 7YV2
O0=|\tx10x10" x4nx10 ' x6.14x10 ~ (0.642um

and the quality factor is

a _ 212cm
36 3x0.642um

Q= ~11,000
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Observations

Previous example showed that very large quality factors can be achieved with
normal conducting metallic resonant cavities. The Q evaluated for a cubical
cavity is in fact representative of cavities of other simple shapes. Slightly higher
Q values may be possible in resonators with other simple shapes, such as an
elongated cylinder or a sphere, but the Q values are generally on the order of
magnitude of the volume-to-surface ratio divided by the skin depth.

H 2
_ ___ 21l ) j H~*dv
O = o Wg[]‘:wozwm:( )2 v E%Vcavfly
Boat - Byan R § w2ds O Sciy
2
S
Where S_,,;,,is the cavity surface enclosing the cavity volume V., ;..

Although very large Q values are possible in cavity resonators,
disturbances caused by the coupling system (loop or aperture coupling),
surface irregularities, and other perturbations (e.g. dents on the walls) in
practice act to increase losses and reduce Q.
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Observations

Dielectric losses and radiation losses from small holes may be especially important
in reducing Q. The resonant frequency of a cavity may also vary due to the
presence of a coupling connection. It may also vary with changing temperature due
to dimensional variations (as determined by the thermal expansion coefficient). In
addition, for an air-filled cavity, if the cavity is not sealed, there are changes in the
resonant frequency because of the varying dielectric constant of air with changing
temperature and humidity.

Additional losses in a cavity occur due to the fact that at microwave frequencies for
which resonant cavities are used most dielectrics have a complex dielectric
constant e=¢'— " . A dielectric material with complex permittivity draws an
effective current |, leading to losses that occur effectively due to

The power dissipated in the dielectric filling is
1 * 1 n ¥
Fiiclectric = EIE : .]efde = EJE -0e' FE dv

Vv vV
2
n ea pbh pd
— Dot E,| dydydz
2 Jododo !
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Dielectric Losses

Using the expression for E, for the TE,;; mode, we have

g uH 02 abd

2
a

v dielectric = Wo
g 8

w. &
Q = (DO SZT =
d Pd 8”

The total quality factor due to
dielectric losses is
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Teflon-filled cavity

We found that an air-filled cubical shape cavity resonating at 10 GHz has a Q, of
11,000, for silver-plated walls. Now consider a Teflon-filled cavity, with &= g,(2.05-
j0.0006). Find the total quality factor Q of this cavity.

f [f. ] - 1 2 C — 2 C
o — 1 1 = — ' — i — [}
Wla=d =95 Jhe'\ 2 a\21 €, V2£,.€,
u =1 for Teflon. This shows that the the cavity is _/ g'r smaller, or a=b=d=1.48
cm. Thus we have a
Q,. = % ~ 7684

Or 8} times lower than that of the air-filled cavity. The quality factor Q, due
to the dielectric losses is given by Q.0
d~c

Q = ~ 2365

Qq +

Thus, the presence of the Teflon dielectric substantially reduces the quality factor
of the resonator.
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Cylindrical Wave Functions

The Helmholtz equation in cylindrical Z P
coordinates 1s \
2 2 y4 y
1a(a\pj 1zaw 5\2"+1<2w=0
op\" Op 60> 0z X o

The method of separation of variables gives the solution of the form

2 2
| dpdR 1 d°® 1d°Z 5 _,

pRdp dp  o°® 0% Z 9.2
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Cylindrical Wave Functions
1 d*2
Z 97°

= k2

_I_
Rdp dp @ p¢? “

2
p d pdR 1dq)+(]{2—]<2)3220
la’z(l)_ o

=—n
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Cylindrical Wave Functions

Define Kk ;, 2o catiofy
2 2 2
ky + k; =k

;;’p pjf +[(1<pp)2—1<§]R ~ 0
a’2\|1
02
d*z
822

+112(D=O

+K2Z =0
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Cylindrical Wave Functions

These are harmonic equations. Any solution to the harmonic
equation we call harmonic functions and here 1s denoted by 4(n @)
and /(k z). Commonly used cylindrical harmonic functions are:

b, (kpp) ~Jn (kpp)’ Ny (kpp)’ H,, (kpp)’ H, (]‘pp)

Where Jp (kpp ) is the Bessel function of the first kind, ‘Yz V‘pp)
Is the Bessel function of the second kind, H }] (kpp) is the Hankel

function of the first kind, and H 12] (k p) 1s the Hankel function of

the second kind. .
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Cylindrical Wave Functions

m Any two of these are linearly independent.

W A constant times a harmonic function is still a harmonic function

m Sum of harmonic functions is still a harmonic function

We can write the solution as :

\V]{p,n,kz — BH (kpp)b(n(l))b(kzz)
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Bessel functions of 1%t kind
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Bessel functions
The J, (1( p) are nonsingular at p=0. Therefore, if a field is finite at

p=0, b (kpp ) must be J,l& pp) and the wave functions are

nd jk, z
Vi mk, =Jn (kop e Me b
(2) . . .
The H kpp are the only solutions which vanish for

large p. They represent outward-traveling waves if k | 1s
real. Thus B (](pp) must be 4 512)(1<pp) if there are

no sources at p—oo. The wave functions are

\Vk 1k, ( )'SJH(I) A
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Bessel functions

Jn(kpp) ana lageus to  COS kp
Nn(kpp) aual ogous to  SIN Kp
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Bessel functions

The J, (kpp) and Vg (kpp ) functions represent cylindrical
standing waves for real k as do the sinusoidal functions. The

H,(})(kpp)and H ,(]2)(1{pp) functions represent traveling waves for

real k as do the exponential functions. When k 1s imaginary (k = -
jouit 1s conventional to use the modified Bessel functions:

1,(op)= /" ,(= sop)
K(ap) =2 (=) 117 ap)

1, (ocp) analogous o c*P
KH(OLp) analogous to e P
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Circular Cavity Resonators

As in the case of rectangular cavities, a circular cavity resonator can be
constructed by closing a section of a circular wave guide at both ends with
conducting walls.

Z

The resonator mode in an actual case depends on
the way the cavity is excited and the application
for which it is used. Here we consider TE,;,;mode,
which has particularly high Q.
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Circular Cavity Resonators

(Sinm
v = LR o
a )|cosmd d

whoe m=0123,...m=123,...0=0123,...

TE NP || S17 1120 (Wj
= ] Sin| ——
¥ mng i ( a j cos mQ d

whoe m=0123,..1=123,...0=123,...
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Circular Cavity Resonators

The separation constant equation becomes

X mn 2 [ 2 _ 2 For the TM and TE modes,
Jd respectively. Setting 4 =2nf/ue |
we can solve for the resonant

rN\2 2
(X mn j N ( Cﬂfj _ 2 frequencies
a d

d
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Circular Cavity Resonators
!

I mngq

for the circular cavity of radius a and length d

!

L jo min ant

d/a TMOIO TE111 TMIIO TMOII TE211 T1\/1111 TEIIZ TMZIO TMOZO
TEO]]

0.00 |1.00 00 1.59 00 00 00 00 2.13 2.29
.50 1.00 |2.72 1.59 |[2.80 290 |3.06 527 |2.13 2.29
1.00 | 1.00 1.50 1.59 1.63 1.80 |2.05 272 | 2.13 2.29
2.00 |[1.00 1.00 1.59 1.19 1.42 1.72 1.50 |2.13 2.29
3.00 [1.13 1.00 1.80 1.24 1.52 1.87 1.32 | 241 2.60
4.00 |[1.20 1.00 1.91 1.27 1.57 1.96 1.20 |2.56 3.00
00 1.31 1.00 |2.08 1.31 1.66 |2.08 1.00 |2.78 3.00
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Circular Cavity Resonators
Ordered zeros X, of J (X)

0 1 2 3 4 5
n
1 2.405 |3.832 |5.136 [6.380 |7.588 |8.771
2 5520 |7.016 |[8.417 |9.761 |11.065 |12.339
3 8.654 |10.173 [11.620 | 13.01 | 14.372
4 11.792 | 13.324 | 14.796 |3

Ordered zeros X . J (X)

0 1 2 3 4 5
n
1 3.832 |1.841 |[3.054 |4.201 |5.317 |6.416
2 7.016 [5.331 |6.706 |8.015 [9.282 |10.520
3 10.173 1 8.536 |9.969 |11.346 |12.682 | 13.987
4 13.324 | 11.706 | 13.170
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Circular Cavity Resonators

Cylindrical cavities are often used for microwave frequency meters. The cavity is
constructed with movable top wall to allow mechanical tuning of the resonant
frequency, and the cavity is loosely coupled to a wave guide with a small aperture.

The transverse electric fields (E , E,) of the TE,, or TM,,, circular wave guide mode

can be written as

E,(p.9,2)=E(p,0) [A+€_JB i’ 4 A~ e mnz]

The propagation constant of the TE, . mode is

Y
an = K2 —(anj
a
While the propagation constant of the TM__ mode is

an — \/Kz —(anjz
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Circular Cavity Resonators

Now in order to have E, =0 at z=0, d, we must have A*= -A-, and A*sin S .d=0 or

B..d =lx, for 1=0,1,2,3,..., which implies that the wave guide must be an integer
number of half-guide wavelengths long. Thus, the resonant frequency of the TE,_,
mode is

N2 2

c X qm

[ = mn 4| S
2w e, ( a ) (d)

And for TM__. mode is

nml

2 2

c X qm

f = L 4|
2w e, ( a j (a’)
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Circular Cavity Resonators

Then the dominant TE mode is the TE,;, mode, while the dominant TM mode is the

TM,,, mode. The fields of the TM_, mode can be written as
X z
H , = HO]H( m”pjcos mo sin qu
a

H /
; :Ba’ 2 ];(Xm”p)cosmgpcosqnz
X a d

mn

H

2 ’
— H
H, = P 1222 OJH(Xm”pjsmmgocosqﬂZ
() P 2 d
. 2 ’
H
£ =70 HZ OJH(Xm”pjsmmgasman
() P a d
H /
L, = ‘]anl ]H(Xm”pjcos me Sin ‘
X, a
E 4 — O Microwave Physics and Techniques
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Circular Cavity Resonators

Since the time-average stored electric and magnetic energies are equal, the total

stored energy is

W=2W = H2ME o )pabdl)dz

exnandH (
— ; ]H e
4x,,) L) a

_81(21125147th02 1_( m
8(X;nn)2 X;ﬂﬂ

M

2 !
= (X’”j pdp
X, a
Ji(x,)
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Circular Cavity Resonators
The power loss in the conducting walls is

R9 s Rc o 2 2
p=E [l o= "] [ lento=al 1 o=a) hebar

sof [ Jento=0r inge=of o

2\? >\
ETCH‘] ( mn) ia 1+[ Bam) +[Bra ] LI_ = 2]
Xnm (X fmn)

'

2 2 (X:HH)Z

\ - —

5 (K'z)31"| ad

¥ )2R‘ ad Bam ’ z m?
I+ =5 | |+ [=—3
. (an ) (an )

I NS
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Circular Cavity Resonators

To compute the Q due to dielectric loss, we must compute the power dissipated in
the dielectric. Thus,

A A e A A |

n .2 2
_ WEK n a H ndj‘ 0 ( 1:21& j ]H(anpj+]r2(anpj odp
p:

A(x' ) X mnP a a
o 2t 2 o\ 5,
N 1- , J (an)
8(an) ] X mn ]
oW ¢ |

Q — j— —
d P; & tand

Where fan O is the loss tangent of the dielectric. This is the same as the result
of Q, for the rectangular cavity.
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Cavity wave guide mode patterns
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Cylindrical Cavity mode patterns

(a) T™ 010 mode (b)) TM110 mode
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Loop or Probe Coupling

For a probe coupler the electric flux arriving on the probe tip
furnishes the current induced by a cavity mode:

I = we SE

where E 1s the electric field from a mode averaged over probe tip
and S 1s the antenna area. The external Q of this simple coupler
terminated on a resistive load R for a mode with stored energy W

1S 2W
Qext =5 3,2
Roe” S L

In the same way for a loop coupler the magnetic flux going
through the loop furnishes the voltage induced in the loop by a

cavity mode: V= wu SH
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