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Field Expressions For TE Modes – Rec. WGField Expressions For TE Modes – Rec. WG
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Field Expressions For TM Modes – Rec. WGField Expressions For TM Modes – Rec. WG
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Field Expressions For TM Modes – Rec. WGField Expressions For TM Modes – Rec. WG
22

2
1







+








µε
=

b
n

a
m

fc 22
2







+








=λ

b
n

a
m

c

( ) ( )22 11 ffcc

g
−

λ
=

λλ−

λ
=λ

( ) ( )22 1

1

1

1

cc
pz

ff λλ−µε
=

−µε
=ν

( ) ( )22 11 ccg ff λλ−
ε
µ

=−
ε
µ

=η



Microwave Physics and Techniques                UCSB –June 2003
6

Determine the lowest four cutoff frequencies of the dominant 
mode for three cases of rectangular wave guide dimensions b/a=1, 
b/a=1/2, and b/a =1/3. Given a=3 cm, determine the propagating 
mode(s) for f=9 GHz for each of the three cases.

The expression for the cutoff wavelength for the TEm n mode where m=0,1,2,3,.. 
and n=0,1,2,3,.. But not both m and n equal to zero and for TMmn mode where 
m=1,2,3,.. And n=1,2,3,.. is given by
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The cutoff frequency of the dominant mode TE10 is                         . Hence  µεa21
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Hence for a signal of frequency f=9GHz, all the modes for which is 
less that 1.8 propagate. These modes are:

TE10,TE01,TM11,TE11 for b/a=1

TE10 for b/a=1/2

TE10 for b/a=1/3

[ ]
10TEc

c
f

f

So for b/a≤1/2, the second lowest cutoff frequency which corresponds to that of 
the TE20 mode is twice of the cutoff frequency of the dominant TE10 . For this 
reason, the dimension b of the a rectangular wave guide is generally chosen to 
be less than or equal to a/2 in order to achieve single-mode transmission over a 
complete octave( factor of two) range of frequencies.
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Rectangular Cavity ResonatorRectangular Cavity Resonator
Add two perfectly conducting walls in z-plane separated by a       

distance d.
For B.C’s to be satisfied, d must be equal to an integer 

multiple of λg/2 from the wall.
Such structure is known as a cavity resonator and is the 

counterpart of the low-frequency lumped parameter resonant 
circuit at microwave frequencies, since it supports oscillations
at frequencies  foe which the foregoing condition, that is 

d=l λg/2,   l=1,2,3,… is satisfied.

a

b
dx

y z
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Rectangular Cavity ResonatorRectangular Cavity Resonator
Substituting for        and rearranging, we obtainλg
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Quality Factor QQuality Factor Q
The quality factor is in general a measure of the ability of a resonator to store 
energy in relation to time-average power dissipation. Specifically, the Q of a 
resonator is defined as 
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The time average stored magnetic energy can be found as 
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Note that the the time-average electric and magnetic energies are precisely 
equal.  This should be true in general simply follows from the complex Poyting’s
theorem. Physically, the fact that energy cycles between being purely electric, 
partly electric and partly magnetic, and purely magnetic storage, such that on the 
average over a period, it is shared equally between the electric and magnetic 
forms. The total time-average stored energy is 
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We now need to evaluate the power dissipated in the cavity walls. This 
dissipation will be due to the surface currents on each of the six walls as 
induced by the tangential magnetic fields, that is                          . Note that the

power dissipation is given by                           and that                                                

is the surface resistance.
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After completing the integration steps, we obtain:
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For a cubical resonator with a = b = d, we have 

( )

( )[ ]21101

22101
1

101

33

11
2

121

−

−

σµπ=δ
δµ

µ
=

πµ
=









+

µε
=µε=

m
ms

cube f
a

R
af

Q

da
faf

    

            

Skin depth of the 
surrounding metallic 
walls, where µm is the 
permeability of the 
metallic walls.
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Air-filled cubical cavityAir-filled cubical cavity
We consider an air-filled cubical cavity designed to be resonant in TE101 mode at 
10 GHz (free space wavelength λ=3cm)with silver-plated surfaces (σ=6.14×107S-
m-1, µm= µ0.. Find the quality factor.
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ObservationsObservations
Previous example showed that very large quality factors can be achieved with 

normal conducting metallic resonant cavities. The Q evaluated for a cubical 
cavity is in fact representative of cavities of other simple shapes. Slightly higher 
Q values may be possible in resonators with other simple shapes, such as an 
elongated cylinder or a sphere, but the Q values are generally on the order of 
magnitude of the volume-to-surface ratio divided by the skin depth. 

( )

cavity

cavity

s

t
s

v

wall

m

wall

str
S

V

dsH
R

dvHf

P
W

P
W

Q
δ

≅

µ
π

=
ω

=ω=

∫
∫ 2

2

2
2

2
2

2
o

o
o

Where Scavityis the cavity surface enclosing the cavity volume Vcavity.

Although very large Q values are possible in cavity resonators, 
disturbances caused by the coupling system (loop or aperture coupling), 
surface irregularities, and other perturbations (e.g. dents on the walls) in 
practice act to increase losses and reduce Q.



Microwave Physics and Techniques                UCSB –June 2003
18

ObservationsObservations
Dielectric losses and radiation losses from small holes may be especially important 
in reducing Q. The resonant frequency of a cavity may also vary due to the 
presence of a coupling connection. It may also vary with changing temperature due 
to dimensional variations (as determined by the thermal expansion coefficient). In 
addition, for an air-filled cavity, if the cavity is not sealed, there are changes in the 
resonant frequency because of the varying dielectric constant of air with changing 
temperature and humidity.
Additional losses in a cavity occur due to the fact that at microwave frequencies for 
which resonant cavities are used most dielectrics have a complex dielectric 
constant                     . A dielectric material with complex permittivity draws an 
effective current                          , leading to losses that occur effectively due to 
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Dielectric LossesDielectric Losses
Using the expression for Ey for the TE101 mode, we have 
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Teflon-filled cavityTeflon-filled cavity
We found that an air-filled cubical shape cavity resonating at 10 GHz has a Qc of 
11,000, for silver-plated walls. Now consider a Teflon-filled cavity, with ε= ε0(2.05-
j0.0006). Find the total quality factor Q of this cavity.
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µr=1 for Teflon. This shows that the the cavity is               smaller, or a=b=d=1.48 
cm. Thus we have 

Or                   times lower than that of the air-filled cavity. The quality factor Qd due 
to the dielectric losses is given by 
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Thus, the presence of the Teflon dielectric substantially reduces the quality factor 
of the resonator.
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Cylindrical Wave FunctionsCylindrical Wave Functions
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Cylindrical Wave FunctionsCylindrical Wave Functions
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Cylindrical Wave FunctionsCylindrical Wave Functions

These are harmonic equations. Any solution to the harmonic 
equation we call harmonic functions and here is denoted by h(nφ)
and h(kzz). Commonly used cylindrical harmonic functions are:  

Where                    is the Bessel function of the first kind,                

Is the Bessel function of the second kind,                   is the Hankel

function of the first kind, and                      is the Hankel function of 
the second kind.
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Cylindrical Wave FunctionsCylindrical Wave Functions

Any two of these are linearly independent. 

A constant times a harmonic function is still a harmonic function

Sum of harmonic functions is still a harmonic function

We can write the solution as :

( ) ( ) ( )zkhnhkB znknk z
φρ=ψ ρρ ,,
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Bessel functions of 1st kindBessel functions of 1st kind
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Bessel functions of 2nd kindBessel functions of 2nd kind
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Bessel functionsBessel functions
The                 are nonsingular at ρ=0. Therefore, if a field is finite at

ρ=0,                  must be               and the wave functions are
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The                       are the only solutions which vanish for 

large  ρ. They represent outward-traveling waves if kρ is 

real. Thus                     must be                      if there are 

no sources at ρ→∞. The wave functions are 
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Bessel functionsBessel functions

The                  and                   functions represent cylindrical 
standing waves for real k as do the sinusoidal functions. The

and                      functions represent traveling waves for 

real k as do the exponential functions. When k is imaginary (k = -
jα)it is conventional to use the modified Bessel functions:

( )ρρkJ n ( )ρρkN n

( )( )ρρkH n
1 ( )( )ρρkH n

2

( ) ( )
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Circular Cavity ResonatorsCircular Cavity Resonators
As in the case of rectangular cavities, a circular cavity resonator can be 
constructed by closing a section of a circular wave guide at both ends with 
conducting walls.

ϕ

z

x

r

a

d
The resonator mode in an actual case depends on 
the way the cavity is excited and the application 
for which it is used. Here we consider TE011mode, 
which has particularly high Q.
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Circular Cavity ResonatorsCircular Cavity Resonators
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Circular Cavity ResonatorsCircular Cavity Resonators

The separation constant equation becomes
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respectively. Setting                  ,           
we can solve for the resonant 
frequencies

µεπ= fk 2



Microwave Physics and Techniques                UCSB –June 2003
34

Circular Cavity ResonatorsCircular Cavity Resonators
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for the circular cavity of radius a and length d
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Circular Cavity ResonatorsCircular Cavity Resonators
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Circular Cavity ResonatorsCircular Cavity Resonators
Cylindrical  cavities are often used for microwave frequency meters. The cavity is 
constructed with movable top wall to allow mechanical tuning of the resonant 
frequency, and the cavity is loosely coupled to a wave guide with a small aperture. 

The transverse electric fields (Eρ, Eφ) of the TEmn or TMmn circular wave guide mode 
can be written as

( ) ( ) [ ]zjzj
t

mnmn eAeAzE β−β−+ +φρ=φρ  E ,,,
The propagation constant of the TEnm mode is 

2
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While the propagation constant of the TMnm mode is 
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Circular Cavity ResonatorsCircular Cavity Resonators
Now in order to have Et =0 at z=0, d, we must have A+= -A-, and A+sin βnmd=0 or 

βmnd =lπ, for l=0,1,2,3,…, which implies that the wave guide must be an integer 
number of half-guide wavelengths long. Thus, the resonant frequency of the TEmnl
mode is 

And for TMnml mode is 
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Circular Cavity ResonatorsCircular Cavity Resonators
Then the dominant TE mode is the TE111 mode, while the dominant TM mode is the 
TM110 mode. The fields of the TMnml mode can be written as 

( )

( )

0

2

2

2

2

=

π






 ρ′

′
′

κη
=

π






 ρ′

ρ′
κη

=

π






 ρ′

ρ′
β−

=

π






 ρ′

′
′

β
=

π
φ






 ρ′

=

φ

ρ

φ

ρ

z

mn
n

mn

mn
n

mn

mn
n

mn

mn
n

mn

mn
nz

E

d
zq

mφ
a

x
J

x
aHj

E

d
zq

mφ
a

x
J

x
mHaj

E

d
zq

mφ
a

x
J

x
mHa

H

d
zq

mφ
a

x
J

x
aH

H

d
zq

m
a

x
JHH

sincos

sinsin

cossin

coscos

sincos

o

o

o

o

o

+−=εµ=η jAH 2o   and



Microwave Physics and Techniques                UCSB –June 2003
39

Circular Cavity ResonatorsCircular Cavity Resonators
Since the time-average stored electric and magnetic energies are equal, the total 
stored energy is
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Circular Cavity ResonatorsCircular Cavity Resonators
The power loss in the conducting walls is
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Circular Cavity ResonatorsCircular Cavity Resonators

Where                   is the loss tangent of the dielectric. This is the same as the result 
of Qd for the rectangular cavity.
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To compute the Q due to dielectric loss, we must compute the power dissipated in 
the dielectric. Thus,

δtan



Microwave Physics and Techniques                UCSB –June 2003
42

Cavity wave guide mode patternsCavity wave guide mode patterns
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Cylindrical Cavity mode patternsCylindrical Cavity mode patterns
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Loop or Probe CouplingLoop or Probe Coupling
For a probe coupler the electric flux arriving on the probe tip 
furnishes the current induced by a cavity mode:   

I = ωε SE
where E is the electric field from a mode averaged over probe tip 
and S is the antenna area. The external Q of this simple coupler
terminated on a resistive load R for a mode with stored energy W
is 

In the same way for a loop coupler the magnetic flux going 
through the loop furnishes the voltage induced in the loop by a 
cavity mode:                  V= ωµ SH
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