Lecture 14
Ferrite Materials
A. Nassiri - ANL
Ferrite Devices

We now study a wave propagation through ferrimagnetic materials, and the design of practical ferrite devices such as isolators, circulators, phase shifter, and gyrators. These are non-reciprocal devices because the ferrimagnetic compound materials (ferrites) are anisotropic.

Ferrites are polycrystalline magnetic oxides that can be described by the general chemical formula

$$X\text{O} \cdot \text{Fe}_2\text{O}_3$$

In which X is a divalent ion such as CO^{2+} or Mn^{2+}. Since these oxides have a much lower conductivity than metals, we can easily pass microwave signals through them.

Most practical materials exhibiting anisotropy are ferromagnetic compounds such as YIG (yttrium iron garnet), as well as the iron oxides.
Magnetic Materials

From an E.M. fields viewpoint, the macro (averaging over thousands or millions of molecules) magnetic response of a material can be expressed by the relative permeability μ_r, which is defined as

$$\mu_r = \frac{\mu}{\mu_0}$$

where

$\mu = \text{permeability of the material (Henries/m)}$

$\mu_0 = \text{permeability of vacuum} = 4\pi \times 10^{-7} \text{ (H/m)}$

$\mu_r = \text{relative permeability (dimensionless)}$

The magnetic flux density B is related to the magnetic field intensity H by
Magnetic Materials

\[\overline{B} = \mu \overline{H} = \mu_0 \mu_r \overline{H} \]

Where in System Internationale (S.I.) system of units,

- \(\overline{B} \) = magnetic flux density (Tesla) (Gauss) cgs units
- \(\overline{H} \) = magnetic field intensity density (Amps/m) (Oersted) cgs units

We think of \(B \) as magnetic flux density response of a material to an applied magnetic force or cause \(H \).

Depending on their magnetic behavior, materials can be classified as:

- dimagnetic
- paramagnetic
- Ferromagnetic
- anti-ferromagnetic
- ferrimagnetic
Magnetic Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Group Type</th>
<th>Relative Permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>silver</td>
<td>diamagnetic</td>
<td>0.99998</td>
</tr>
<tr>
<td>lead</td>
<td>diamagnetic</td>
<td>0.999983</td>
</tr>
<tr>
<td>copper</td>
<td>diamagnetic</td>
<td>0.999991</td>
</tr>
<tr>
<td>water</td>
<td>diamagnetic</td>
<td>0.999991</td>
</tr>
<tr>
<td>vacuum</td>
<td>non-magnetic</td>
<td>1.0000000000000000000</td>
</tr>
<tr>
<td>air</td>
<td>paramagnetic</td>
<td>1.0000004</td>
</tr>
<tr>
<td>aluminum</td>
<td>paramagnetic</td>
<td>1.00002</td>
</tr>
<tr>
<td>palladium</td>
<td>paramagnetic</td>
<td>1.0008</td>
</tr>
<tr>
<td>cobalt</td>
<td>ferromagnetic</td>
<td>250</td>
</tr>
<tr>
<td>nickel</td>
<td>ferromagnetic</td>
<td>600</td>
</tr>
<tr>
<td>mild steel</td>
<td>ferromagnetic</td>
<td>2,000</td>
</tr>
<tr>
<td>purified iron</td>
<td>ferromagnetic</td>
<td>200,000</td>
</tr>
</tbody>
</table>

The magnetic behavior of materials is due to electron orbital motion, electron spin, and to nuclear spin. All three of these can be modeled as tiny equivalent atomic currents flowing in circular loops, having magnetic moment \(IA \), where \(I \) is the current (Amps) and \(A \) is the loop area (m\(^2\)):

\[
\hat{m} = \hat{n}IA
\]

tiny bar current = current loop = magnetic moment
The magnetic dipole moment of an electron due to its spin is

\[m = \frac{q \hbar}{2 m_e} = 9.27 \times 10^{-24} (\text{Am}^2) \]

Materials are magnetically classified by their net (volume average) magnetic moments:

- paramagnetic
- ferromagnetic
- anti-ferromagnetic
- ferrimagnetic

When we apply an external magnetic bias field (from a permanent magnet, for example), a torque will be exerted on the magnetic dipole:

\[\mathbf{T} = \mu_0 \mathbf{m} \times \mathbf{H}_0 \]
An spinning electron has a spin angular momentum given by

\[\overline{S} = \frac{1}{2} \hbar \]

where \(\hbar = \text{Planck's constant}/2\pi \). We next define the gyromagnetic ratio as

\[\gamma = \frac{m}{S} = \frac{q}{m_e} = 1.759 \times 10^{11} \text{coulombs} / \text{kg} \]

Thus we can relate the magnetic moment for one spinning electron to its angular momentum

\[\overline{m} = -\gamma \overline{S} \]

Now we can write the torque exerted by the magnetic applied field on the magnetic dipole:

\[\overline{T} = -\mu_0 \gamma \overline{s} \times \overline{H} \]

\[\overline{T} = \frac{d\overline{s}}{dt} \Rightarrow \frac{d\overline{s}}{dt} = -\frac{1}{\gamma} \frac{dm}{dt} = \overline{T} = \mu_0 \overline{m} \times \overline{H}_0 \]

\[\frac{dm}{dt} = -\mu_0 \overline{m} \times \overline{H}_0 \]
Let \[\mathbf{m} = \hat{x}m_x + \hat{y}m_y + \hat{z}m_z \] and \[\mathbf{H}_0 = \hat{z}H_0 \]

Then \[\mathbf{m} \times \mathbf{H}_0 = -\hat{y}m_x H_0 + \hat{x}m_y H_0 \]

\[\begin{aligned}
\therefore \frac{dm_x}{dt} &= -\mu_0 \gamma m_y H_0 \\
\frac{dm_y}{dt} &= \mu_0 \gamma m_x H_0 \\
\frac{dm_z}{dt} &= 0
\end{aligned} \]

\[\frac{d^2 m_x}{dt^2} + \omega_0^2 m_x = 0 \]

\[\frac{d^2 m_y}{dt^2} + \omega_0^2 m_y = 0 \]

\[\omega_0 = m_0 \gamma H_0 \] Larmor frequency (precession frequency)
These are classical S.H.O 2nd order D.Es with solutions:

\begin{align*}
m_x &= A \cos \omega_0 t \\
m_y &= A \sin \omega_0 t \\
m_z &= \text{constant}
\end{align*}

The magnitude of \(m \) is a constant \(= 9.27 \times 10^{-24} \text{ Am}^2 \), thus

\[|\overline{m}|^2 = m_x^2 + m_y^2 + m_z^2 = A^2 + m_z^2 \]

The precession angle \(\theta \) is given by

\[\sin \theta = \frac{\sqrt{m_x^2 + m_y^2}}{|\overline{m}|} = \frac{A}{|\overline{m}|} \]

The projection of \(\overline{m} \) onto the x-y plane is a circular path:

If there were no damping forces, the precession angle will be constant and the single spinning electron will have a magnetic moment \(\overline{m} \) at angle \(\theta \) indefinitely. But in reality all materials exert a damping force so that spirals in from its initial angle until it is aligned with \(H_0 \).
Now consider N electrons in a unit volume, each having a distinct magnetic moment direction m:

The total or net magnetization of the volume is given by

$$\bar{M} = \frac{\bar{m}_1 + \bar{m}_2 + \bar{m}_3 + \cdots + \bar{m}_N}{\Delta V}$$
If we now assume the material is ferrimagnetic and apply an external magnetic field H_0, these magnetic moments will line up, and $m_0 = m$ when H_0 is strong.
For a weak applied \(H_0 \) we get partial alignment of \(m_0 \):

As we increase the applied magnetic field intensity \(H_0 \), all the magnetic moments line up and we reach the saturation magnetization \(M_s \):

Equation of motion:

\[
\frac{d\vec{M}}{dt} = -\mu_0 \gamma \vec{M} \times \vec{H}
\]
If we start with a sample that is initially un-magnetized, with no applied bias field, the initial magnetization is M_0. As we increase the applied bias field H_0, the sample becomes increasingly magnetized until it reaches a saturation level M_s, beyond which no further magnetization is possible.
The magnetic flux density B in the ferromagnetic or ferrimagnetic material is given by

$$B = \mu_0\left(H + M\right)$$

where

- B = magnetic flux density (Tesla)
- μ_0 = permeability of free space = $4\pi \times 10^{-7}$ (H/m)
- H = applied magnetic bias field (A/m)
- M = magnetization (A/m)

If we increase the bias field H to the point where we reach saturation, and then decrease H, the flux density B decreases, but no as rapidly as shown by the initial magnetization. When H reaches zero, there is a residual flux density (called the remanance).
In order to reduce B to zero, we must actually reverse the applied magnetic field.

![Diagram of a d.c. hysteresis loop]
Interaction of RF Signals with Ferrites

Consider an RF wave propagating through a very large region of ferrimagnetic material with a D.C. bias field \(\hat{2}H_0 \).

The RF field is:
\[
\overline{H}_{\text{rf}} = \hat{x}H_x + \hat{y}H_y + \hat{z}H_z
\]

The DC field is:
\[
\overline{H}_{\text{dc}} = \hat{2}H_0
\]

The total field is:
\[
\overline{H}_{\text{total}} = \overline{H}_{\text{rf}} + \overline{H}_{\text{dc}}
\]

This field produces material magnetization:
\[
\overline{M}_t = \overline{M}_{\text{rf}} + \hat{2}\overline{M}_s
\]
The equation of motion becomes:

\[
\frac{dM_t}{dt} = -\mu_0 \gamma M_t \times H_t
\]

\[
\begin{align*}
\frac{dM_x}{dt} &= -\omega_0 M_y + \omega_m H_y \\
\frac{dM_y}{dt} &= \omega_0 M_x - \omega_m H_x \\
\frac{dM_z}{dt} &= 0
\end{align*}
\]

For the time harmonic (e^{\text{i}\omega t}) r.f. fields we obtain:

\[
\begin{align*}
M_x &= \chi_{xx} H_x + \chi_{xy} H_y + 0 H_z \\
M_y &= \chi_{yx} H_x + \chi_{yy} H_y + 0 H_z \\
M_z &= 0 H_x + 0 H_y + 0 H_z
\end{align*}
\]

\[
\begin{align*}
\chi_{xx} &= \chi_{yy} = \frac{\omega_0 \omega_m}{\omega_0 - \omega_m} \\
\chi_{xy} &= -\chi_{yx} = \frac{-j\omega \omega_m}{\omega_0 - \omega_m}
\end{align*}
\]

Magnetic susceptibility
We can write this in matrix (tensor) form:

\[
\begin{bmatrix}
M_x \\
M_y \\
M_z
\end{bmatrix}
= \begin{bmatrix}
\chi_{xx} & \chi_{xy} & 0 \\
\chi_{yx} & \chi_{yy} & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
H_x \\
H_y \\
H_z
\end{bmatrix}
\]

\[
[M] = [\chi][H]
\]

magnetization response \hspace{1cm} \text{susceptibility tensor} \hspace{1cm} \text{Applied RF field}

We now calculate the magnetic flux density in the ferromagnetic material, due to rf field and the d.c. bias field:

\[
\overline{B} = \mu_0 (\overline{M} + \overline{H}) = [\mu][\overline{H}]
\]

For isotropic materials, \(\overline{B} = \mu \overline{H}\)

\[
\overline{B} = \mu [\chi] \overline{H} + \mu_0 \mu \overline{H}
\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
Therefore

\[
[\mu] = \mu_0 \{[\mu] + [\chi]\} = \begin{bmatrix}
\mu & j\kappa & 0 \\
-j\kappa & \mu & 0 \\
0 & 0 & \mu_0
\end{bmatrix}
\]

\[
\mu = \mu_0 (1 + \chi_{xx}) = \mu_0 (1 + \chi_{yy})
\]

\[
\mu(\omega) = \mu_0 \left[1 + \frac{\omega_0 \omega m}{\omega_0^2 - \omega^2} \right]
\]

\[
\kappa(\omega) = -j\mu_0 \chi_{xy} = \mu_0 \frac{\omega \omega m}{\omega_0^2 - \omega^2}
\]

\text{Depends on } H_0, M_s \text{ and frequency}

\textbf{NOTE:} this assumes a z-directed bias field and that the material is magnetically lossless. In this case, both } \mu \text{ and } \kappa \text{ are real-valued.
Lossy Magnetic Materials

We consider a magnetically lossy material. Let $\alpha =$ loss damping factor so that $\omega_0 \rightarrow \omega_0 + j\alpha \omega$ becomes the complex resonant frequency. Then

\[
\begin{align*}
\chi_{xx} &= \chi'_{xx} - j\chi''_{xx} \\
\chi_{xy} &= \chi'_{xy} - j\chi''_{xy}
\end{align*}
\]

complex susceptibilities
For z-biased lossy ferrites, we can show that the susceptibilities are given by

\[
\chi'_{xx} = \left(4\pi^2\right) f_0 f_m \frac{f_0^2 + f^2 \left(1 + \alpha^2\right)}{D_1}
\]

\[
\chi''_{xx} = \left(4\pi^2\right) f_m f \alpha \frac{f_0^2 + f^2 \left(1 + \alpha^2\right)}{D_1}
\]

\[
\chi'_{xy} = \left(4\pi^2\right) f f_m \frac{f_0^2 - f^2 \left(1 + \alpha^2\right)}{D_1}
\]

where

\[
D_1 = \left[f_0^2 - f^2 \left(1 + \alpha^2\right)\right] + 4f_0^2 f^2 \alpha^2
\]

For a given ferrite, we can experimentally determine \(H_0\) vs. \(\chi_{xx}\) and thus can measure the line width \(\Delta H\).

\[
\alpha = \frac{\Delta H}{2H_0^r}
\]
(attenuation factor)

\[
H_0^r = \text{resonant value of applied field } H_0
\]

\[
\Delta H = \frac{2\alpha \omega}{\mu_0 \gamma}
\]
Plane Wave Propagation in Ferrite Media

Propagation parallel to bias field. Assume an infinite ferrite medium with a d.c. bias field \(H_{dc} = zH_0 \), and an rf field \((E,H)\). There are no free charges or conduction currents in this medium. Thus, Maxwell’s equations are

\[
\nabla \times \bar{E} = -j\omega \left[\mu \right] \bar{H} \\
\nabla \times \bar{H} = j\omega \varepsilon \bar{E} \\
\n\nabla \cdot \bar{D} = 0 \\
\n\nabla \cdot \bar{B} = 0
\]

\[
\bar{E} = \bar{E}_0 e^{-j\beta z} = (\hat{x}E_x + \hat{y}E_y) e^{-j\beta z} \\
\bar{H} = \gamma \bar{E}_0 e^{-j\beta z} = (\hat{x}H_x + \hat{y}H_y) e^{-j\beta z}
\]
The polarization of a plane wave is determined by the orientation of the electric field. Elliptical polarization is the most general case. Linear polarization and circular polarization are the two limiting extremes of elliptical polarization.

\[\mathbf{E}(z,t) = \mathbf{x} \mathbf{E}_x(z,t) + \mathbf{y} \mathbf{E}_y(z,t) \]

where

\[
\begin{align*}
\mathbf{E}_x(z,t) &= \mathbf{E}_1 \sin(\omega t - \beta z) \\
\mathbf{E}_y(z,t) &= \mathbf{E}_2 \sin(\omega t - \beta z + \delta)
\end{align*}
\]

\(\delta \) = phase angle by which \(\mathbf{E}_y \) leads \(\mathbf{E}_x \)
RHCP and LHCP

Case 1: RHCP Wave

The phase constant is $\beta^+ = \omega \sqrt{\varepsilon (\mu + \kappa)}$

$$E_+ = E_0 (\hat{x} - j\hat{y}) e^{-j\beta^+ z}$$

$$H_+ = Y_+ E_0 (j\hat{x} + \hat{y}) e^{-j\beta^+ z}$$

$$Y_+ = \sqrt{\frac{\varepsilon}{\mu + \kappa}}$$ (Wave admittance)
Case 2: LHCP Wave

\[\beta^- = \omega \sqrt{\varepsilon (\mu - \kappa)} \]

\[\overline{E}_- = E_0 (\hat{x} + j\hat{y}) e^{-j\beta^- z} \]

\[\overline{H}_- = Y_- E_0 (-j\hat{x} + \hat{y}) e^{-j\beta^- z} \]

In the \(z = 0 \) plane,

\[\overline{E}_{total} = \overline{E}_{RHCP} + \overline{E}_{LHCP} = \frac{1}{2} (\hat{x} - j\hat{y}) + \frac{1}{2} (\hat{x} + j\hat{y}) = \hat{x}E_0 \]
Faraday Rotation

\[\vec{E}(z) = \frac{1}{2} E_0 (\hat{x} - j\hat{y}) e^{-j\beta^+ z} + \frac{1}{2} E_0 (\hat{x} + j\hat{y}) e^{-j\beta^- z} \]

\[\vec{E}(z) = E_0 [\hat{x} \cos \beta_{av} z - \hat{y} \sin \beta_{av} z] e^{-j\beta_{av} z} \]

\[\phi = \tan^{-1}\left(\frac{E_y}{E_x}\right) = -\beta_{av} z = -\frac{1}{2}(\beta^+ - \beta^-) z \]

The rotation of the polarization plane in a magnetic medium is called Faraday rotation.
Problem: Suppose a ferrite medium has a saturation magnetization of \(M_s = \frac{1400}{4\pi} \) and is magnetically lossless. If there is a z-directed bias field \(H_0 = 900 \) Oersted, find the permeability tensor at 8 GHz.

Solution: \(H_0 = 900 \) Oe, which corresponds to

\[
\begin{align*}
 f_0 & = 2.8 \text{MHz} / \text{Oe} \times 900 \text{Oe} = 2.52 \text{GHz} \\
 f_m & = 2.8 \text{MHz} / \text{Oe} \times 1400 \text{G} \times 1 \text{Oe} / \text{G} = 3.92 \text{GHz} \\
 f & = 8 \text{GHz}
\end{align*}
\]

\[
\begin{align*}
 \therefore \mu & = \mu_0 \left[1 + \frac{f_0 f_m}{f_0^2 - f^2} \right] = 0.829 \mu_0 \\
 \kappa & = \mu_0 \left[\frac{f \ f_m}{f_0^2 - f^2} \right] = -0.544 \mu_0
\end{align*}
\]

\[
[\mu] = \begin{bmatrix}
0.829 & -j0.544 & 0 \\
 j0.544 & 0.829 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
Problem:
An infinite lossless ferrite medium has a saturation magnetization of $M_s=1000/4\pi$ G and a dielectric constant of 6.1. It is biased to a field strength of 350 Oe. At 5 GHz, what is the differential phase shift per meter between a RHCP and a LHCP plane wave propagation along the bias direction? If a linearly polarized wave is propagating in this material, what is the Faraday rotation angle over a distance of 9.423 mm?

Solution:

$$4\pi M_s = 1000G; \varepsilon_r = 6.1; H_0 = 300Oe; f = 5GHz; \lambda = 6cm.$$
$$f_0 = 2.8MHz / Oe \times 300Oe = 840MHz$$
$$f_m = 2.8MHz / Oe \times 1000G \times 1Oe / G = 2800MHz$$
$$K_0 = \frac{2\pi}{\lambda} = 104.7m^{-1}$$
$$\mu = \mu_0 \left[1 + \frac{f_0f_m}{f_0^2 - f^2} \right] = 0.903\mu_0$$
$$\kappa = \mu_0 \frac{f f_m}{f_0^2 - f^2} = -0.576\mu_0$$

RHCP:
$$\beta^+ = \omega\sqrt{\varepsilon(\mu + \kappa)}$$
$$= k_0\sqrt{\varepsilon_r}\sqrt{0.903 - 0.576} = 147.8m^{-1}$$

LHCP:
$$\beta^- = \omega\sqrt{\varepsilon(\mu - \kappa)}$$
$$= k_0\sqrt{\varepsilon_r}\sqrt{0.903 + 0.576} = 314.5m^{-1}$$
So that

\[\Delta \beta = \beta^+ - \beta^- = -166.7 \, \text{m}^{-1} \]

The polarization rotation on an LP wave is

\[\phi = -\frac{\beta^+ - \beta^-}{2} \]

\[z = (166.7)(9.423) \times 10^{-3} = 1.57 \, \text{rad} \]

(90°)
Propagation transverse to bias field

We now bias the ferrite in the x-direction, e.g. \(\overrightarrow{H_0} = \hat{x}H_0 \). The rf plane wave is still presumed to be propagating in the Z-direction.

Apply Maxwell’s equations to obtain wave equation

1. Ordinary wave (wave is unaffected by magnetization).
2. Extraordinary wave (wave is affected by ferrite magnetization).
Ordinary wave

\[\vec{H}_o = \hat{x}H_o \]
\[\vec{E}_o = \hat{y}E_o e^{-j\beta_o z} \]
\[\vec{H}_o = \hat{x}Y_o E_o e^{-j\beta_o z} \]

where \[Y_o = \sqrt{\frac{\varepsilon}{\mu_o}} \]

and \[\beta_o = \omega\sqrt{\mu_o \varepsilon} \]

NOTE: propagation constant \(\beta_o \) is independent of \(H_{bias} \).
Extraordinary wave

\[\overline{E}_e = \hat{x}E_o e^{-j\beta_0 z} \]

\[\overline{H}_e = Y_o E_o \left(\hat{y} + \hat{z} \frac{j\kappa}{\mu} \right) e^{-j\beta_0 z} \]

where

\[Y_e = \sqrt{\frac{\varepsilon}{\mu_e}} \]

and

\[\beta_e = \omega \sqrt{\mu_e \varepsilon} \]

\[\mu_e = \frac{\mu^2 - \kappa^2}{\mu} \]

NOTE: propagation constant \(\beta_e \) dependents of \(H_{bias} \) and on propagation direction.
Problem: Consider an infinite lossless ferrite medium with a saturation magnetization of $4\pi M_s = 1000 \, \text{G}$, a dielectric constant of 6.1 and $H_{\text{bias}} = 1500 \, \text{Oe}$. At 3 GHz, two plane waves propagate in the $+z$-direction, one is x-polarized and the other is y-polarized. What is the distance that these two waves must travel so that the differential phase shift is -90 degrees?

Solution:

$$f = 3.0 \, \text{GHz} \quad (\lambda_o = 6 \, \text{cm})$$
$$f_0 = 2.8 \, \text{MHz} / \text{Oe} \times 1500 \, \text{Oe} = 4.2 \, \text{GHz}$$
$$f_m = 2.8 \, \text{MHz} / \text{Oe} \times 1000 \, \text{Oe} = 2.8 \, \text{GHz}$$

$$k_0 = 2\pi / \lambda_0 = 104.7 \, \text{m}^{-1}$$

$$\mu = \mu_0 \left[1 + \frac{f_0 f_m}{f_0^2 - f^2} \right] = 1.36 \mu_0$$

$$\kappa = \mu_0 \frac{f f_m}{f_0^2 - f^2} = 0.972 \mu_0$$
Solution: cont.

The y-polarized wave has \(\vec{H} = \hat{x} H_x \) and is the ordinary wave. Thus

\[
\beta_o = \sqrt{\varepsilon_r K_o} = 258.6 \text{m}^{-1}
\]

Therefore the distance for a differential phase shift of -90 degrees is

\[
z = \frac{-\pi/2}{\beta_c - \beta_o} = \frac{\pi/2}{258.6 - 210.9} = 0.0329 \text{m} = 32.9 \text{mm}
\]
Ferrite Isolators

An ideal isolator is a 2-port device with unidirectional transmission coefficients and a scattering matrix given by

\[
S = \begin{bmatrix}
0 & 0 \\
1 & 0 \\
\end{bmatrix}
\]

Isolators are lossy and non-reciprocal.

Isolator types

1. *Faraday Rotation Isolator.* This was the earliest type of microwave isolator, but is difficult to manufacture, has inherent power handling limitations due to the resistive cards and is rarely used in modern systems.
Isolator types

2. Resonance Isolators. These must be operated at frequency close to the gyromagnetic resonance frequency. Ideally the rf fields inside the ferrite material should be circularly polarized.

H-plane resonance isolators

E-plane resonance isolator

Ferrite loading of helical T.L.
Isolator types

3. *Field Displacement Isolator*. Advantages over resonance isolators:
- much small H_0 bias field required
- high values of isolation, with relatively compact device
- bandwidths about 10%

![Diagram of Field Displacement Isolator with H_0, ferrite, and Resistive card]
Propagation in Ferrite Loaded Rectangular Waveguides

Consider a rectangular waveguide loaded with a vertical slab of ferrite which is biased in the y-direction.

In the ferrite slab, the fields satisfy Maxwell’s equations:

\[\nabla \times \vec{E} = -j\omega [\mu] \vec{H} \]
\[\nabla \times \vec{H} = j\omega \varepsilon \vec{E} \]

where

\[[\mu] = \begin{bmatrix} \mu & 0 & -jk \\ 0 & \mu_0 & 0 \\ jk & 0 & \mu \end{bmatrix} \]
Propagation in Ferrite Loaded Rectangular Waveguides

Assume propagation in the +z direction: Let

\[E(x, y, z) \{e(x, y) + \hat{z}e_z(x, y)\}e^{-j\beta z} \]
\[H(x, y, z) \{\bar{h}(x, y) + \hat{z}h_z(x, y)\}e^{-j\beta z} \]

Consider TE\textsubscript{m0} modes, i.e. \(E_z = 0 \) and \(\frac{\partial}{\partial y} = 0 \).

\[\kappa_f = \sqrt{\omega^2 \mu_e \varepsilon - \beta^2} \quad \text{\(\kappa_f \) = cutoff wave number for air} \]
\[\kappa_a = \sqrt{k_0^2 - \beta^2} \quad \text{\(\kappa_a \) = cutoff wave number for ferrite} \]
\[\mu_e = \frac{\mu^2 - \kappa^2}{\mu} \quad \text{Effective permeability} \]
\[\varepsilon = \varepsilon_r \varepsilon_0 \]
\[\kappa = \frac{2\pi}{\lambda_0} \]
Propagation in Ferrite Loaded Rectangular Waveguides

\[e_y = \begin{cases}
A \sin k_a x & \text{for } (0 < x < 0) \\
B \sin k_f (x - c) + C \sin k_f (c + t - x) & \text{for } (c < x < c + t) \\
D \sin k_a (a - x) & \text{for } (c + t < x < a)
\end{cases} \]

\[h_z = \begin{cases}
\frac{j k_a A}{\omega \mu_0} \cos k_a x & \text{for } (0 < x < c) \\
\frac{j}{\omega \mu \mu_c} - \kappa \beta [\sin k_f (x - c) + C \sin k_f (c + t - x)] & \\
+ \mu k_f \cos k_f (c + t - x) & \text{for } (c < x < c + t) \\
- \frac{j k_a D}{\omega \mu_0} \cos k_a (a - x) & \text{for } (c + t < x < a)
\end{cases} \]
Propagation in Ferrite Loaded Rectangular Waveguides

Apply boundary conditions \(E_{\tan 1} = E_{\tan 2} \) at \(x = c \) and \(x = c + t \); also \(H_{\tan 1} = H_{\tan 2} \) at these boundaries. This means we must have match \(E_y \) and \(H_z \) at the air-ferrite boundaries to obtain the constants \(A, B, C, D \).

Reducing these results give a transcendental equation for the propagation constant \(\beta \).

\[
\sum_{n=1}^{5} T_n = 0
\]

\[
T_1 = \left(\frac{k_f}{\mu_e} \right)^2, T_2 = \left(\frac{\kappa \beta}{\mu \mu_e} \right)^2, T_3 = -k_a \cot k_a c \left[\frac{k_f}{\mu_0 \mu_e} \cot k_f t - \frac{\kappa \beta}{\mu_0 \mu_e} \right]
\]

\[
T_4 = -\left(\frac{k_f}{\mu_0} \right)^2 \cot k_a c \cot k_a d, T_5 = -k_a \cot k_a d \left[\frac{k_f}{\mu_0 \mu_e} \cot k_f t + \frac{\kappa \beta}{\mu_0 \mu_e} \right]
\]
Propagation in Ferrite Loaded Rectangular Waveguides

After solving \[\sum_{n=1}^{5} T_n = 0\] for the roots \(\beta\), we can then calculate the wave number \(k_f\) and \(k_a\).

We can then calculate \(A, B, C, D\) by applying B.C’s

- \(e_y\) matched at \(x=c\)
- \(e_y\) matched at \(x=c+t\)
- \(h_z\) matched at \(x=c\)
- \(h_z\) matched at \(x=c+t\)

Let \(A = 1\), then

\[C = \frac{\sin k_a c}{\sin k_f t}\]

\[B = \frac{\mu_e}{k_f} \left\{ \frac{k_a}{\mu_0} \cos k_a c \right\} + \frac{C}{\mu \mu_e} \left[\kappa \beta \sin k_f t + \mu k_f \cos k_f t \right]\]

\[D = B \frac{\sin k_f t}{\sin k_a d} \quad (d = c + t - a)\]
Propagation in Ferrite Loaded Rectangular Waveguides

We can now calculate the fields for each of the three regions.

To design a resonance isolator using a ferrite in a waveguide, we can choose either an E-plane or H-plane configuration (the h-plane version is easier to manufacture).

We need to find the necessary design parameters to give the required forward and reverse attenuation:

1. Cross-sectional area of ferrite (ΔS)
2. Length of the ferrite (L)
3. Saturation magnetization $4\pi M_s$
4. Bias field H_0
5. Location of ferrite (X_0)
Propagation in Ferrite Loaded Rectangular Waveguides

\[R = \frac{\alpha_-}{\alpha_+} = \frac{\text{reverse attenuation}}{\text{forward attenuation}} \]

We wish to choose the location \(X_0 \) such that \(R \) is maximized. If \(\alpha \ll 1 \), we can show that

\[R_{\text{max}} = \frac{4}{\alpha^2} = \left(\frac{4H_0}{\Delta H} \right)^2 \]

Optimum position \(X_0 \) can be found from

\[\cos \left(\frac{2\pi x_0}{a} \right) = \frac{\beta^2 \chi''_{xx} - \left(\frac{\pi}{a} \right)^2 \chi''_{xy}}{\beta^2 \chi''_{xx} + \left(\frac{\pi}{a} \right)^2 \chi''_{xy}} \]

\(a = \) waveguide broad wall dimension (m)
\(X_0 = \) optimum location for slab (m)

\[\beta = k_0 \sqrt{1 - \left(\frac{\lambda_0}{2a} \right)^2} = \text{phase constant for empty guide (m}^{-1}) \]

\(\chi''_{xx} = xx\text{-susceptibility, imaginary term} \)

\(\chi''_{xy} = xy\text{-susceptibility, imaginary term} \)
Propagation in Ferrite Loaded Rectangular Waveguides

Filling factor: $\Delta S/S$

E-plane isolator

$$\frac{\Delta S}{S} = \frac{tb}{ab} = \frac{t}{a}$$

H-plane isolator

$$\frac{\Delta S}{S} = \frac{wt}{ab}$$
Propagation in Ferrite Loaded Rectangular Waveguides

If $\Delta S/S < 0.02$, we can calculate the differential phase shift (RHCP – LHCP) as

$$\beta_+ - \beta_- = \frac{-2 k_c \kappa \Delta S}{\mu S} \sin(2 k_c c)$$

$$\beta_0 = \sqrt{k_0^2 - k_c^2}$$

$$\alpha_\pm = \frac{\Delta S}{S \beta_0} \left[\beta_0^2 \kappa'' \sin^2 k_c x + k_c^2 \kappa'' \cos^2 k_c x \mp \kappa'' k_c \beta_0 \sin 2 k_c x \right]$$

Consider an H-plane resonance isolator to operate at 9 GHz, using a single ferrite slab of length L and cross section of $0.187'' \times 0.032''$. It is bonded to the lower broad wall of an X-Band waveguide ($a=0.90''$, $b=0.40''$) at X_0. The ferrite material has a line width $\Delta H = 250$ Oe and a saturation magnetization $4\pi M_s = 1900$ G. Find the internal bias field H_0, the external bias field H_0, the position X_0 that will yield R_{max}, the value of R_{max}, α_- and α_+. If the reverse attenuation is 25 dB, find the length L of the slab.
Propagation in Ferrite Loaded Rectangular Waveguides

The internal bias filed is

\[H_0 = \frac{900 \text{MHz}}{2.8 \text{MHz} / \text{Oe}} = 3214 \text{Oe} \ (A / m) \]

The external bias filed is

\[H_0^e = H_0 + 4\pi M_s = 3214 + 1900 = 5114 \text{Oe} \]

With \(\alpha = \Delta H / 2H_0 = 0.039, f_0 = f = 9 \text{GHz}, f_m = 5.32 \text{GHz} \),

\(\chi''_{xx} = 7.603, \chi''_{xy} = 7.597 \)

The free space wavelength is \(\lambda_0 = 3.4907 \text{ in}^{-1}, \beta_{10} = 3.2814 \text{ in}^{-1} \)

Two solution: \(X_0/a = 0.260 \) and \(X_0/a = 0.740 \)

To get small forward attenuation and large reverse attenuation, we \(X_0 = 0.666'' \).
Propagation in Ferrite Loaded Rectangular Waveguides

\[R_{\text{max}} = \frac{4}{\alpha^2} = \frac{4}{(0.039)^2} = 2630 \]

\[R_{\text{max}} = \frac{4}{\alpha^2} = \frac{4}{(0.039)^2} = 2630 \frac{\Delta S}{S} = (0.032')(0.187')(0.9')(0.4') = 0.0166 \]

\[\alpha_{\pm} = 0.4147 \sin^2 \frac{\pi x_0}{a} + 0.4693 \cos^2 \frac{\pi x_0}{a} \pm 0.4408 \sin^2 \frac{2\pi x_0}{a} \]

(Neper/inch)

To convert to dB/inch, multiply (Neper/inch) by 8.686

\[\alpha_{\pm} = 3.6021 \sin^2 \frac{\pi x_0}{a} + 4.0763 \cos^2 \frac{\pi x_0}{a} \pm 3.829 \sin^2 \frac{2\pi x_0}{a} \]

(dB/inch)
Propagation in Ferrite Loaded Rectangular Waveguides

The maximum reverse attenuation α_- is approximately 7.75 dB/inch. Thus the necessary ferrite length is $L=25\text{dB}/7.75\text{dB/in} = 3.23\text{”}$
Field Displacement Isolator

By placing a ferrite slab in the E-plane with a thin resistive sheet at \(x = c + t \), we can cause the E fields to be distinctly different for forward and reverse propagation. We can make the E field at the slab very small for \(+z\) propagation waves but much larger for \(-z\) reverse wave.
Propagation in Ferrite Loaded Rectangular Waveguides

\[
e_y = \begin{cases}
A \sin k_a x & 0 < x < c \\
B \sin k_f (x - c) + C \sin k_f (c = t - x) & \text{ferrite} \\
D \sin k_a (a - x) & c + t < x < a
\end{cases}
\]

For \(E_y^f \) of forward wave to vanish at \(x = c + t \) and to be sinusoidal in \(x \), we require

\[
\sin \left(k_a^+ [a - (c + t)] \right) = \sin k_a^+ d = 0
\]

\[
k_a^+ = \frac{\pi}{d}
\]
Propagation in Ferrite Loaded Rectangular Waveguides

For E_y^r of the reverse wave to have a hyperbolic sine dependence for $c+t < x < a$, then the k_a^- must be imaginary. Since $k_a^2 = k_0^2 - \beta^2$, this means that $\beta^+ < k_0$ and $\beta^- > k_0$.

Very important: We also require $\mu_c = \left(\frac{\mu^2 - \kappa^2}{\mu}\right)$ to be negative, if we want to force $E_y = 0$ at $x = c+t$.

Region of negative effective permeability
Ferrite Phase Shifters

- provide variable phase shift by changing bias field of the ferrite

Nonreciprocal Faraday Rotation Phase Shifter
Ferrite Phase Shifters

First \(\lambda/4 \) plate converts linearly polarized wave from input port to RHCP wave; in the ferrite region, the phase delay is \(\beta + z \), which can be cancelled by the bias field \(H_0 \), the second \(\lambda/4 \) plate converts RHCP wave back to linear polarization.

Advantages: Cost, power handling

Disadvantage: Bulky
Reciprocal phase shifters are required in scanning antenna phase arrays used in radar or communication systems, where both transmitting and receiving functions are required for any given beam position. The Reggia-spencer phase shifter is such that a reciprocal device. The phase delay through the waveguide is proportional to the d.c. current through the coil, but independent of the direction of the propagation through the guide.
Nonreciprocal Latching Phase Shifter

Or a simpler version using 2 ferrite slabs:

$\overline{H}_0 \uparrow S \downarrow \overline{H}_0$

$t \quad t$

Microwave Physics and Techniques

UCSB – June 2003

56