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Ideal Refrigeration/Liquefaction
• ‘Moving’ heat from a cold reservoir to a warm reservoir

requires energy
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• In an ideal process, the entropy associated with the
two heat flows is the same, that is:

The amount of heat moved is associated with an
amount of entropy by the relationship:

TdSdQ =

• In an ideal process the amount of work (energy) required
to ‘move’ the heat is

dW = dQh – dQc 



Ideal Cool Down

• Extracting an amount of heat to lower the temperature of
(whatever) by dT, and releasing the heat at Th:
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Including the temperature dependence of the
specific heat, the ideal cool down work becomes:

Compare this to the amount of energy required to
warm up the same mass:
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Ideal Liquefaction

• To cool down a parcel of gas, and convert it from saturated vapor to
saturated liquid at its normal boiling temperature:

• Re-arranging terms we have:
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• Or, in the ‘rate’ form:



Ideal Liquefaction
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1st law: Energy balance around system:
In steady state, the sum of the energies into and out of the system = 0

A 1st-law,
2nd-law
analysis
around an
ideal cycle
reveals the
same
expression
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2nd law: Entropy balance around system:
In steady state, the sum of the entropies into and out of the system = 0
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Note the SI units of h(kJ/kg) and s(kJ/kg-K)



Ideal Refrigeration
• In steady state, the 1st law around the

whole system gives:
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• The 2nd law around the compressor gives:
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• The coefficient of performance (COP) for the refrigerator is then
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Ideal Liquefaction / Refrigeration

• Ideal liquefaction work for cryogens (from Barron)
• Comparison with ideal performance defined by Figure of Merit (FOM), for

refrigeration sometimes referred to as “% of Carnot.”
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Practical Limitations

• Not possible to achieve ideal-
scenario pressure

– Inspect T-S diagram: find lines of
constant pressure, constant
enthalpy, constant density, vapor
dome

– Estimate required pressure for
‘ideal’ liquefaction of nitrogen

• Isentropic expansion is very
difficult to achieve.

– Isenthalpic (or throttle)
expansion is very easy to
achieve

– Cooling associated with throttle
process exploits ‘real-gas’
properties.  Note that at high T,
low P, h is independent of
pressure, but elsewhere it is not.



Joule-Thomson Coefficient
• 1885 - Joule & _ Thomson (Lord Kelvin) confirm that a gas flow through a

restriction experiences a temperature drop along with the pressure drop.

∆P

• The Joule-Thomson coefficient: characterizes the phenomenon.

• When µj>0, cooling accompanies a pressure drop.

• Regions of positive and negative µj are reflected in T-S diagrams and

inversion curves:
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• Above the
inversion
temperature,
µj < 0 for all
pressures.

• Pre-cooling
required for
helium,
hydrogen,
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Simple Linde-Hampson Cycle

• Inversion temperature must be above compression temperature, or pre-
cooling via a higher temperature refrigerant liquid is required.

• Recuperative heat exchanger pre-cools high pressure stream.
• Liquefier requires source of make-up gas.
• Refrigerator absorbs heat converting liquid to vapor at saturation

temperature of low pressure.
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Simple Linde-Hampson Cycle
• In steady state conditions, the 1st

law around the compressor gives:
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• The 2nd law around the
compressor gives:
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(Note the assumption of isothermal compression)

• Combining, we have:
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Simple Linde-Hampson (JT) Refrigerator

cQ&

• Applying 1st
  law (energy

balance) to everything except
the compressor gives:
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• Combining with the expression
for the compressor work
provides an equation for the
COP:
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• Comparing with the Carnot COP gives the FOM (or % of Carnot):
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Linde-Hampson Performance

• Optimum theoretical performance realized by minimizing h2 (P2 such
that h is on the inversion curve)

• P2 is typically ~ 100 atm.
• Theoretical performance with P2 = 20 atm.(from Barron):



Linde-Hampson Cycle Enhancements

• Pre-cooled L-H cycle
– Optimize performance via pressure,

pre-cooling temperature and mass
flow ratio

– FOM increased by ~ factor of 2

• Dual-pressure L-H cycle
– Optimize performance via two

pressures and fractional mass flow
ratio

– FOM increased by ~ factor of 1.9

(From Barron) (From Barron)



Claude Cycle: isentropic expansion

• Isentropic expansion, characterized by µs=dT/dPs (always >0) results in larger
temperature drop for a given pressure drop than with isenthalpic expansion

• 1st and 2nd law analyses give:
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Optimize performance by varying P2, T3, and x.



Claude Cycle: Variations

• Kapitza cycle
– Low pressure (7 atm) production of

liquid air
– Regenerative heat exchanger

• Heylandt cycle
– High pressure (200 atm) air

liquefaction

– Room temperature expander

(From Barron) (From Barron)



Collins Liquefier

• Introduced by Sam
Collins (MIT) in
1952

• Optimized
performance via
expander flow rates
and temperatures

• LN2 pre-cooling
increases yield by
factor of 3.

(From Barron)



Commercial Helium Liquefier

• The dashed line encloses
the ‘cold box,’ i.e.
everything except the
compressor.

• Find the expansion
engines

• Trace the flow from LN2

precooler through the
cold box to the JT valve.



Influence of Non-Ideal Components
• A non-ideal heat exchanger will

have an effectiveness less than 1.
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• A non-isothermal compressor will
require more work than an isothermal
compressor
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Introduction
to

Engineering Equation
Solver
(EES)



Regenerative Systems

• Oscillatory flow:  frequencies 1 - 100 hz
• Regenerative heat exchangers: ideal -low axial k, high transverse k, matrix specific heat

much larger than gas specific heat, zero void volume, zero pressure drop

• Phase modulation (between pressure and flow waves) is crucial for
performance
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Cryocooler Actual Performance

From Ray Radebaugh (NIST) 1999



Stirling Cryocoolers
• Stirling cycle engine:

– invented in 1815
– 1950’s bid for auto industry
– Today:  2.5 kW generators

• Stirling cryocoolers: 1946 -
• Ideal efficiency = Carnot

– COP = Tc / (Th - Tc)
• Primary uses:

– tactical and security IR systems
– medical and remote- location

cryogen plants
• Potential cooling for large scale

HTS applications
• Commercial sources:

– Stirling (www.stirling.nl)
– Sunpower(www.sunpower.com)
– Stirling Technology Company

(www.stirlingtech.com)



Stirling Cryocoolers



Stirling Cycle: Zero’th Order (ideal gas) Analysis

• Compare work and heat transfer for Stirling and
Carnot cycles

• Use helium gas as quantitative example:
TC=300 K, TE=100 K, P1=1 atm., P2=20 atm.

• Note that for an ideal gas in isothermal
compression we have:
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Stirling cycle processes more heat than Carnot cycle, but same efficiency



Stirling Cryocoolers

• How is real machine different from ideal?
– Harmonic motion (vs. abrupt changes)
– Regenerator void volume
– Regenerator ineffectiveness
– Pressure drop through regenerator
– Non-isothermal compression and expansion
– Non-zero ∆T between reservoir and heat exchangers
– Constant temperature piston and cylinder walls
– Isotropic pressure at all instants

• 1st order analysis (Schmidt, 1861)
– includes

• Harmonic motion
• Regenerator void volume

– Useful theoretical tool for parametric optimizations

• 2nd & 3rd order analyses – nodal simulations
– SAGE (dgedeon@compuserve.com)



Gifford-McMahon Cryocooler

• Alternative to Stirling cryocoolers
– Valving allows use of inexpensive

compressors, and separation between
cold head and compressor

– Typical frequency 1 – 2 Hz

– Somewhat reduced efficiency

– Cooling power range:
• ~ 1 watt @ 4.2 K : recondenser

• 200 watts @ 80 K: cryo-pumps

• Primary uses:
– Liquid nitrogen plants

– Cryopumps

– Conduction cooled s/c magnets -
MRI, µSMES, HTS

– Large scale HTS applications



Gifford-McMahon Cryocoolers
• Cycle description:

compressor

motor

Warm space

displacer

Cold space

regenerator Adiabatic charging
(compression)

Isobaric cooling

Adiabatic discharging
(expansion)

Isobaric warming

1 2 3 4 1

PL PH PH PL PL

Materials
research in
the 80’s and
90’s has
enabled 4 K
GM machines
with cooling
capacity ~ 1
watt



Pulse Tube Cryocoolers
• Two general types

– Stirling type
• High frequency ~ 60 Hz
• High efficiency: 25% of Carnot
• Operation down to 10 K

– GM type
• Low frequency ~ 1-2 Hz
• Split design = very low vibration
• Ideal for 4 K operation (< 1 watt)

MD 200

compressor

pulse tuberegenerator

reservoir P
H

P
L

reservoir

pulse tube

compressor

Stirling Type GM Type

Cryomech PT405



Cooling Mechanisms
(why does this thing work?)

l Two mechanisms for cooling
are possible

1. Surface heat pumping

2. Enthalpy flow

l The first mechanism is always
present

l The second mechanism is not
present in the basic pulse
tube configuration.

QH heat exchanger
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Stirling-type, Basic Pulse-Tube, Surface Heat Pumping

Pressure

•  Surface heat pumping,
becomes shuttle heat loss at
low temperatures

•  Limits basic pulse tube to ~
125 K



• Phase shifting orifice introduced by
Mikulin 1983, Radebaugh 1984

• Cooling power understood based
on enthalpy flow analysis

• Basic pulse tube (no orifice):
<H> = 0
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Phase Shifting & Enthalpy Flow
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Stirling-type, Orifice Pulse-Tube, P-V work



Losses in the Stirling-type Pulse tube

From Ray Radebaugh

• In the real system, entropy is
generated in the regenerator
and the pulse tube, reducing
the amount of acoustic work
that is available for enthalpy
flow
•  The major losses in the
regenerator are proportional
to the magnitude of mass flow
through the regenerator.
• Optimimzed performance
⇒ minimize the magnitude of
the mass flow through the
regenerator.



Pulse Tubes: Future Directions &
Commercial Sources

• R&D:
– Phase shifting mechanisms - inertance tubes

– Large capacity - modeling & losses

– Performance improvements

• Sources:
– GM-type

• Cryomech, SHI (Sumitomo Heavy Industry), U of Giessen,

– Stirling type
• Atlas Scientific, STC, Sunpower, TRW, Martin-Marietta,

Praxair, Sierra-Lobo


