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ABSTRACT. UAL (Unified Accelerator Libraries)[4] is an ac-
celerator simulation environment whose purpose is to homog-
enize diverse simulation codes. This document is available
at http://www.ual.bnl.gov, where it can be expected to be
updated occasionally. Its initial purpose has been to serve as
instructions for the 2005 USPAS (U.S. Particle Accelerator
School) course held in Tthaca. As such, some of the material,
such as filenames, filename extensions, tutorials, and XML
tools, are specialized unnecessarily to what happened to be
in use for this course. The document is intended to serve
also as a UAL Physics User’s Guide for the UAL environ-
ment. Some of the other documents and user guides referred
to are available at the same web site. The MAD8 manual is
especially important since, to the extent possible, geometry,
terminology and definitions of UAL are adopted from that
source. Some correction algorithms, such as orbit smoothing
and local decoupling are documented in the TEAPOT manual.

This text complements the UAL User Guide,[5] which,
though now largely outdated, describes much of the motiva-
tion, organization and evolution of UAL. The main ways in
which the User Guide is outdated are that the user interface
has been migrated from PERL to C++ and a graphical user
interface is now supported. Updating of the User Guide, now
in progress, will consist primarily of the conversion of line-
by-line PERL script explanations to line-by-line explanations
of essentially equivalent c++ code. The physics underlying
the code will be largely unchanged.
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CHAPTER 1

Introduction

1.1. Code Installation From the CDROM’s

This text is meant to resemble a physics text more nearly than it resembles
a cookbook. But this section is an exception; it gives rudimentary instructions
on initializing the UAL computer environment. The instructions are written as
if for a student in the USPAS school held at Cornell University, in Ithaca, New
York, in 2005, but they should be applicable to anyone else looking for an intensive
introduction to UAL.

This documentation assumes that the username is ualusr, with home directory
/home/ualusr. In these instructions this directory is referred to as ~. LINUX is
the only operating system used in the course. (For the USPAS school, RedHat
Enterprise linux is used.) Everything needed over and above code included in the
(complete) RedHat release is contained on two CDROM’s, which are labeled USPAS
and TOY-LATTICES. The code they contain installs into subdirectories ~/USPAS
and ~/TOY-LATTICES. Installation instructions are given on the CDROM labels.
They can be installed in either order. The USPAS code uses the TOY-LATTICES
code only as a source of example lattice files. Though the ADXF lattice format was
introduced initially in UAT, in principle it exists in a more-general-than-UAT. world.
The TOY-LATTICES codes process lattice files in that world. But these instructions
assume that both CDROM’s are being installed at the same time.

The instructions include copying a file called cshrc-tentative to ~/.cshrc.
But this must be done cautiously. The purpose for this file is to establish required
environment variables and search paths. To avoid unexpected conflicts it is rec-
ommended that the ualusr account be dedicated entirely to UAL work. The user
wishing to personalize the .cshrc file is responsible for protecting and merging its
contents appropriately before blindly following the CDROM label’s instruction to
over-write this file.

A partial directory structure (with directory labels giving hints concerning
content) follows:

e USPAS
— cshrc-tentative, to be copied to ~/.cshrc
— rootrec, to be copied to ~/.rootrc
— uall, the main UAL code.
* gui
codes
env
ext
tools
examples

* X K X ¥
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* doc/adxf, location of local copu of adxf.xsd schema
— examples, simulations, loosely coupled with chapters
transverse, for transverse simulations
longitudinal

* X ¥

nonlinear
* decoherence
— setup-linux, initialization file
— tools,
* Instructions.ps, extracted from http://www.ual.bnl.gov
qt, Troll Tech’s Qt graphical user interface
root, CERN, object-oriented, data-processing environment.
SoQt, library integrating Coin and Qt
simage, support for loading and saving images, coin3D devel-
opment
* Coin, 3D graphics rendering library
e TOY-LATTICES
— oxygenb, inexpensive commercial, XML-aware editor, licensed for US-
PAS school
— grace, for xmgrace graphical post-processing
— xslt
* MADS, for lattice function comparisons
- OUTPUT, lattice function graphs from MADS runs
* SCRIPTS, XSLT scripts for translating among various file for-
mats.
* ADXF
- INPUT-adxf, primary location of lattice files
- OUTPUT-adxf-num, purely numerical, .adxf files
- OUTPUT-specialized, specially tailored files, see README
- OUTPUT-xs1, files prepared for transformation by XSLT
- OUTPUT-sxf, purely numerical, . sxf files
- OUTPUT-mad
- OUTPUT-tpot
- INPUT-sif, archive of original MAD lattice files
- INPUT-xsl-archive, archive of original .xs1 files
* ADXF2.10, schema, and documentation thereof
* tools

* X K K

- java
- Xerces
- xml-xalan

Apart from containing the toy lattice files to be used in the school, the code in
~/TOY-LATTICES consists mainly of non-UATL-specific utility codes useful in trans-
lating lattice files among various file formats, and for validating the results, as
regards both XML and physics. Much of this code is transitory, intended espe-
cially for the USPAS course, or provided for backward compatibility—for example
by providing .sxf files that can be used in some old simulations, or .mad or .tpot
files.

The primary repository for files to be used as input to UAL simulations is
~/TOY-LATTICES/xs1t/ADXF/INPUT-adxf
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which contains .adxf files for all toy-lattices, with variables and expressions un-
evaluated. However, some files, such as ags, support parameter evaluation only
via the ags.xs1 route. All toy lattice files are therefore available with all variables
evaluated to numbers in

~/TOY-LATTICES/xslt/ADXF/0UTPUT-adxf-num
UAT, simulations can be started from .adxf files in either of these directories, with
or without modification. Though these files have .adxf extensions, they are to
be processed exactly as if their extensions were .xml. They are required to be
XMTI.-valid against the schema,

http://www.ual.bnl.gov/adxf/adxf.xsd
A local copy of the schema, needed for when the web is inaccessible, is

/USPAS/uall/doc/adxf/adxf.xsd

The .adxf files can be modified using any editor, but the XML-aware editor
provides many valuable utilities. Especially useful are context-aware pull-down
menus, that present all schema-legal options. Files can be tested for XMT-well-
formedness and walidity. Files can also be pretty-printed and stepped through
for line-by-line feedback, for debugging or for browsing purposes. Obviously it is
sensible to save copies of the originals. They can also be regenerated using the
scripts described next. This route must be taken if comparison output from MADS
for a modified lattice is desired.

For backward compatability all toy lattice files are also available in .sxf form
in the directory

~/TOY-LATTICES/xs1t/ADXF/0UTPUT-sxf
These files can be used as input to various (old and now unsupported) PERL-
controlled batch-mode scripts. Since this interface is in the process of being replaced
there is little support available in case of malfunctioning of these scripts.

The scripts in the SCRIPTS directory perform various lattice description trans-
formations, such as populating all the lattice file directories mentioned so far. Some
of the scripts combine several separate manipulations. If only one of these manipu-
lations is required the appropriate line (a shell script statement) should be extracted
and run by itself. In all cases the transformations can be stepped through using
the oxygen XMTL-aware editor. A few of the scripts (which call some of the others)
are:

e process-qfile: taking a single argument, such as racetrack, this script
processes the toy lattice racetrack.adxf, and produces equivalent files in
diverse formats, such as racetrack.mad, and racetrack.sxf (now dep-
recated). These are in forms that can be (and are) immediately processed.
Also produced (for convenience in performing XSLT transformations) are
racetrack.xsl and (in a different directory) racetrack.adxf which is a
purely numerical version with all variables and expressions evaluated to
pure numbers.

e process-all-files: runs process-qfile for all available .adxf files.

e check-results: for a particular lattice, such as racetrack, checks for
the presence of files generated by process-qfile and validates the .adxf
file against its XML-Schema.

All these tools are available for any lattice file written in .adxf form. The
OXYGEN, XML-aware editor makes the generation of such a file straightforward, by
presenting, at every step, only legal options for the developer to choose among. The
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only major task in importing a new accelerator into this environment is the initial
generation of its .adxf form. The XML-aware editor is helpful, but the task is
about as tedious as generating a lattice description file for any accelerator analysis
software.

1.2. Organization of the Text and Course

This text has been written primarily to provide reference material in support of
a course on computer simulation of accelerators. Since the choice of subject matter
is rather conventional for the field, the material would be more or less appropriate
for any accelerator modeling software. Many of the problems are this general, but
we think of this text as being a kind of UAL Physics User’s Guide. Almost all of
the simulations assume the UAL environment is being used. Furthermore, many of
the figures accompanying the theoretical material in the text is produced by the
UAL GUL

The UAL environment is intended to be useful for both off-line models and for
the models used in online control system applications. Only the off-line applications
are documented in this text.

Nearly everthing of importance in accelerator physics can be subjected to study
by simulation. From the time that a tentative lattice for a new accelerator has
been written down, then refined and the accelerator built and commissioned, until
the accelerator is eventually de-commissioned, simulation can contribute to the
understanding and improvement of the accelerator’s performance. A long, yet still
incomplete, list of important ingredients of a simulation follows:

initial lattice description

Monte Carlo particle bunch and field error assignment

calculation of lattice functions, both ideal and real

correction capabilities, orbit smoothing, decoupling, etc.

simultaneous presence of multiple effects

determination of bunch evolution, emittance dilution, particle loss, halo
generation, injection and extraction efficiency.

collimation design

e space charge, beam-wall, and beam-beam effects

e design and performance modeling of feedback and control

Some of the essential requirement of the physics underlying a simulation are:

e correct basic physics (e.g. symplecticity and Maxwell equations)
e sensible inclusion of (only) essential physics of sufficient generality
e freedom from bugs, blunders, and conceptual errors

Though almost too obvious to write down, the third of these requirements is hard
to achieve, and achieving it depends strongly on the first two, between which there
is a kind of complementarity. The striving for unreasonably faithful description
tends to increase complexity which makes the code more error-prone. This justifies
the expenditure of much effort in choosing what idealizations are to be adopted.

To be most effective (like all theory) simulation is best used in conjunction
with experimental observations on a real accelerator. If the model underlying a
simulation is too idealized, that fact should become rapidly apparent during actual
machine studies.
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For avoiding bugs the quality of the code architecture and the careful applica-
tion of tests are probably the most important determinants of the code reliability.
In many quarters it is thought that object-oriented code, with its highly disciplined
interfaces, is favorable in this respect. UAT is based (almost) entirely on C++
which is object-oriented. Amongst other features, this facilitates extensibility and
maintainabily. These issues are discussed in detail in other UATL documents. For
example, further discussion of the merits of C++, and why it is being superceded
in UAL is discussed in the User Guide.

Another likely source of error is the incorrect interpretation of correct code.
This may be caused by incorrect interpretation of physics or by computational
issues. In this text much emphasis will be placed on the physics, but, in spite
of its importance, the contribution of software architecture to code reliability is
little discussed. On the other hand the benchmarking of simulation results against
independently derived and trusted results might almost be called the theme of the
present text.

It is not enough for a simulation just to have correct physics and sensible
models. It is also necessary for it to be sufficiently user friendly that it actually
gets used. The user interface has to display its results in an accessible fashion, to
provide the rapid feedback needed to support rapid changing of conditions. An all
too common experience with many (all?) existing accelerators is that there is one
or more detailed but hard to use offline models and a crude, but easy to use, online
model. From experience one knows which of these two models will actually be used
in the control room. This scenario be mainly due to the difficulty of providing good
user interfaces. Of course there are also other reequirements for a simulation, such
as performing peripheral calculations and providing post-processing tools.

So what is the relation of this text to simulations? It might seem appropriate to
provide derivations for all formulas used in the code. Though considerable technical
material of this sort is included, only a relatively small fraction of the formulas in
the UAL code are derived here. Far more important is the task, mentioned already,
of result corroboration. It is important for material supporting such tests to be
available. Much of this text is therefore devoted to developing idealized models
and to deriving analytic formulas describing them.

An all too prevalent practice in accelerator investigations is to accept uncrit-
ically the results of this or that computer program. Based on the likely valid
assumption that the program’s author knows more than the user, the results of the
program are accepted as being reliable. Apart from the possibility of bugs, this
approach is likely to mask the presence of built-in assumptions that are valid in
some circumstances but not in others. It is very rare for a user to have line-by-line
familiarity with the code he or she is relying on, but to reduce the likelihood of
error it is essential to have a fundamental understanding of what has gone into the
code.

Summarizing what has been said, to the extent that this text is an “Accelerator
Physics Users Guide”, it is intended to provide:

e an overview of the subject of accelerator physics, in support of the en-
lightened usage of simulation code, especially UAT,

e exploration of simplifying idealizations

e emphasis on keying simulation to actual machine studies
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e detailed technical information emphasizing methods appropriate for sim-
ulation

e test cases that can be used to test simulation results against theoretical
results and therefore provide confidence in results obtained in situations
too complicated for analytic treatment

e pedagogical material for a course on the subject

e practice assignments to help a user gain experience with the methods and
the code

1.3. Assignments: Tutorials, Problems, Simulations

There are assignments sprinkled more or less uniformly through the text. For
easy visability all these assignments are printed in italic type and separated from
the main text by horizontal lines. The assignments are of three different types,
referred to as tutorials, problems, and simulations.

Tutorials. Tutorials are intended more to guide the student through practicalities
of the UAT code than to explore accelerator physics. They are not intended to
be difficult. If a tutorial assignment is difficult it may be because object-oriented
software architecture is unfamiliar or because of the obscurity or absence of docu-
mentation. In any case the difficulty probably reflects more on the software than
on the student. Tutorials occur mainly in the early chapters. They can only be
performed while sitting in front of a computer screen.

Problems. As mentioned in the previous section, the attempt is made in this
text for each topic to be addressed by two parallel methods—one analytic, one by
simulation. The problems relate to the analytic members of these pairs. Much
like the problems in any book discussing theoretical methods these problems are
intended to exercise the student’s understanding of the material. In many cases
the problems extend the treatment in the text. Whether a problem is hard or
easy depends (obviously) on the student’s level of familiarity with the particular
topic. When the purpose of a problem is to derive a result for comparison with
simulation the answer is usually given in the statement of the problem. This may
allow the result to be used even without the problem having been worked. In other
words, it is not necessary to slavishly work through all the problems they are,
after all, intended primarily as being complementary to the simulations. That said,
it bears repeating, that one of the most important initial uses of any simulation
is to corroborate its results against known results, usually obtained analytically.
Mainly the problems are to be worked out with pencil and paper.

Simulations. The ultimate purpose for UAL is to simulate the behavior of real
accelerators and storage rings. As in all science, in controlling and observing an
accelerator, there is tension between what is expected and what is observed. By
increasingly realistic simulation of what is expected, and reconciliation with what is
observed, the performance of an accelerator can be improved. The UAL simulations
attempt to model accelerator performance in conditions that are as nearly realistic
as possible, consistent with avoiding undue complexity. The various simulations
apply to an accelerator lattice supplied by the user. When the lattice is one of the
so-called “toy” lattices the results are intended to be relatively easy to interpret
and to compare with theory. When the lattice file describes a real accelerator the
results will be more realistic but less easily checkable.
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Documentation of the dynamic simulations is scattered through this text (and
in other online material). Here it will only be stated that they are launched by
instructions like

$ cd ~“/USPAS/examples/longitudinal/linux
$ ./run

Actually this does not start a run; rather it echoes a usage message such as,

$ usage: run ringName latticeFile apdfFile

Many lattice files describe only one beamline, but the “ringName” argument is
present in case the file “latticeFile” describes more than one beamline. The final ar-
gument refers to a “propagator description file” called, for example, tibetan.apdf.!
Reminded by this hint, one types

$ cd "/USPAS/examples/longitudinal/linux
$ ./run ring ~/TOY-LATTICES/xslt/ADXF/INPUT-adxf/eq_tune_fodo.adxf ../data/tibetan.apdf

(This assumes the directory structure is such that the files are where they are
stated to be. The directories shown are the preferred directories for the USPAS
school. The files can be referenced by absolute or relative addresses.) This com-
mand brings up a GUI that permits beam conditions and other parameters to be
changed from default values. Other features of the simulation can be tailored in
the GUI and ouput in the form of plots or files can be requested. First the GUI-
available parameters are tailored as desired. Then clicking on setup followed by
clicking on run starts the run. Beam plots are updated at regular (adjustable)
intervals. If desired, the run can be paused. While viewing a plot, hard copy can
be produced and, optionally, its data saved for post-processing. Parameters not
accessible via the GUI are also changeable, but only by re-coding the main control
file /USPAS/examples/longitudinal/src/run.cc. After editing, this file has to
be recompiled using

$ cd “/USPAS/examples/longitudinal/src

$ make

before restarting the simulator as above. Similarly, to start the transverse simu-
lator,

$ cd ~/USPAS/examples/transverse/linux
$ ./run ringName latticeFile apdfFile

Other UAL simulations, going by the names nonlinear and decoherence have
similar organization and usage. A systematic listing of simulator properties is
contained in Table 1.1.

By their very nature all simulations are somewhat open-ended and the instruc-
tions may not be very specific. Generally the simulation will involve changing one
or more lattice or beam parameters. In some cases the GUI accepts data entry to
change parameter values. For more extensive changes it is necessary to edit the
input file as described above. The student is invited, no required, to go beyond
the explicit instructions, especially by formulating questions that the software ap-
plication should be expected to be able to address. Especially encouraged, though
very ambitious for a short course, would be to generate an input file corresponding
to some existing or planned accelerator, and to simulate its behavior. (Manual
translation of an existing MAD lattice description to ADXF is straightforward but

In the case of the longitudinal simulation, the RF cavity is under the control of the GUI,
so treatment of the RF cavity is not described in the .apdf file.
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TABLE 1.1. Some Properties of the Simulations.

simulation chapter | variables algorithms functions.
name number | emphasized displayed
transverse 2,3 x,y matrix, kick B8, D
phase space
4 FFT Q
SVD spatial, temporal
eigenvectores
longitudinal 6 s separatrix
phase space
decoherence 7 x,Y,S matrix, kick | <z >, <y >, <s>
map
nonlinear 8 z,Y,S matrix, kick @ map
map dynamic aperture

tedious.) In short, the simulations are the main content of the UAL/USPAS course.
Obviously they require a computer, but in most cases they also require a lively un-
derstanding of the material, such as may be obtained by reading the text and doing
the problems.

1.4. The UAL Element-Algorithm-Probe Simulation Framework

UAL (which stands for “Unified Accelerator Libraries”) is an accelerator simu-
lation environment. It differs from some other environments by its rigorous separa-
tion of physical elements (magnets, cavities, etc.) from the formulas or algorithms
describing beam evolution through the elements. The quantities being evolved
(particle positions, bunches, maps, Twiss functions, etc.) are referred to as probes.
These are the cornerstones of the so-called element-algorithm-probe framework of
UAL.

The parameters of the physical elements making up an accelerator lattice are
contained in a so-called ADXF file (which stands for “Accelerator Description eX-
change Format”.) This format is capable of describing lattices that range from the
simplest possible design lattice to the most complicated, fully-instantiated, opera-
tional lattice. It is important for all tools to function consistently and effectively
over this full range of complication.

For an actual simulation, after the probe quantities to be evolved have been
specified, it is necessary to associate a specific evolution algorithm with each lattice
element. These linkages are described by an APDF file (which stands for “Acceler-
ator Propagator Description Format”). This file is usually quite brief, since there
are only a few algorithms and default algorithms are usually appropriate for most
elements.

The early tutorials concentrate on gaining familiarity with ADXF. Use of APDF
is considerably more technical and more specialized. The general idea can be in-
ferred from the following sample, called tracker.apdf:

<apdf>

<propagator id="teapot'" accelerator="blue">
<create>
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<link algorithm="TEAPOT::DriftTracker" types="Default"/>
<link algorithm="TEAPOT::DriftTracker" types="Marker |Drift"/>
<link algorithm="TEAPOT::DipoleTracker" types="Sbend" />
<link algorithm="TEAPOT::MltTracker"
types="Quadrupole|Sextupole|Multipole| [VH]kicker |Kicker"/>
<link algorithm="TIBETAN::RfCavityTracker" types="RfCavity"/>
<link algorithm="AIM::Monitor" types="Monitor|[VH]Imonitor"/>
</create>
</propagator>
</apdf>

With the linkages shown, magnets and drifts are handled by TEAPOT, r.f. cavities
by TIBETAN, and monitors are treated as AIM:Monitor’s at which particle positions
are recorded each turn (for later post-processing). (AIM stands for “accelerator
instrumentation module”.) Users familiar with other accelerator simulation codes
may consider it a nuisance that beam positions are available only at monitors. But
UAL attempts to be realistic in the sense of making available, and making use of,
only data that would be realistically avaiable in a real accelerator.

The purpose of separating elements from algorithms in this way is to support
the “mixing and matching” of physical methods (matrix, map, Runge-Kutta, etc.)
with physical elements (bends, quads, RF cavities, etc.) As well as facilitating
the bench-marking and comparison of methods, this structure permits a simulation
to link the most appropriate evolution method with each element. More detailed
examples of .apdf files, along with more detailed explanations, are given in Chap-
ter 7.

1.5. ADXF

Most users are presumably familiar with MAD lattice descriptions. This form
of description is often referred to as STIF which stands for “Standard Input For-
mat”. The ADXF format, while incorporating all STF features, supercedes SIF in
three main ways. The most essential of these ways is that ADXF extends SIF and
is, itself, extensible. These extensions include the ability to fully-instantiate the
lattice by giving every element its own identity and its own deviations, parameters,
etc. The second essential innovation ADXF brings is that it is based on XML. To
make the format, as well as any extensions, self-descriptive, the XMT1.-Schema, dis-
cipline is employed. Furthermore, the importation, into the accelerator world, of
standard, up-to-date, computer world formalism, makes available tools developed
in the vastly-better-developed external world.

Following an innovation in E. Forrest’s PTC code, a third, more specialized,
feature of ADXF is the distinction between between “uninstalled” (“on the bench”
in Forest’s terminology) and “installed” elements. Naturally an accelerator con-
tains only installed elements, each potentially having its own positioning and field
deviations. As well as being faithfull to reality, this abstraction permits the simula-
taneous description of more than one ring, including the ability to describe elements
that are shared by two or more rings, or that are multiply-traversed (possibly with
changed conditions) within a single ring. There are workarounds to provide this
feature within STF. For example, to represent shared elements, a single element can
be treated artificially as two distinct elements. But this complicates the inclusion
of field or positioning deviations. This can be done consistently, but is error-prone.
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Like .mad files, .adxf files support parameters and expressions and can be
pretty much internally self-explanatory. This is especially true for the toy lattices
to be used initially.

A considerably more technical overview of ADXF is available at the UAT. web-
site http:www.ual.bnl.gov under ADXF 2.0. Definitions, examples, schema, and
relationships of ADXF to other formats are given there.

In order to serve for both design of idealized lattices and representation of
fully-instantiated operational lattices ADXF supports specification of both design
parameter values and deviations. This issue is too technical for discussion at this
point, but it can be roughly understood by considering ordinary elements such as
sbend, quadrupole, and marker. The ADXF fragment

<elements>
<marker name="mk1"/>
<sbend name="bend" 1="1q" ang1e="de1theta"/>
<quadrupole name="quadhv" 1="1q" k1="kql"/>

</elements>

essentially just re-expresses MAD input element descriptions as XML. To describe
deviations (from a design element) ADXF uses syntax

<elements>
<sbend name="dOmp08" 1="3.58896" angle="-0.0151186"/>
<element name="bi8-dh0" design="dOmp08"/>
<mfield b="0 0 0.005476 0.033503"
a="0.0 -0.010166 0.024366"/>
</element>
</elements>

The <mfield> tag also allows a method attribute with the default value being
method="set", in which case the a and b entries are absolute values of the param-
eters. Other possibilities are method="add" and method="multiply". In the case
of multiply an entry b="1 1.01" would result in by — by and b; — 1.01 b;.

1.6. “Toy” Lattices

It is regrettably true that accelerator lattices are complicated. In fact the need
for a sophisticated simulation environment like UAT is at least partly due to this
complexity. Even professionals, with decades of experience, can be confused as to
which components are causing which behavior. A student in a one week course can
scarcely, therefore, be expected to generate the lattice descriptions that UAL needs
to work with. For this reason, to get started, the “toy lattices” shown in Table 1.2
and FIG 1.1 are to be used as starting points. These lattices are sufficiently detailed
to exhibit most of the behaviors important in accelerators. Furthermore, though
referred to as “toys”, the lattices are parameterized in such a way that they can be
generalized to describe accelerators, storage rings and colliding beams of arbitrary
circumference, energy, particle type, tunes, and so on.

As they stand, not including ags.adxf, which describes the BNL alternating
gradient synchrotron, the toy lattices are thin element lattices, meaning that the
quadrupole and sextupole lengths are negligible compared to the cell length. (To
enable comparisons with programs, such as MAD, that do not smoothly incorporate
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Figure 1.1. ”"Toy lattices” to be used as starting points for ac-

[4

celerator simulations. Note: “ags” is not a “toy”.

the zero length limit for thin elements, the element lengths in these files are chosen
to be not quite zero, but small enough to have negligible effect on the optics)
Since the element lengths are expressed as parameters, later on the elements can
be turned into thick elements, and the ring retuned.

The early chapters of these notes largely contain introductory exercises intended
to provide a gentle introduction to the UAL accelerator simulation environment.
The first two tutorials relate to two simple “toy” lattices called eq_tune_fodo.adxf
and general fodo.adxf. These lattices are designed for getting started on the
accelerator modeling course.

These files could have been generated from scratch but some were in fact,
derived from .xs1 files which is a “pre-adxf” form. XSL is an XML processing tool.
XML stands for “eXtensible Markup Language”, which is ideal for modern lattice
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TABLE 1.2. “Toy lattices” to be used as starting points of simula-

tions. “P/N/FT” stand for “parameterized/numerical/fully-
instantiated”.
INPUT ouTPUT
filename feature .mad xsl .adxf .mad  .sxf
eq-tune_fodo equal tunes P P N N N
general fodo unequal tunes P P N N N
general fodo_rf acceleration P P N N N
racetrack long straights P P N N N
collider low beta IP P P N N N
isochronous mom. ind. period P P N N N
ags fully realistic FI-Pp  FI-P FI-N FI-N FI-N

description. The term “pre-adxf” implies that named parameters are allowed and
they can be expressed in terms of mathematical expressions and functions. These
expressions are “parsed” into numerical expressions using an XML tool known as
XSLT. (At this time the UAL parser is also able to parse algebraic expressions so the
need for the XSI.T expression parser has already been largely eliminated. However
the XSLT transformation tools provide powerful help in translating from .adxf
format to the formats of other accelerator programs.)

Based on XML, the ADXF protocol (or something like it) is beginning to, but
has not yet, superceeded SiF (which stands for “Standard Input Format”). Over
time STF has evolved into the MAD (Methodical Accelerator Description) format.

For the UAL simulation course it is the .adxf files that are the starting points
for the various dynamic simulations. The .sxf format (motivated a few years
ago by the US-LHC collaboration) was an early prescription for exchanging fully-
instantiated lattice descriptions among diverse simulation environments. This for-
mat has been superceded by the .adxf format, which is extensible, with extensions
disciplined by XMT. schema. This makes the format “self-describing”.

The eq_tune_fodo.adxf file is especially introductory in character and is in-
tended to be superceded by the slightly more general general fodo.adxf after
preliminary study. These lattices are parameterized in such a way that they can
describe rings of arbitrary radius and arbitrary tunes. The parameters of the input
.xsl files are intended to be adjusted in performing the tutorials. Later, while
performing dynamical simulations using the graphical user interface, the few most
important, but not all, parameters will be interactively changeable without recom-
pilation.

When these or other lattices are processed by UAL, various output displays and
files are generated. Example output corresponding to the isochronous toy lattice
is shown in FIG 1.2. When the same lattice is processed using MAD the results are
shown in FIG 1.3 and FIG 1.4 are obtained.
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The toy lattice files are useful for gaining familiarity with the environment.
Introductory tasks mainly amount to checking and correlating a few results in this
output by hand calculation (using any computational tool you wish, such as hand
or online calculator) using formulas given in these notes.

One thing that makes accelerator physics hard is that the presence of small
effects of one sort or another almost always causes minor disagreements among
quantities calculated in different ways. Examples will be given shortly. Only with
experience does one obtain good judgment about what to insist upon, and what to
let pass. One purpose of this course is to learn how to use the UAT environment
to provide some of this experience. It is to be a “laboratory course” where labora-
tory is being used in the sense of computational laboratory. After understanding
the meanings of quantities, they will be estimated and the estimations compared
to accurately computed values. Even when quantities cannot be calculated with
absolute accuracy, analytic formulas can often be used to calculate the changes of
these quantities when a lattice element strength is changed by a small amount.

Commonly in an accelerator control room the installed lattice only agrees “more
or less” with the design. (As accelerators have become larger and larger this be-
comes more and more invevitable. Not only are there more elements, for which
the parameters are only controlled approximately, but the same fractional error
is more significant in a big ring than in a small ring.) After confirming that the
installed lattice resembles the design, it is necessary to perform various fine tun-
ing operations to correct for minor unknown errors. Furthermore the algorithms,
based as they are on an idealized model, are typically not “orthogonal” (meaning
that errors of one sort, such as coupling, degrade algorithms intended to correct
other effects, such as closed-orbit deviation.) This forces methods to be iterated,
either successfully, in the case of convergence, if the errors are small enough and
the methods powerful enough, or unsuccessfully.

One application of the UAL code is to simulate these lattice tuning and correc-
tion procedures and then to determine accurate lattice properties. Some of these
are just recalculations of quantities previously calculated. Most of the calculations
are too complicated to be checked by hand. The associated assignments in the tu-
torials are to spot-check the results against the input file specifications, referring to
the UAL manual to “get the drift” of what can be calculated, what can be modeled,
what can be adjusted, and how to do it.

Output files for both of the initial practice lattices are available (along with
other data) from the CDROM. Students are to work through the instructions asso-
ciated with these lattices. There are various other, more realistic, more detailed,
but still “toy lattices”, that are available for similar study; for example a colliding
beam lattice, and a proton accelerator (AGS) are available in .xsl form. Some
longitudinal studies are based on RHIC, the Brookhaven Relativistic Ion Collider.
That lattice is available in .sxf form.
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TuToRIAL 1.1. Use UAL to obtain the dispersion curve for the isochronous
lattice, and compare the result with FIG 1.4.

TUTORIAL 1.2. Practice, using the mouse and caret, to zoom one of the GUI
graphs. Note that there is no “boxr zoom”. Rather, each axis is to be zoomed
individually. Also learn how to read accurate numericaal values for one of the
plotted lattice functions.

After completing these initial assignments students are encouraged to prepare
an input file description for a particular accelerator or type of accelerator of interest.
Starting with this file it will be possible to complete the later stages of the course
in which various physical effects are investigated.

1.7. Graphical User Interface

The main graphical user interface which controls the UAT simulator is shown
in FIG 1.5. More detailed windows are shown in FIG 4.7, FIG 4.8, FIG 7.7 and
FIG 7.8. This interface is based on QT[1] and ROOT[2][3].

The graphical interface for the debugger for the XSLT-transformer contained
in the OXYGEN, XML-aware editor is shown split between FIG 1.6 and FIG 1.7.
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CHAPTER 2

Linearized Transverse Motion

2.1. Equations of Small Amplitude Transverse Motion

Consider a beam of particles being guided along a possibly-curved path, with
longitudinal position specified by arc length s. To prevent the eventual loss of
particles no matter how slightly divergent, it is necessary to have focusing elements.
For high energy charged particles this means quadrupoles. The differential equation
describing such focusing, for example in the vertical plane, is

d2
— = K()y, (2.1)

where K (s) is the “vertical focusing strength”. Its dependence on s permits the
description of systems in which the focusing strength varies along the orbit. In
particular K(s) = 0 describes “drift spaces” in which case Eq. (2.1) is trivially
solved, and yields the obvious result that particles in free space travel in straight
lines.

It is conventional to designate dy/ds by y'. There are (at least) three candidates
for describing particle slopes; angle §,,, slope y', or momentium p, (which is scaled
to the total momentum Py). All of these are exhibited in FIG 2.1, and one sees

that
,_d Dy

== —tanf, = . 2.2
y an Y cosoy ( )

This multiple ambiguity in what constitutes the coordinate conjugate to y is some-
thing of a nuisance at large amplitudes but, fortunately, all three definitions ap-
proach equality in the small-angle limit that characterizes Gaussian or “paraxial”
optics. One knows from Hamiltonian mechanics that p, is the safest choice but,
while limiting ourselves to Gaussian optics, we will refer loosely to y' as “vertical
momentum” so that we can refer to the (y,y’)-plane as “vertical phase space”.

v e
PO
5w

FiGURrE 2.1. Spatial displacements and momentum vectors show-
ing relations among transverse angle, momentum, and slope.

21



22 2. LINEARIZED TRANSVERSE MOTION

Starting from any point sy along the beamline, one defines two special orbits, a
“cosine-like” orbit C(s, sp) with unit initial amplitude and zero slope, and a “sine-
like” orbit S(s, sg) with zero initial amplitude and unit slope.

0(80780) = 1, C’(So, So) = 0, (23)
S(s0,80) = 0, S'(s0,50) = 1.
Since unity slope is manifestly not a small angle, these definitions only make sense
after the exact equations of motion have been linearized as in Eq. (2.1). Because
Eq. (2.1) is linear and second order, any solution y(s) and its first derivative y'(s)

can be expressed as that linear superposition of these two solutions that matches
initial conditions y(sg) and y'(s¢):

y(s) = C(s,50)y(s0) + S(s,50)y (50), (2.4)
y'(s) = C'(s,50)y(s0) + 5'(s,50)y' (50)-

This can be expressed in matrix form, with y = (y,y')T being a
space”:

v = (40) = (G0 S ) v = Moy @29

[4

‘vector in phase

This serves to define M(sg, s), the “vertical transfer matrix from sq to s”. Since
any solution of Eq. (2.1) can be expressed in this way, an entire beamline can
be characterized by M(sg, s). This matrix can be “composed” by multiplying (or
“concatenating”) the matrices for the successive beamline elements making up the
line.

2.2. Pseudoharmonic Trajectory Description

An “ansatz” for solving Eq. (2.1), based on the known, “harmonic”, dependence
proportional to cos(y) — 1)g) when K(s) is constant, is

y(s) = a/B(5) cos(®) — o). (2.6)

Here 9 (an intermediate “independent” variable) and 3(s) depend on s but a is a
constant amplitude. Differentiation of Eq. (2.6) yields

' _ ’o. aﬂl
6) = oI snfw — ) +

Substituting into Eq. (2.1), we can demand that the coefficients of sin and cos

terms vanish independently, since that is the only way of maintaining equality for
all values of vy. This leads to the equations

BY" + 8% =0, 288" — B — 48" +48°K(s) = 0. (2.8)

From the first equation it follows that 31’ is constant. To obtain the conventional
description we pick this constant to be 1 and obtain

cos(¢ — 1byg). (2.7

1 5 ds
P ==, or (s) =P(so) + :
B’ 50 B(s")
Since ¢ is the argument of a sinusoidal function, and the argument of a harmonic
wave is 2ms/wavelength, this permits us to interpret 27 3(s) as a “local wavelength”

(2.9)
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F1GURE 2.2. An elliptical beam in vertical phase space, showing
the geometric configuration of a beam ellipse matched to the local
Twiss parameters a, § and . Except for a factor of order 1,
depending on the detailed beam distribution, the area of the ellipse
is the emittance €. The skew orientation depends primarily on
Twiss parameter a. F is the “beam envelope”.

or, equivalently, 1/83(s) is the “local wave number”. Substituting into the second
of Egs. (2.8), we obtain
14 87/4

3 .
This second order, nonlinear differential equation is usually considered to be the
fundamental defining relationship for the evolution of the lattice g-function. Be-
cause K (s) depends on s, solving the equation may be quite difficult in general. In
a problem below a “first integral” of Eq. (2.10) is obtained;

y2 ! B’ 2 2

3 + B( 2By) =a’. (2.11)
Even without §(sq) yet having been determined, this equation makes it natural,
at fixed position sg, where (a(so),3(s0)) = (ag, Bo), to plot the ellipse shown in
FIG 2.2, for (a, 8) = (o, Bo). As s increases away from sg, individual points evolve
independently, but points sharing this ellipse at sg will share the same (a, ) =
(a1, P1) ellipse at s = s7.

B" =28 K(s)+2 (2.10)

2.3. Relations Among the “Twiss” Lattice Functions

Since properties of the so-called “Twiss lattice functions”, a(s), 8(s) and ~(s),
are spelled out in all accelerator books, only the briefest of outlines will be given
here. With f(s) already defined, the defining relation for a(s) and y(s) are

1ds B _14a?
29ds — 20 T3
In this text, while analysing toy lattices, since nothing but thin elements and drifts
are used, it is sufficient to work out the s dependence of the Twiss functions for

just drifts and thin lenses, which is to say, quadrupoles. Other than requiring input

. (2.12)
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TABLE 2.1. Lattice function evolution formulas. Sign of ¢ is gov-
erned by horizontal (¢ > 0 — horizontal defocus) and is the same
for all entries. Both A# and p are assumed to be positive.
Vertical Horizontal Dispersion
BZI Bz D = Dz
DRIFT B = B(] — 20((]4_8 + ’Y()+S2 B = B(] — 2a0+s + ’Y(H_SQ D = D(] + D6+S
length a(s) = ag — Yo a(s) = ag — o5 D'(s) = D
s 7(s) =0 7(s) =0
thin By =B By =B D, =D_
QUAD ay = a_ + Bog ar =a_ — foq D! = D' + Doq
g |7+ =7 +20 g+ pog’ Y+ =7- —20-q + Bog?
thin no change B+ = p- D, =D_
BEND ay =a_ +BoA0/p D!, = D" + Ad
Af Yo =7 +2a_A0/p+ By AG?/p?

and output positions to be the same, the defining equation of a thin lens of focal
length f = —1/q is

Ay’ = qy. (2.13)
The lens strength ¢ and focusing function K (s) are related by
q= / K (s)ds, (2.14)

where the range of integration spans the lens location.

The Twiss function dependencies for drifts and thin lenses are given by formulas
in the second and third columns of Table 2.1. All entries are to be worked out in
problems below. For drifts, propagation is from 0 to s. When applied to a drift,
for a potentially discontinuous quantity such as «, the value ag stands for a(0+),
the value just after the thin element at s = 0. This defines the start of the drift.
In general a_ and ay are the values just before and just after a thin element. For
quadrupoles, the vertical and horizontal columns are related by the the well-known
result (also proved in Eq (8.6)) that the focal lengths of quadrupoles are equal in
magnitude but opposite in sign for horizontal and vertical planes.

The convention used in the table is that positive g corresponds to the quad being
focusing in the horizontal plane. Since there is no universally accepted convention,
it is necessary to be checking the signs of quadrupole strengths carefully when
different formalisms are compared.

For convenience the fourth column of the table also gives the variation of dis-
persion' D(s). Those entries, which depend of bending magnets, will be discussed
later.

What makes drifts simple is that, since K = 0, the first term on the right hand
side of Eq. (2.10) vanishes. What makes thin lenses simple is that, since K = oo
(at the lens location) the second term on the right hand side of Eq. (2.10) can be

ITildes on b(€) and 5, here and later, will be explained below. They are introduced for
notational consistency with the treatment of longitudinal dynamics in later chapters. Except for
a factor Bo, 0 and 0 are identical. At the level of faithfulness justified for the toy lattices under
study one should assume fully relativistic motion for which Sy = 1. This justifies simply ignoring
the tildes.
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neglected there. (Individual particle trajectories have to be continuous, even in
passing through thin elements. As a result 3(s) has to be a continuous function of
s, even at a lens location. This means that 8’ has to be finite there.) At a lens
location, because 8" = oo, it follows from Eq. (2.12) that a(s) is discontinuous at
the lens position. In other words, the function 3(s) has a kink there.

This section has now included all the hints necessary to derive all entries in
columns two and three of Table 2.1. Problems to this effect are given next.

PROBLEM 2.1. With a view toward eliminating the argument ¥ — 1, from
Egs. (2.6) and (2.7), solve the second of these equations for av/B(s) sin(v) — o),
expressed in terms of y and y'. Then square and sum the two equations. In this
way prove the constancy of the “first integral” introduced in Eq. (2.11).

PROBLEM 2.2. In a drift region K = 0, which simplifies Eq. (2.10) markedly.
Solve this differential equation to show that the variation of B(s) has to be quadratic
in s. This has derived the top row entry in each of the first two columns of Table 2.1.

PROBLEM 2.3. Continuing from the previous problem, use the relations con-
tained in Eqgs. (2.12) to derive the dependencies of a(s) and y(s) in drift regions.
In other words derive the second and third rows of Table 2.1 for the variation of
Twiss functions in drift sections.

PROBLEM 2.4. For thin elements it was argued above that the last term of
Eq. (2.10) can be dropped. Use the resulting equation, along with Eqs. (2.12) and
(2.14), to derive the ay — a_ discontinuity relations given in Table 2.1.

PROBLEM 2.5. Continuing from the previous problem, use the relations con-
tained in FEgs. (2.12) to derive the discontinuity equations for 3(s) and v(s) at thin
lens locations. In other words derive the first and third rows of Table 2.1 for the
variation of Twiss functions at thin lens locations..

In drifts and quads the graph of D(s) is the same as that of a horizontal par-
ticle trajectory. When passing through a thin dipole that causes inward deflection
through angle Af, D suffers an outward kink Af. This means that (except in re-
verse bends, which are rarely used) a dipole causes D(s) to be “repelled” from the
horizontal axis. For this reason D(s) is positive everywhere in ordinary lattices.
Both 8, and 3, are necessarily everywhere positive because they are “repelled” from
the axis in drift spaces (with strength inversely dependent on 3). (A counter exam-
ple, in which negative dispersion is intentionally present is the isochronous.adxf
lattice.)

2.4. Establishing Absolute Values of the Twiss Functions

Equation 2.10 fixes only variation of 5(s). As with any second order, ordinary
differential equation, it is necessary to use initial conditions or boundary conditions
to fix the two undetermined parameters. Which of these conditions is to be used
depends on the way the Twiss functions are to be interpreted. There are two main
lines of development, depending on whether an open “transfer line” or a closed
“circular ring” is under discussion.

e The ellipse shown in FIG 2.2 can be regarded as the aspect ratio of a
beam of particles in one dimensional phase space. (There would be a
similar plot for the other transverse plane.) In this case the parameters
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(0, Bo,70) are properties of the beam. They can be established or varied
with no reference to any lattice; (for example, by changing voltages on the
electrodes of the source or “gun” from which the particles are generated.)
This triplet of values serves as initial conditions establishing absolute val-
ues of the Twiss functions for the transfer line into which this beam is
injected. In this case the Twiss functions can be regarded as properties
of the beam.

e For a (more or less) circular ring, it is natural to establish absolute values
for the Twiss functions by using boundary conditions. Assuming a closed
orbit is known, and that the coordinates being used are measured rela-
tive to that orbit, the focusing function K(s) is necessarily periodic, with
period Cy, which is the orbit circumference. Requiring the boundary con-
ditions a(Cp) = g and B(Cq) = Bop fixes the absolute values of the Twiss
functions. In this case the Twiss functions can be regarded as properties
of the lattice.

When a beam is injected into a circular ring there is a clash between these two
sets of Twiss functions. Ideally the two sets would be identical, in which case the
beam is said to be “matched”. In this case it is unnecessary to distinguish between
the two definitions, and the Twiss functions are defined unambiguously for one full
turn around the machine and, for that matter, for all subsequent turns.

Naturally the beam are never be ezactly matched to the lattice. If the lattice
were truly linear then the bunch characteristics would survive indefinitely. But
the lattice is never truly linear and, after a sufficiently long time, a process called
filamentation, will cause the beam to adapt itself to the lattice. This process, which
also goes by various names such as “emittance dilution” and “decoherence” is the
subject of Chapter 7.

2.5. Transfer Matrices for Simple Elements

2.5.1. Drift space. The most important transfer matrix is M;, which de-
scribes propagation through a drift space of length £. Since the orbits are given by
y(s) = yo + ygs,y'(s) = yg, we have

M, = (é f) . (2.15)

2.5.2. Thin lens. The next most important transfer matrix describes a “thin
lens” where the definition of “thin” is that the thickness As is sufficiently small
that coordinate y(s — As/2), just before the lens, and y(s + As/2), just after, can
be taken to be equal. A typical focusing profile is shown in FIG 2.3. The lens
causes a “kink” Ay’ = y'(s + As/2) — y'(s — As/2) in the orbit which, as shown in
the figure, is taken as occurring at the center of the lens. The kink can be obtained
by integrating Eq. (2.1) from O_, just before the lens to O, just after it:

Ay':/o E(E)ds:y ; K(s)ds =y KAs. (2.16)

This relation defines the product KAs. Now, a focusing strength that changes
discontinuously from 0 to K is not actually realistic. But the product K As, known

as a “field integral”, can be regarded as an abbreviation for f(g)j K (s)ds where O_
and Oy are well outside the field region. If K is taken to be equal to K¢ (the value
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K(s)

- As

o-

Fi1GURE 2.3. Realistic thin lens focusing profiles are more or less
constant with value K over a central region and become negligible
outside points O_ and O4. Effective length As is determined by
matching K As to the “field integral”.

FIGURE 2.4. Focusing action of a thin lens for which the focusing
strength-length product is K As and fields outside the range O_ <
s < Oy can be neglected. The “focal length” is f = —(KAs)™' =

_q,1-

at the center of the element) then As is typically equal to (or, because of fringe
fields, slightly greater than) the physical length of the element. The “focal length”
f of the lens, defined in FIG 2.4, and the “lens strength” ¢ = —1/f, are then given
by

1 Ay

q:—?:

Building in the approximation that y is contant through the lens, the transfer

matrix is then given by
10
M, = <q 1) : (2.18)

As drawn, K and q are positive, f is negative, and the lens is “defocusing”.

= KAs. (2.17)

2.5.3. Thick lens. The condition for the thin lens formula just given to be
valid (As << |f|) is usually well satisfied for accelerator beamlines. Even if non-
vanishing, if K(s) is constant (as it usually is, by design anyway) it is easy to
integrate Eq. (2.1). This yields matrix elements of M that are no worse than sines
and cosines (or hyperbolic sines and cosines, depending on the sign of K'). Formulas
for ideal thick quadrupoles are given in most accelerator books and, other than in
a problem below, won'’t be discussed here. When the linear lattice assumption is
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regarded as acceptably accurate, these matrices can be used in UAL, for example
in the FastTeapot, to minimize computation time through linear sections.

For low energy, few element, accelerators, explicit thick element matrices used
to be considered “canonical”. But, for high energy accelerators, the thin lens ap-
proximation is usually adequate. In any case, making use of now readily available
computer power, one can always split elements longitudinally to better validate the
assumption that the elements are “thin”. Quite apart from improving accuracy, it
is handy to split elements in two in order to enable lattice function evaluations at
lens centers. (The lattice functions typically go through maxima or minima near
these points and aperture limits are usually established at those points.) Even in
the most extreme cases of intersection region quads, splitting by another factor of,
say, four, is more than adequate, especially since the residual inaccuracy is typically
less than the errors due to the neglect of other factors like fringe fields. For these
reasons thick element formulas are de-emphasized here.

The emphasis on thin elements in UAL resembles the restriction to finite ele-
ments in the finite element method of mechanical engineering. In both cases the
explicit need for numerical treatment reduces the usefulness of idealized, thick ele-
ment, analytical approximations. In the case of particle dynamics the requirement
of symplecticity makes this discretization obligatory, since there is no known sym-
plectic treatment of distributed nonlinearity. Historically this led to the use of
so-called “kick codes” for incorporating nonlinearity. The first general-purpose
code taking this route was TEAPOT[6]. Over time this has evolved into the vastly
more general and more inclusive UAL code. As well as incorporating TEAPOT, the
UAL environment has come to incorporate the homogeneous inclusion of heteroge-
neous codes while preserving the symplectic capability. By using truncated Taylor
series (TPS) maps, even thick elements can be represented analytically, though
symplecticity can only be assured up to a given polynomial order.

2.5.4. Bending Magnet. Bending magnets (also known as uniform field
magnets or, based on a “multipole expansion” to be described in Chapter 8, as
“dipoles”) are obviously needed to bend the particles into closed curves. The main
parameters defining a bending magnet are the bend angle Af and the arc length [
of the reference orbit as it passes through the magnet. Since there are significant
end effects it is necessary to also specify entrance and exit angles. The simplest
special case has both entrance and exit normal to the pole face, in which case the
magnet is referred to as an sbend, which stands for “sector bend”. In this text
bending magnets without further detailing will be assumed to be sbends. Another
special bending magnet, haing parallel exit and entrance pole faces, is referred to as
an rbend, which stands for “rectangular bend”. (In the case of an rbend, instead
of design orbit arc length, the “magnet length” is usually taken to be the design
orbit chord length, which is the same as distance from pole to pole.) For a general
bending magnet the entrance and exit pole face angles E1 and E2 also need to be
given. A rather careful treatment of orbits in an sbend is given in section 8.6.4;
the present section contains only a simplified discussion.

Particles travelled in perfect circles in the original particle accelerator, the
cyclotron. Starting from one arbitrary point P, the central, reference particle travels
in one such circle, of radius p. A particle starting from point P with zero momentum
offset, but with small angular deviation zj, from the reference momentum, travels
in a circle of the same radius and, as a result, returns to the same point P after one
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revolution. (This is the basis for the 360° spectrometer.) With x being the radial
coordinate, one sees that there is a “geometric focusing effect” tending to “restore”
z toward its equilibrium value z = 0. The radial motion is described approximately
by the equations

s dx s d’z ! s 1
T = zHp sin —, —T:m(]cosi, Sl Bogini=_ g (2.19)
p ds p ds? PP I
This means that, for radial motion, Eq. (2.1) needs to be replaced by
Az 1
e (Ky(s) + Ky(s)) z, where K; = 7 (2.20)

Here K, replaces K and represents the focusing of a so-called combined function
magnet, and K} represents the geometric focusing. In a uniform field magnet the
K,(s) term vanishes. Note that the Kj 2 term appears only in the z equation;
unlike quad focusing, there is geometric focusing only in one of the two transverse
planes. With the newly-included K} term, the calculation of transfer matrices and
Twiss evolution in a bending magnet is just like the corresponding calculation in
a quadrupole. For inclusion in Table 2.1, the relation lo/p = A# has been used.
As with thick quadrupoles, for greater accuracy, the sector bend can be sliced into
slimmer sectors.

PROBLEM 2.6. For an ideal, horizontally-focusing, thick quadupole, the focusing
strength is K, (s) = — K, with K positive, and trajectory equations (2.1) become
d’z d?y
— =—Kz, and — = Ky. 2.21
ds? ' ds? Y ( )

Show that the transfer matrices through such a quadrupole of length L are given by

’1 .
M, — cos \./FL 7 Sin VKL 7 (2.22)
—vVK sin VKL cos VKL
‘l .
M, = COS}‘l VKL TR sinh VKL ' (2.23)
VK sinh VKL cosh VKL

PRrROBLEM 2.7. In Eq. (2.5), the transfer matrix M(so, s) was defined, with
matriz elements C, S, C', and S'. Find these elements for a drift section and show
that the Twiss function evolution through the drift can be expressed as

Jéj Cc? -2CS S? Bo
al=-cc' ¢S +5C" —-SS'| |ao]. (2.24)
v c'? —20'S' s'? Yo

PROBLEM 2.8. Show that Eq. (2.24) is also valid for propagation through a thin
lens.

PRrROBLEM 2.9. Show that Eq. (2.24) remains valid when applied to a drift fol-
lowed by a thin lens or, for that matter, to any sequence of thin elements and drifts.
Even a thick lens transfer matrixz can be composed by concatenating drifts and thin
lenses. It follows that Eq. (2.24) can be applied to an arbitrary linear transfer line.
[This problem is noticeably more difficult than the others.]
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2.6. Off-Momentum Behavior

2.6.1. Fractional Momentum and “Fractional” Energy. There is a mild
inconsistency in these notes, and in the accelerator field at large, concerning the
definition of the fractional longitudinal momentum/energy variable §. As with
many other quantities, there are both electron/hadron conventions and Ameri-
can/European conventions. Until quite recently the conventional meaning for 4, at
least in the electron world, was “fractional momentum deviation”. This definition
is especially appropriate for transverse dynamics because magnetic deflections are
inversely proportional to p. To “geometricize” lattice theory it is conventional to
“factor out” dependence on the total momentum pg from the transverse transverse
momentum components. We therefore define

6= %, (2.25)
Po
where Ap = p—pg. The purpose of the overhead tilde is to distinguish this definition
from the following alternate definition. For longitudinal dynamics, the fundamental
effect of the cavity is an energy change AE = E — E; (rather than a momentum
change). The fractional effect can be specified by

_AFE

poc’
For reasons of symplecticity the normalizing factor here has to be the same as
the normalizing factor for transverse momenta. This, and the factor ¢ inserted for
units convenience, account for the choice of denominator poc in Eq. (2.26). So it is

almost, but not quite, valid to describe § as “fractional change of energy”.
These two definitions are related by
5= AE Ap dE
PocC po d(pc)
Since these definitions differ only by the factor £y, which approaches 1 in the rela-
tivistic limit, the distinction is unimportant for fully relativistic accelerators. For
electrons this includes essentially all accelerators, but for practical hadron acceler-
ators 8 and 6 may differ appreciably.
For an introductory discussion of transverse lattice optics (such as the analysis
of toy lattices in the early chapters of these notes) use of § defined by Eq. (2.26)
introduces seemingly ad hoc factors of [y into all magnetic deflection formulas.
There are two ways to overcome this inconvenience. One way is to declare that all
formulas apply only to fully relativistic motion, where 8y = 1. Another way is to
use the variable § defined by Eq. (2.25). In the early chapters of these notes both of
these approaches will be taken. Not only will fractional momentum be expressed as
b (to make the formulas technically correct) but also the formulas will be assumed

5 (2.26)

= 0. (2.27)

to apply to fully-relativistic motion for which the relation § = 4 is valid in any case.
When advancing to accurate description of longitudinal motion in hadron ac-
celerators it will be important and necessary to consider these issues more carefully.

2.6.2. Dispersion. During acceleration the radial coordinate z and the off-
momentum coordinate ¢ are “coupled” by the dynamics. But at fixed energy the
momentum p = po(1l + §), for any particular particle, and therefore also ¢, can

be regarded as a constant parameter of that particle. It is traditional, therefore,
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for given 6, to find the the closed orbit .7:5(5), and, from it, to define “dispersion
function”? D(s) by
25(0) = D(s) 9, (2.28)
This equation is exact and does not assume that & is small, even though the right
hand side looks like the first term in a Taylor expansion.
The dispersion function is used to separate a general horizontal displacement
z into two parts:
z=x5+x5=D(s)0+zp. (2.29)

Since 4 is a constant parameter, the entire Courant-Snyder formalism applies to the
x3 evolution, provided the Twiss functions are worked out for the off-momentum
orbit. They should therefore be symbolized as a, B,’?. Nothing in this formalism
has required & to be small. But most lattices, in fact, have limited momentum
aperture which restricts 4 to quite small values.

As it has been defined, D(s)d is simply a particle trajectory and so also is D(s).
In the linearized formalism, a constant factor, such as the factor A(s), affects only
the amplitude, not the shape of the trajectory. All orbits in field free regions are
simply straight lines. This accounts for the dispersion entries for drift elements
in Table 2.1;

All that remains is to evaluate the kinks occuring in the dispersion function at
the locations of thin elements. A particle of momentum p = po(1 + 4), when in a
uniform magnetic field, travels in a circle of radius po(1+446). In traveling a distance
As such a particle suffers an outward angular deflection (relative to reference)

Ax' = As(i - l) ~ As 1 5. (2.30)
pPo P Po

The equation of the off-momentum orbit is obtained by adding this contribution to

Eq. (2.20);

1 1

R (- %) Ds) = - (2:31)

where a common factor 4 has been divided out.

This equation can be used to derive all entries in the “Dispersion” column of
Table 2.1. The interpretation of the D kink occurring at a bend magnet is not
quite as clean as the kink at the center of a thin lens. There is no really consistent,
way to let the bending magnet length go to zero while preserving its bend angle.?
As in FIG 2.4 one can approximate D by straight lines, with a kink at the center
of the bend. But letting the magnet length approach zero while holding the bend

2The off-momentum closed orbit deviation is traditionally expressed as D(s)d, where D(s)
is known as the “dispersion function”. To be consistent, when using 5, we have introduced a
modified dispersion function D such that the off: momentum orbit deviation is D(s)d = D(s)é.
This is the source of the tildes appearing on D in Table 2.1. As mentioned already, at the level of
accuracy justified for the toy lattices under study, the tildes on 4 and D should probably simply
be ignored. The mnemonic variable names in the toy lattice descriptions suppress the tildes.
(Also the electron-world notation eta, rather than D, is used for dispersion in the toy lattice
descriptions.)

3The so-called drift/kick split symplectic integration algorithm (discussed in Chapter 8) in-
volves the longitudinal splitting of bends into arbitrarily short intervals. But in that case the bend
per interval also approaches zero. Nevertheless, the bend/kick split, in which the orbit is formed
from circular arcs, avoids this sensitivity and is therefore a safer approach.
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angle fixed would entail also pg — 0. Clearly the result in Table 2.1 for the D kink
at a bend assumes D << py. This is amply valid in high energy accelerators. But
small accelerators require greater care. That is, D has to be obtained by actually
solving Eq. (2.31).

PrROBLEM 2.10. Eq. (2.31) is sufficiently general to describe both quadrupoles
and bending magnets and, for that matter, also combined function magnets. As-
suming D << pg in the case of bends, use Eq. (2.31) to derive all entries in the
“Dispersion” column of Table 2.1.

For off-momentum, horizontal particle propagation from an arbitrary starting
point sg to another point s it is useful to define a two-argument dispersion function
D(s, sg) With this function Eq. (2.5) generalizes to

x(s) C(s,s0) S(s,s0) l?(s, s0) x(s0)
wlgs) =|C'(s,s0) S'(s,s0) D'(s,s0) $'(§0) . (2.32)
) 0 0 1 )



CHAPTER 3

Thin Element “Toy” Lattices

3.1. Introduction

In preparation for investigating toy lattices with UAL, this chapter begins by
deriving analytic formulas for the simplest possible accelerator lattice, one made
up entirely of equal tune FODO sections. The analytic formulas are used to give
starting values for a first-cut design that will later be made more realistic and tuned
up by UAL. As already mentioned, a characteristic feature of accelerator lattices
is that it is fairly difficult to obtain an absolute design but that it is fairly easy
to make small changes around an existing design. Also, once a coarse but stable
design has been achieved, it is straightforward to adjust many of the parameters
to good accuracy. In the control room this is only practical if instrumentation is
available for measuring the quantity in question to good accuracy. In a computer
simulation the quantity can be calculated to arbitrary accuracy.

Once the parameters of a lattice to be studied have been established, more
detailed, more visual studies are to be performed using a graphical user interface
(GUI). This interface enables the user to adjust those parameters that are especially
important for the physical study being performed. Before getting to that stage, the
gross accelerator outline has to be established.

3.2. An Equal Tune FODO Lattice

We start with the eq_tune_fodo.adxf input file. When UAL is run, starting
from this file (or possibly from the file eq_tune_fodo.sxf derived from it) the
needed parameters are calculated using formulas given in this section and the results
are echoed for comparison. These formulas are coded into the eq_tune_fodo.adxf
input file using variable names similar to the names used here. A listing of the file
is in Table 3.1. Depending on the status of the ADXF parser, a different syntax for
element’s and/or sector’s may be required. Either these changes can be made or
the eq_tune_fodo.sxf variant used instead.

Our immediate purpose then, for a simple accelerator lattice, is to give pre-
scriptions by which the parameters of a first-cut design can be obtained. Later
the properties can be compared with the more accurate values that UAT calcu-
lates. This is intended to serve the pedagogical purpose of showing the determining
relationships.

There are various reasons analytic formulas can be inaccurate. Some of these
are: thick element effects, presence of errors, chromatic effects, and dipole focusing.
For various reasons then, one should not be surprised by disagreements in “abso-
lute” quantities at, say, the few percent level. The accuracy of “relative” quantities,
for example the change in some lattice parameter when some element, strength is
changed, can be almost arbitrarily accurate.

33
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TABLE 3.1. The eq_tune_fodo.adxf lattice file.

<?xml version="1.0" encoding="UTF-8"?><adxf xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="file:/home/ualusr/USPAS/uall/doc/adxf/adxf.xsd">
<constants>
<!-- nhalf*celltuni must be integer; number of "fullcell"s in "lattice" must be nhalf/2 -->
<constant name="pi" value="3.14159265359"/>
<constant wopi" value="2%pi"/>
<constant value="299792458.0"/>
<constant nhalf" value="20"/>
<constant name="scale" value="1/20"/>
<!-- tamper with scale at your own risk. with scale=1.0/20, the half cell length with
10 cells is 1 meter, circumference 20 m.To scale up the number of cells, change nhalf,
leaving scale fixed. This assumes
- momentum~ (nhalf) "2
- constant phase advance per cell and constant magnetic field
- bend per dipole = 2%pi/nhalf ~ 1d/momentum ~ lhalf/momentum
- therefore, lhalf “ nhalf -=>
<constant name="dipfrac" value="0.9994"/>
<constant name="quadfrac" value="0.0002"/>
<constant name="sextfrac" value="0.0001"/>
<constant name="nufrac" value="0.25"/>
<constant name="celltuni" value="0.20"/>
<constant name="lhalf" value="scale*nhalf'"/>
<constant name="1d" value="dipfrac*lhalf"/>
<constant name="1q" value='"quadfracxlhalf"/>

<constant name="1s" value="sextfrac*lhalf"/>
<!-- ! derived parameters -->
<constant name="deltheta" value="twopi/nhalf"/>
<constant name="nu" value="0.5%celltuni*nhalf + nufrac'"/>
<constant nam cellmu" value="twopi*nu*2/nhalf"/>
sby2" value="sin(0.5%cellmu)"/>
qp" value="sby2"/>
' value="sby2/lhalf"/>
kq" value="q/1q"/>
ql" value="q"/>
q2" value="-q"/>
kql" value="kq"/>
kq2" value="-kq"/>
qlp" value='"q%lhalf"/>
<constant name="q2p" value="-q*lhalf"/>
<!-- lattice parameters -->
<constant name="rat" value="(1.0+qp)/(1 -qp)"/>
<constant name="ratinv" value="1.0/rat"/>
<constant name="betax1" value="sqrt(rat)/q"/>
<constant name="betayl" value="sqrt(ratinv)/q"/>
<constant name="betax2" value="sqrt(ratinv)/q"/>
<constant name="betay2" value="sqrt(rat)/q"/>
<constant name="etal" value="(1.0+qp/2) * deltheta/q/q/lhalf"/>
<constant name="eta2" value="(1.0 -qp/2) * deltheta/q/q/lhalf "/>
<constant name="s1" value="ql/etal"/>
<constant name="s2" value="q2/eta2"/>
<constant name="ks1" value='"ql/etal/ls"/>
<constant name="ks2" value="q2/eta2/1s"/>
</constants>
<!-- define magnetic elements -->
<elements>
<marker name='"mk1"/><marker name='"mbegin"/><marker name='"mend"/>
<sbend name="bend" 1="1q" angle="deltheta"/>
<quadrupole name="quadhf" 1="1q" k1="kql"/>
<quadrupole name="quadvf" 1="1q" k1="kq2"/>
<sextupole name="sextl" 1="ls" k2="ks1"/>
<sextupole name="sext2" 1="1s" k2="ks2"/>
</elements>
<sectors>
<sector name="fullcell"
line="mkl quadhf sextl bend sext2 quadvf quadvf sext2 bend sextl quadhf mk1"/>
<sector name="lattice"
line="mbegin fullcell fullcell fullcell fullcell fullcell
fullcell fullcell fullcell fullcell fullcell mdnd"/>

<constant nam
<constant nam
<constant nam
<constant nam

<constant nam
<constant nam
<constant nam
<constant nam
<constant nam

</sectors>
</adxf>}
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2

FIGURE 3.1. An idealized, thin lens, FODO lattice, showing di-
mensioning and element strength parameters.

TABLE 3.2. Parameters of a pure, equal tune, FODO lattice.
nhalf is an even integer and nhalfx*celltuni also has to be an in-
teger. The final entry doesn’t really belong in this table; it is listed
only to call attention to the inconsistency between its symbols eta

and D.
Quantity variable name symbol expression
scale scale
number of halfcells nhalf n
halfcell (arc) length lhalf l
dipole length 1d lg lhalf*dipfrac
quadrupole length 1q l, lhalf*quadfrac
sextupole length 1s ls lhalf*sextfrac
dipole bend angle deltheta A6 27 [n
cell tune (int. tune part only) celltuni 2Wint /1
fractional ring tune nufrac Vfrac
integer ring tune Ving celltuni*nhalf/2
ring tune nu V = Vint + Vfrac
cell phase advance cellmu drv/n
halfquad strength q q
quad gradient kq q/l,
dispersion eta D

A partial glossary of translations from symbols in these notes to symbols in the
.adxf computer files is given in Table 3.2.

The fractions of 1half taken up by dipole, quadrupole, and sextupole, as shown
in the table. Note that the entire arc is filled with magnetic elements there are
no drifts. Of course this is impractical, but this is just a practice lattice. To
make realistically long quadrupoles and to introduce the inevitable drifts needed for
vacuum pumps, flanges, bellows, etc. length can be taken from the dipoles (which
are optically almost “inert”) provided that their bend fields are increased to hold
the bend angle Af constant. When some input parameters are changed (preferably
using an XML-aware editor) all other parameters are calculated self-consistently.
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But the scaling of some parameters, especially in “highly-tuned” lattices such as the
colliding beam lattice, large parameter changes are likely to make the lattice “go
unstable”. As well as being defined here and in FIG 3.1, many symbols are further
defined in comments in the input file. Lengths are scaled by the factor scale (which
does not otherwise occur explicitly in the analytic formulas given in these notes.)
In particular 1half is evaluated as scale*nhalf. This “builds in” the relation
between circumference and tunes in “typical” accelerators, having “typical” phase
advance per cell. Since this is almost certainly confusing, don’t worry about it and
don’t tamper with scale, at least initially. With scale=1.0/20, the halfcell length
with 10 cells nhalf=20 is 1 meter, and the circumference is 20 m

To a surprising extent accelerator lattices can be described purely in geometric
terms, without reference to the particle type or momentum of the particles being
accelerated. Still, for some of the modeling instructions, “dynamical” information
is required. At that time particle type and particle momentum/energy will have to
be assigned.

To a “zero’th” approximation, the generally circular nature of an accelerator
can be ignored in calculating the optics. In this approximation the quadrupoles
can be regarded as stretched out in a straight line and, for pedagogical simplicity
we start with this approach. This neglects a small focusing effect of dipoles. For
large rings with many bending magnets this is a small effect, but for small rings the
dipole focusing effect is appreciable. As it happens a ring with just ten cells and
circumference of 20 m is small in the sense that dipole focusing cannot be neglected.
To give a lattice with simpler properties, while still just analysing a single cell, nhalf
can be increased, for example by a factor of ten. For this reason the variable nhalf
has been set to 200 in the default version of lattice eq_tune_fodo.adxf,

For the formulas given here to be as accurate as possible, the quadrupoles
and sextupoles should be very short (compared to the half-cell length) since these
elements are treated as thin; ie. quadfrac << 1, sextfrac << 1. This restriction
applies to initial investigation only. Later the elements can be made realistically
thick and, if desired, be segmented for greater accuracy. The UAL environment
makes available various evolution “engines”. When using the original TEAPOT
thin element code, to preserve symplecticity, elements that are, in fact, thick are
modeled by segmenting them artificially into thin elements. Originally even ideal
bending magnets had to be treated this way for good accuracy. But by now UAL
analytic, thick element formulas are available in UAL for treating ideal bending
magnets directly as thick elements. If field nonuniformity needs to be modeled,
in combined function magnets for example, the old thin element segmentation is
employed.

Notationally subscript 1 identifies the start of the first half-cell (or equally the
end of the second half-cell, which is the start of the next cell) and 2 identifies
the mid-cell location (at the quad center.) The cell layout, dimensions and element
strength parameters are indicated in FIG 3.1. The difference in effect of a sextupole
between horizontal and vertical is more complicated than just switching the sign,
but we defer consideration of this.

In a later section a more general FODO description, permitting unequal quad
strengths |g1| # |¢2| and unequal tunes will be described, and many more symbols
will be introduced. The UAL filenames for that discussion are “general fodo.adxf”
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and “general fodo.adxf”. The reader will be expected to figure out the transla-
tions of symbols in that file without benefit of a glossary either because they are
mnemonic or because they are the same (or almost the same) as symbols defined
here.

3.2.1. Longitudinal Variation of the Lattice Functions. In the drift re-
gions between quadrupoles the S-functions are quadratic functions of the longitu-
dinal coordinate s, with the origin of s taken to be at location 1. At the quad
center the slope ' = dB/ds = —2a vanishes (by symmetry when the lattice is
made of repeated identical cells) but there are slope discontinuities related to the
quad strengths by

AR = —2g8(", AR = 2q8(", (3.1)

so the other Twiss parameters at the quadrupole exit are given by

o) = qp\"; of) = —gB"); (3.2)
. 1+q2(6(m))2 1 +q2(6(y))2
A B

In the region from 1 to 2 the S-functions are given by
BO(s) = B —20iYs +(Ys? BW(s) = B — 20 s +(Ys% (3.4)

By substituting s = I, it can be checked that 3(*) (1) agrees with Béw) as determined
by Eq. (3.16). The p-functions in the region from 2 to 1 can be obtained by
symmetry.

The horizontal dispersion function D, = D through the cell can be determined
similarly. (With no vertical deflections there is no vertical dispersion.) The slope
of the dispersion function vanishes at the quadrupole center, but there is a slope
discontinuity at 1, due to the quadrupole, so that

Dy, = —qD;. (3.5)

There is a slope discontinuity A8 at 1/2 due to the bend (which is being treated
as if concentrated at the center of the half cell). Using the fact that in drifts and
bends the dispersion function propagates like a particle displacement, D5 can be
obtained from D; and then D; can be obtained from [)2;

o _ I - - _ !

Solving yields
~ 1+ ql/2)A8 ~ 1—ql/2)Af
p, = LFd/AA0 5 | q2/) ,
q?l
with the useful consequence that an average, or “typical” value of the dispersion

3.7
o (37)
function is

_ Di+D, A

- s, 3.8
typ 2 q2l ( )
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3.2.2. Establishing Quadrupole Strengths. Transfer matrices for a quadrupole

of strength ¢ are
@_ (1 0 w_ (10
M\ = <—q 1) , MW = (q 1) (3.9)

Note that an explicit negative sign appears with g where it enters the horizontal
transfer matrix; this means that positive ¢ corresponds to focusing in the z-plane
(horizontal). The cell layout was shown previously. With quad locations labeled
1 and 2, the quadrupole strengths have been set equal and opposite, ¢ = ¢ and
g2 = —q < 0. With the choice ¢ > 0, location 1 is a horizontally focusing point.
A bend through angle A# is assumed to occur at the center of each half cell, and
sextupoles of strength S; and S are located immediately adjacent to the quads.
In the y plane there are no dipole deflections and the quadrupole sign reversals are
indicated. The = transfer matrix 2 < 1 is

@ _ (1 0 1 1 1 0\ _ (1-4ql l
M _<q 1) (0 1)\—q 1)~ \=¢*l 1+44ql)" (3.10)

As usual the matrix furthest to the right corresponds to the element furthest to
the left; the notation 2 <+ 1 and the order of subscripts on Ms; are intended to
represent this. There is a similar matrix for 1 « 2, obtained by reversing the sign
of g. For the full cell 1 « 1,

M — <1+ql l ) <1ql l ) B ( 1—24¢%12 2l(1+ql)>
= —?l 1-gql —¢?l 1+ql) ~ \-2¢%1(1 —ql) 1-2¢%7)"
(3.11)
For a periodic lattice made by repeating these cells, this matrix can be written in

“Twiss” form, with a vanishing by symmetry, which is consistent with the 11 and
22 elements being equal;

(z) (2) qim (@)
M = prismnpi) (3.12)
—sin " /B cos py”

The subscript 1 pq indicates that it applies to one cell. Equating coefficients and
including y motion by switching the sign of ¢ leads to

Cy = cos p{™) = cos p{¥) =1 — 2¢°1°. (3.13)
This leads to a simple relation among ¢, I, and uﬁ“) = ugy) = l1;
sin % = ql. (3.14)

The “tune advance per cell” is v; = §. If an entire ring is formed from n half-cells,
the tune of the ring is

V = Vipt + Vfrge = %1/1 (3.15)

The B-functions are obtained by equating off-diagonal elements in Egs. (3.11) and
(3.12).

1w [1-ql1
N S S =,/ —= = 3.16
61 1—ql q: 62 1+ql q: ( )
w_ [1=ad1l o _ [1+41
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Note the identities
BT 14q BY  1-gl

NS T 5 T S T (3.17)
g 1—ql’ W 144l
Also a geometric mean or “typical” S-function value is
z) p(z 1
Biyp = \/55 )Bé )= \//3§”)/3§”) =-. (3.18)

q
The B-functions calculated by UAL are plotted in FIG 3.2, for nhalf=20. To simplify
the calculations (by reducing the importance of dipole focusing) a larger value
nhalf=200 is suggested for the following exercises.

TuToRIAL 3.1. To practice correlating computer variable names with mathe-
matical symbols, fill in the remaining entries in column 2 of the Tutorial Worksheet.

TUTORIAL 3.2. After running UAL with the eq_tune_fodo input file, fill in the
blanks of columns 4 and 5 of the Worksheet. Certain entries, such as lengths, need
not be entered, as they are obviously the same in all columns. Lattice functions,
such as B, are to be obtained both using the numerical readout at the mouse position
in the GUI application (to be entered in column 4) and from the file the GUI can be
instructed to generate (column 5). Except for accuracy the entries in these columns
are supposed to be redundant.

TUTORIAL 3.3. The purpose for this exercise is to practice editing and pro-
cessing input files but the result will also be useful in making the next simulation
agree more accurately with the theoretical formulas (by reducing the importance of
dipole focusing,) Using the oxygen editor, edit the input eq-tune_fodo.adxf file
to change nhalf to 200. It is necessary to include the corresponding number of
fullcell elements in the lattice line. This change will have reduced the bend per
dipole magnet by a factor of 10. Process the file using the instruction

~/TOY-LATTICES/xs1t/SCRIPTS/process-qfile eq_tune_fodo

remains stable but large enough that the tabular entries in the “modified values”
column differ from entries in the “sample value” column by a numerically significant
amount. Save these data for a problem in the next section (or plan to regenerate
them later.)
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TaBLE 3.3. TUTORIAL WORKSHEET I. Copy as needed.

| variable name | symbol | sample value | UAL plot | UAL file | modified val | UAL value |

scale 0.05
nhalf 20
1s 0.0001
1q 0.0002
lhalf 1.0
1d 0.9994
celltuni 0.2
nufrac 0.25
deltheta 0.314159
q2 Q2 -0.70710
ql 0.70710
s2 So -1.7409
s1 Sy 0.83144
nu
cellmu 1.41371
betax1 3.3400
betax?2 0.70984
betayl 0.70984
betay2 0.70984
etal 0.9867
eta2 0.5030
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3.2.3. Chromaticity Compensation. Nothing has been said so far about
the sextupoles present in the lattice. Their purpose is to correct chromaticity, which
quantifies the dependence of tune on momentum. Chromaticities for the two planes
are defined by

Q=% g = (3.19)

dé dé

The symbols x, and x, are also often used for chromaticities. The fundamental
cause of chromaticity is the inverse dependence of quad strength on momentum.
An off-momentum particle passing through a quad of strength ¢ can treated, to a
lowest approximation, as being on-momentum, but with a focusing perturbation of
strength —dg. But there is also a shift of the off-momentum orbit which, if there is
a sextupole superimposed on the quad, also provides a focusing perturbation. The
field dependence of a sextupole magnet is derived in Chapter 8. For now all that
is required is that a sextupole os strength S causes horizontal deflection equal to
Sx? /2.

In order to contribute no chromaticity, the combination of a sextupole of
strength S; superimposed on a quadrupole of strength ¢ must be arranged to sup-
press the term proportional to dz in the deflection

q(1—0)x + %S] (z 4+ D16)?, (3.20)

and a similar relation can be written at location 2. Assuming that “nominal”
sextupole strengths should correspond to zero chromaticity, this leads to the values

S =2, g5,=22 (3.21)
D, D,

Note that the sextupole strengths are unequal even though the linear optics is the

same in both planes. The sextupole located at a vertical focusing quad has to be

stronger because the horizontal dispersion is less there. The chromatic compensa-

tion power is proportional to the quadrupole field at a displacement value D4, a

factor which is smaller at vertically focusing quads.

3.3. A Universal, Unequal Phase Advance FODO Lattice

3.3.1. The Twiss Parameters in Terms of the Quadrupole Strengths.
Formulas in this chapter relate to the file general fodo.xsl. Variation from what
has gone before includes allowing the horizontal and vertical tunes to be differ-
ent, compensating for dipole focusing, and defining parameters needed to analyse
longitudinal motion.

In practice the capability to have greatly different horizontal and vertical tunes
is often not needed. Though the fractional tunes are almost always separated in
functioning accelerators, the integer tunes are often close. In this case the separa-
tion in fractional tunes can usually be achieved as a perturbation away from the
symmetric tune situation. (This operation can be performed using the tunethin
instruction of UAL.) Nevertheless, for greater flexibility, it is convenient to have
a closed form, unequal tune, basis lattice. Transfer matrices for a quadrupole of
strength ¢ were given in Eq. (3.9). We now introduce unequal quad strengths ¢
and ¢o, labeled 1 and 2, without yet specifying which is focusing in which plane.
Recall that positive ¢ corresponds to focusing in the z-plane (horizontal). One of
g1 and ¢o will be positive, the other negative. A bend through angle Af is assumed
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to occur at the center of each half cell, and sextupoles of strength S; and S are
located beside the quads.

The z transfer matrix 2 < 1 is

10\ (1 1 10 1—aql !
M‘( ) _ _ 3.22
2! <f12 1) (0 1) (lh 1) (‘11 —q2+qql 1- ‘J2l> » (322)

and a similar matrix for 1 < 2 is obtained by switching ¢; and g». The full cell,
1 « 1, z-transfer matrix is

M@ 1 —qol ! 1—aql !
U \-gr—@+aepl 1—qgl) \—¢ —@+qaepl 1—g¢l

B ( 1— 211 — 2ol + 2q1 o1 L e
20—q — @+ ael)(l—ql) 1-2¢1—2¢pl+2q¢l*)

For a periodic lattice made by repeating these cells, this matrix can be written in
“Twiss” form, with a again vanishing by symmetry;

(w) (@) gipy o, ()
mip = 0 Frisinuit) (3.24)
—singy” /B cos py”

Equating coefficients and generalizing to include y motion by switching the signs
of g1 and ¢ leads to
(=)

C®) = cos Ngm) =1-2ql — 2gol + 2q1g21?, sin? N]T =ql + ¢l — q1gol?,
(3.25)
W) 'u(y)
W = cos w? = 142011 4 2gal + 2q1qul?,  sin? ]T = —qil — @l — gl

The S-functions are obtained similarly;

VooVl Vel + gl el [TV 1-C@) 1*Q1lsin#’
5w —y 1+Q2l\/ 1 _ T+agl [ 2 [14ql 1
! T+ @l V —qil — ¢l — q1ga1? l+qlV1-CW 1+q1l5in£:
2
(

3.26)

V1@V al+ @l qel?  \[1-@lV1-Cc@ 1—qol g "
Sin 5
(v) L+al 1 1+ aql 2 L+ql 1
62 =l =1 = O
L+ gV —qil — g2l — qugal? I+@lV1-C0W L4 qal 1y

1
2

Note the simple identities,

VBB = —, BB = —— (3.27)

. h .
sin 5 sin

and
31('1) _ 1—qal
Tl ) el

(3.28)
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Often p*) and p¥) are approximately equal. If they are exactly equal, the formulas
simplify considerably. Taking point 1 to be a horizontally focusing quadrupole
location we define

G = —q2 = |Q\7 (3-29)
we obtain
cospr = 1—2|g|%%,  sin % = |qll, (3.30)
as well as the relations,
o _ 14l 1 ey [1—all 1
B = =, B = —, 3.31
VAT T Tl (331

) _ [1+lgl 1

. 1—|gll 1 ()
gy = =AY 8 o
! ? 1—qll |q]

‘ — 6(95)
2 1+ qll |q] !

Note that these formulas agree with Eqgs. (3.16), which led to identities (3.17) and
(3.18).

3.3.2. Longitudinal Variation of the Lattice Functions. Referring again
to Table 2.1, in the drift regions between quadrupoles the S-functions vary quadrat-
ically with s. At the quad center the slope 8’ = df/ds = —2« vanishes, but there
are slope discontinuities related to the quad strengths by

so the Twiss parameters at the quadrupole exit are given by
o) =B, alf) = s, 3.3
S 1 g (B1")? MO g2 (B")?
1+ = T 1+ —
B B
In the region from 1 to 2 the S-functions vary as
B (s) = B — 20{Ys +1Ys? V() = B — 20 s +4[)s% (3.34)

The slope of the horizontal dispersion function D(s) vanishes at the quadrupole
center, but there is a slope discontinuity at 1, due to the quadrupole, such that

Dy, = —qDy, (3.35)
and a slope discontinuity A at 1/2 due to the bend (which is being treated as if
concentrated at the center of the half cell). As a result, the value of D, is

. _ _ l - - - l
D2 :D] —q]D]l+A0§7 D] :Dz—qZDzl+A0§7 (336)

where the same argument has given the second equation also. Solving Eq. (3.36)
yields
- 1-— 2)IA - 1-— 2)IA
b~ (1L=®U2IA0 5 (1—ql/2)1A0

. , = - (3.37)
sin? % sin? %
For the case of equal tunes as in Eq. (3.29) these become
- 1 1/2)IA0 ~ 1—|q|l/2)IAG
B (L2180 5 (1= qll/2) (3.38)

q|1? ’ q|1? ’
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with the useful consequence that
Di+Dy A
2 g
Twiss function variation for the general fodo lattice are shown in FIG 3.3.

(3.39)

3.3.3. Setting the Tunes. One can adjust the strengths ¢; and g2 to achieve
desired values for the phase advances u(*) and p(¥). Defining the “average” quantity

S? = %(sin2 # + sin? #) (3.40)
and the “difference” quantity,
A(S?) = sin? # — sin? “;T) , (3.41)
Egs. (3.25) become
al+ gl = —A(SH/2, qlgl =82, (3.42)
These lead to the quadratic equation
() + %A(Sz)q]l - 82 =0, (3.43)
with the roots being
ail = /57 + (A(S2))2/16 — A(S2) /4. (3.44)

The sign choice depends upon which of the two quads is horizontally focusing for
FODDOF ¢; > 0,¢2 < 0, for DOFFOD ¢; < 0,92 > 0.
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3.3.4. Chromaticity Compensation. In order to contribute no chromatic-
ity, the combination of a sextupole of strength S; superimposed on a quadrupole
of strength ¢; must be arranged to suppress the term proportional to dz in the
deflection

~ 1 o~

Assuming that “nominal” sextupole strengths should correspond to zero chromatic-
ity, this leads to the values

S] :(i—]; 52:2
D, D,

For equal tunes the same formulas have been derived earlier.

(3.46)

3.3.5. Compensation For Dipole Focusing. The tune shift caused by
a small quadrupole perturbation. A result that is so important in accelerator
physics that it deserves to be called “the golden rule” is that a quadrupole pertur-
bation of strength Ag, at a point in the lattice where the beta-functions are 8, and
B causes tune shifts given by

1 1
Ay, = EﬂzAQ: AVy = _EByAq- (347)

For positive ¢ the horizontal tune is shifted to higher value. The same quad shifts
the vertical tune to lower value.

Use of the golden rule to compensate for dipole focusing. There is a
focusing effect due a dipole, say a sector bend, that shifts the horizontal tune.
Especially in small rings, compensating for this shift improves agreement between
desired and achieved tunes. Assume that the magnet lengths satisfy

la+l,+1,=1. (3.48)

The effective focusing strength of the dipole (it acts only in the horizontal plane)
is

Af)?
dd = ( ] ) . (349)
d
This quadrupole perturbation shifts the tune by an amount
) = ) 5 Ul
Av@ = o s — L Ap)2 . .
v dn Qdﬁ 2,/{( ) sin p(@) (3 50)

2

where 3(2) has been approximated using Eq. (3.27) and ¢4 taken from Eq. (3.49).
This tune shift is necessarily positive. To compensate for this perturbation, which
to this point has been neglected, we apply changes Ag; and Agy to g; and g2,
applying the condition that both total tune shifts vanish yields

4 Av”) =0 =0q1 8" + Mg + qaB@), (3.51)
47TAU£y) =0=-Aq B§y) - A(DB;?J)-

Solving these equations yields

Aqi = —qa— o An= qu1ﬁ- (3.52)
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3.3.6. Orbit Length and Transition Gamma. The general fodo.adxf
file also includes calculations that are primarily of importance for longitudinal dy-
namics. Description of these calculations is deferred until section 6.3 in chap-
ter 6, which deals with longitudinal dynamics. Since that material does not de-
pend on anything not covered so far, the reader wishing to fully understand the
general _fodo.adxf file could turn to it next.

SIMULATION 3.2. This simulation continues to use the eq_tune_fodo lattice. It
is deferred to this location because Eq. 3.47 is needed for the analysis. Continuing
an earlier simulation, change nufrac by an amount small enough that the lattice
remains stable but large enough that the tabular entries in the “modified values”
column differ from entries in the “sample value” column by a numerically significant
amount.

SIMULATION 3.3. For the input quantity q and the output quantity v, by per-
forming the subtractions alluded to in the previous problem, evaluate dv/dq both for
entries from the analytic column and from the UAL column. If the values differ
significantly it may because you have changed parameters by too great an amount
for “linearized” formulas to be valid.







CHAPTER 4

Instrumental Analysis of 1D Particle and Bunch
Motion

NOTE: This chapter introduces the distinction between idealized single particle
motion and the motion of the centroid of a bunch of particles (which is the only
thing that is measurable in practice). The methods developed are intended primar-
ily to be applied to bunch centroid motion. In spite of this, only the transverse
simulator, which tracks one, or a few, particles individually, will be used for simu-
lations described in this chapter. This can be regarded as testing the data-processing
algorithms in simple cases before applying them later in more realistic, more com-
plicated, cases. In Chapter 7, the decoherence simulator will be applied to the
dynamics of bunch centroid motion.

4.1. Introduction

The lattice that will mainly be used for simulations in this chapter is called
collidermon (in either .adxf or .sxf) form. The investigations have nothing
whatsoever to do with colliding beams. The only reason for using this lattice is that
it has regions of very small and very large g-function values. This makes it more
challenging to extract the S-functions using beam-based methods. The _mon in the
name indicates that multiple BPM’s have been distributed around the ring. These
are the only locations at which particle positions are considered (by the simulation)
to be known. But, to make the lattice file handier for tutorial purposes, BPM’s
have also been placed at points which would be physically inaccessible, for example
at the intersection points, where elementary particle detectors would occupy the
space.

The Twiss functions can be calculated for the collider mon lattice, using meth-
ods described in Chapter 3.3. The results are shown in FIG 4.1. One of the tasks
of this chapter will be to use BPM’s to measure these functions. This will be an
example of the so-called “model independent analysis”, in which properties of the
lattice are obtained without relying on the design model of the lattice. Of course
the beam based measurements will only be simulated here.

This chapter discusses the instrumentation needed to measure beam properties
in an accelerator, and the methods employed to process this data. It might be
thought that there would be no need for such experimental apparatus in a simula-
tion context that is entirely theoretical. But the essence of simulation is to replicate
actual conditions and to acquire information about the beam using methods that
are practical in a control room. Instrumentation issues determine what is available
and what is useful.

49
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FiGurg 4.1. Lattice functions for the collider_ mon lattice, ob-
tained using the matrix method of Chapter 2.

Ideal accelerators have only linear, error free elements and highly collimated,
monoenergetic, low current beams, that can be measured with noise-free instrumen-
tation. The behavior of such ideal machines can be investigated by studying single
particles. None of these idealizations is fully applicable to real accelerators and
most of the deviant features are quite difficult to handle by purely analytic calcula-
tions. The existence of these non-ideal features is perhaps the greatest justification
for investigation by simulation.

The presence of electronic noise limits the accuracy of beam detector mea-
surements. The main tool available for de-sensitization from noise is the use of
Fourier-like methods. These permit the coherent superposition of the effects of
multiple measurements for which the effects of noise tend to average toward zero.
Analysis of such methods is the subject of this chapter.

Since the sources of electronic noise are rarely well understood, the noise level
in a simulation has to be represented by one or more empirical coefficients. Even
so, for single particle motion, one can, in principle, make the noise negligible by
extending the measurement over long enough times.

Unfortunately, many beam detectors respond only to centroid motion of the
beam bunches being studied. For low emittance beams this centroid motion is
quite accurately the same as single particle motion. In particular the Courant-
Snyder invariant of the bunch centroid is, in fact, nearly invariant. But bunches of
finite size in nonlinear fields suffer from effects variously known as filamentation,
decoherence, and Landau damping, that cause the centroid to exhibit damping-like
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FIGURE 4.2. Time domain and frequency domain signals from a
point reference particle.

behavior. The fundamental physics underlying these effects is relatively well known
and hence is easily and reliably incorporated into simulation. Filamentation and
decoherence is analysed in Chapter 7.

The presence of centroid “damping” means that the single-particle-like motion
of a bunch survives for only a limited number of turns. Averaging over times large
compared to this is counter-productive as it increases noise without enhancing the
signal. This makes it important to attempt to maximize the information extraction
from a limited number of terms. A method known as “Principle Component Analy-
sis” (PCA), while effectively subsuming Fourier methods, takes this approach. This
method, which UAT. uses to analyse one-dimensional motion, is described in later
sections of this chapter.

Because the PCA method makes no use of Hamiltonian features, i.e. symplec-
ticity, it is somewhat immune to the presence of centroid damping. But to make
progress in the analytic treatment of coupled motion, i.e. two or three dimensional,
symplectic features seem to be required. Analysis of coupled motion within UAL is
the subject of a later chapter.

4.2. Spectral Analysis of BPM Signals

4.2.1. Spectrum of Reference Particle. Let s stand for the arc length
coordinate in a circular accelerator of circumference Cy. A particle of charge e,
traveling at speed vg, on the central orbit passes a fixed point (call it s = 0) at
regular intervals of time of length Ty = Co/vg. The line charge density, per unit
length, corresponding to a single passage of the particle at ¢t = 0, is

e e

5(t) = Za(). (4.1)

A(t) = ed(s) = W ~

Here X is that quantity which, when multiplied by a spatial interval ds, yields the
charge contained in range ds. Adding all the passages yields

A1) = Ui i St — ITy). (4.2)

l=—00

This is a “comb” of equally-spaced, equal-strength lines in the time domain. A
fast, digitized, beam current monitor (BCM) would record the pulse heights of
the sequence of pulses shown on the left part of FIG 4.2. This is referred to as
longitudinal “turn-by-turn” data.
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The same information can be represented analytically, as a sum of terms having
sinusoidal time variation, using the easily derived Fourier series relationship

[ee]

= 1 2mnt
> (s(tfz:ro)_?0 > cos T (4.3)

l=—00 n=-—oo

Defining a “fundamental” oscillation coswgt where wy = 27 /T}, the current signal
can be regarded as the superposition of “harmonics” of the fundamental,

e

At) = 208 nwot. 4.4
(t) T > cosnwg (4.4)

n=-—oo

As a check, calculation of the charge in the complete circumference (using the n=0,
DC term) correctly yields ACy = e.

The Fourier series Eq. (4.4) can be replaced by an integral over a frequency
variable w, that is, as a Fourier integral, by representing the coefficients by 4-
functions;

At) = Cig -[m dw n;m d(w — nwg) coswt = /700 dw A(w) coswt, (4.5)
where the frequency domain spectral function A(w) is given by
Aw) = c% n;m 8(w — nwo). (4.6)

This shows that the signal is also a “comb” of equally spaced equal strength in the
frequency domain. Pictorially the situation is shown in FIG 4.2. Processing the
BCM signal with a spectrum analyser would exhibit this spectrum. Typically a
bandwidth less than wg would be exhibited and only one line would be visible.

4.2.2. Spectrum of Gaussian Bunch. The line density of a bunch contain-
ing unit charge, having Gaussian profile with r.m.s. length oy is

A ! exp( Uth) /Oo dw A(w) coswt here A(w) = exp( afw2)
=—— exp(—2) = w A(w) coswt, where w) = exp(——=—-).
V2mo, P 202 J l P 2v3

(4.7)

Accounting for all beam revolutions, the time domain formula for the line charge
of a bunch containing N charges e is

Ne <« v (t — 1Ty)?
A= exp(—=90~ 9/
V2o l;m p( 202

This can be regarded as the convolution of distributions (4.2) and (4.7). According
to a theorem of Fourier analysis, convolution in the time domain corresponds to
multiplication, in the frequency domain, of the two transforms. As a result

). (4.8)

Ne o

Aw) exp(— ;:é ) S 8w - nw). (4.9)

Covo

Pictorially the situation is shown in FIG 4.3.
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FIGURE 4.4. Spectrum of BCM signal due to a single particle ex-
ecuting longitudinal oscillations.

4.2.3. Spectrum of a Longitudinally Oscillating Particle. Consider a
particle that is oscillating longitudinally (relative to the reference particle). The
particle’s arrival time at the BPM is modulated away from its nominal value by a
sinuisoidal factor oscillating at the synchrotron oscillation frequency wg, and with
longitudinal amplitude vTs. Adjusting the time origin so that the initial oscillation
phase is zero, substitution into Eq. (4.2) yields

e oo
A= P~ D 6t 1Ty — Ty coswyt). (4.10)

l=—oc

This “phase modulated” expression can be expressed as a sum of harmonics of the
fundamental, along with “synchrotron sidebands” that are displaced away by small
integer multiples of the synchrotron frequency. The coefficients in this expansion are
proportional to Bessel functions J,,(nweTs), where m = 0,+1, £2... are labels for
the sidebands, and n = 0, £1, £2... are labels for the harmonics of the fundamental.
Typically the “modulation depth” T, /Ty is a very small number, so the arguments
of the Bessel functions are very small compared to 1, at least for small n (i.e. low
harmonics.) In this case, the leading term, with coefficient Jy(nwTs) is dominant,
which makes the sidebands insignificant. At large values of n the sidebands become
relatively more important. The situation is illustrated in Fig. 3.
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FiGUrE 4.5. Cartoon showing spectrum extracted from single
plane BPM. Due to coupling both horizontal and vertical tune
lines are visible. There is aliasing to all integer tune ranges as well
as reflection above and below integers.

4.2.4. Spectrum of a Transversely Oscillating Particle. For a particle
undergoing pure horizontal transverse oscillations, the transverse amplitude zg =
V/Bax€s cos(vzwot) register as z-dependent currents A ;

M — i(l :I:A\/emﬁz cos(v, wot ) i 5(t —1Ty), (4.11)

Vo 2R

l=—0o0
in current monitors symmetically left and right of the beamline. A beam position
monitor (BPM) consists of such a pair of pickups, which produces a signal propor-
tional to = as the difference of the two signals in Eq. (4.11). In Eq. (4.11), with
R being the beam pipe radius, the BPM sensitivity A is a dimensionless number
of order 1. Performing the subtraction, and substituting from Eq. (4.11), yields a
“transverse signal”;

A -
%m €20z co8(vzwot) Z cos(nwot)

n=—od

)\+*)\,:

e A

TV V €z Z (cos ((n + ve)wot) + cos((n — UI)th)). (4.12)

n=-—oo
One sees that the betatron spectrum consists of identical sidebands, symmetrically
above and below all revolution harmonics. In the presence of coupling both hori-
zontal and vertical lines are visible in the same plot, for example as in FIG 4.5. In
the presence of nonlinearity even more spectral lines are observed.

The horizontal and vertical tune specta for the collider_mon lattice are shown
in FIG 4.6. Since this lattice is ideal, and therefore has no z, y coupling, no “wrong
plane” lines are visible. There are however hints of lines of unknown origin, for
example at v, = 0.34. Lines like this will be discussed in Chapter 8. Note, however,
with the vertical scale being logarithmic, the amplitudes of thes lines are extremely
small.

4.3. Discrete Time, DFT Analysis

The discrete Fourier transform (DFT)! is a numerical tool that can be used
to determine the coefficients in continuous time expansions like Eq.(4.12). This

1A common terminology refers to all discrete Fourier methods as FFT (fast Fourier transform)
methods. This is not quite appropriate as the FFT is just one efficient algorithm for evaluating
DFT’s
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FiGureE 4.6. Horizontal and vertical tune spectra for the
collider_mon lattice.

procedure entails sampling and digitizing the signal to be analysed at discrete time
intervals. For beam detectors in circular rings it is natural to choose the revolution
time Ty as the digitization time. Especially for transverse oscillations, since there
are many oscillation periods per revolution period, this represents gross under-
sampling. This causes “aliasing” in which oscillation at one frequency is detected
at another frequency. For the relatively simple spectra under discussion this aliasing
does not destroy the usefulness of the spectra and the aliasing is little worse than
a nuisance. This will not be further discussed here.

The “natural” domain of the DFT is complex numbers. Wanting to analyse
real functions, it is economical to transform two real functions at the same time.
Normally one has more (usually many more) than one BPM to analyse, and it is
quite satisfactory to process them in pairs. The fundamental DFT formula starts
from two sets, each containing an even number N of real samples, z(n) and y(n),
of the two functions to be transformed, formed into a single complex sequence
z(n) = x(n) +iy(n), n = 0,1,...,N — 1. It does no harm to think of this as a
complexified read out of horizontal and vertical positions at the same location on
turn number n, but the DFT process keeps the 2 and y sequences separate, so the
sequences could just as well have come from different BPM’s. The “transform”

consists of N complex numbers Z(n), n=0,1,,..., N — 1 given by
N—1
1 121k
Z (k) = N nz::o z(n) exp ( ! Rn) (4.13)

The output range can be regarded as a fractional tune range from 0 to 1, binned
into tune intervals of width 1/N. (The integer part of the tune is suppressed by
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the aliasing mentioned earlier.) The N values of Z(k), k = 1,2,...,N, can be

interpreted as the binned spectral content of the function represented by samples
z(n). The inverse transform, the IDFT, is given by

N—-1 .
Ik
il ”) (4.14)

z(n) = Z Z(k) exp( N

k=0
Essentially the same program can be used for either DFT or IDFT because, with
* indicating complex conjugation,

z=NDFT{X*})*. (4.15)
In this form the Fourier transforms of z and y are “mixed together”. To separate

them: suppose that X (k) and Y (k) (both complex) are the transforms of x and y,
(both real). That is

z(n) & Z(k), =z(n) o X(k), yn) o Y(k). (4.16)
These show that '
X (k) = %(Z*(N—k) +Z(n)), Y(k)= %(Z*(N—k) —Z(n)). (4.17)

There is redundancy in these relations. It can be shown that the Z(n) values are
symmetric about n = (N — 1)/2, which is to say about fractional tune 0.5. This
further restriction of the output tune range, already visible in FIG 4.5, is another
aliasing effect. Because of this symmetry there is no point in exhibiting spectrum
outside the tune range 0 < v < 0.5 as there is no extra information outside this
range.

PROBLEM 4.1. For this and the following problem you are to use any computer
language you have access to that is capable of handling matrices; for ezample MAT-
LAB, MAPLE, or a spread sheet. For pedagogical purposes a programmable hand
calculator is ideal, even though it may be too slow at processing large matrices in
production usage. In the statement of the problem (and similar problems elsewhere
in the teat), example code valid on an HP calculator will be used to spell out the
task. Even for someone unfamiliar with this calculator should find the code simple
enough to serve as pseudocode or to be convinced that coding from scratch is not a
formidable task.

Consider a 4 x 4 once-around transfer matriz M given by

0.231876 -0.029239 -0.031317 0.000000
32.36138 0.231876 -0.822722 0.000000
0.000000 0.000000 1.000000 0.000000
0.822722 0.031317 -0.012908 1.000000

Key it into the calculator, or whatever program you are using, as a variable M.

For a starting displacement Xy such as g = 1,25 = 0,y0 = 1,y = 0, i.e. in
the calculator [1 0 1 0], iterate the matrix multiplication X;11 = M X; NTR=16
times to generate simulated data at a single “BPM” as sample data to by subjected
to FFT analysis analysis in the next problem. (NTR can be any integer power of 2.)
For example, on an HP calculator, the following code defines a program named $XY
(following the convention that program names start with $ signs). Starting with
the initial condition vector on the stack, this code generates x + iy for N turns and
stores the sequence of compler numbers in variable TRK. The actual code appears
between the << and the >> signs.
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$XY: << DUP DUP 1 GET SWAP 3 GET R->C

1 N 1 - START SWAP M SWAP x*

DUP DUP 1 GET SWAP 3 GET R->C

NEXT

SWAP DROP N ->ARRY ’TRK’ STO >>
For comparison with a “canned” FFT routine, it is convenient to have, say, a pure
x(n) sequence, which can be obtained from similar code;
$X: << DUP 1 GET 1 N 1 -

START SWAP M SWAP * DUP 1 GET NEXT

SWAP DROP N ->ARRY ’TRK’ STO >>
Use the FFT provided by the software you are using to calculate the DFT of the
sequence TRK. Then, as a check, confirm that IFFT restores the original sequence.

PRrROBLEM 4.2. Using FEq. (4.13), find the DFT of the turn-by-turn data generated
in the previous problem. Then calculate the IDFT and confirm that the result agrees
with the original data set. On the HP calculator the matriz of coefficients needed
in Eq. (4.13) can be calculated and stored in matriz EJK using
$EJK: << N N << -> j k

<< (0.0,1.0) NEG 2 * PI * j * k * N / EXP N / >>

>>

LCXM ’EJK’ STO >>
and a program to produce the FFT of the array on the stack is
$DFT: << EJK SWAP * >>
Finally, for the IDFT
$IDFT: << CONJ EJK SWAP * CONJ N * >>
For a value such as N=16 check that the transform evaluated using $DFT agrees with
the FFT calculated in the previous problem. Compare the time taken by the FFT
program provided by the software you are using.

4.4. PCA, Principle Component Analysis

4.4.1. Introduction and Motivation. As stated by Jolliffe[9], “The central
idea of principal component analysis (PCA) is to reduce the dimensionality of a large
number of interrelated variables, while retaining as much as possible of the variation
present in the data set”. The method can have the heavily statistical emphasis of
drawing maximal inference from minimal data sets, or a more purely descriptive,
algebraic emphasis on the economical representation of multiple observations by
a minimal number of parameters. The diagnosis of an accelerator based on BPM
signals is made difficult both by the inherent complexity of the data and by the noise
it contains. With the former being judged the more fundamental complication, UAL
stresses the algebraic aspect of PCA rather than the statistical. Though the field
errors that degrade accelerator performance were random at the time the accelerator
was being constructed, they do not contribute stochastically to the sorts of data
sets to be investigated, as they are mainly assumed to have been “frozen in” when
the accelerator was built.

One way of viewing the spectral analysis of a multiturn BPM signal described
in previous sections is that a large number of measurements z(n) (one for each of
N turns) has been distilled into a small number of spectral amplitudes. If the tune
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happens to be an integral multiple of 1/N, the entire data set is characterized by two
numbers, the amplitudes of sine-like and cosine-like oscillations. All other spectral
amplitudes are zero, or are at least very small relative to the dominant lines. Even
for arbitrary tunes only a few bins have appreciable amplitudes. Taking Eq. (4.13)
as example, this distillation has been accomplished by generating numbers that are
linear superpositions of data values z(n) with (theoretically derived) coefficients
exp(—i2mkn/N). Since there were grounds for expecting different BPM’s to exhibit
the same tune lines their data sets could be subjected to identical analyses.

If the individual BPM signals were not expected to show essentially sinusoidal
variation the Fourier transform procedure would not be expected to work so well.
Some extraneous effects merely exhibit the power of Fourier transforms. For exam-
ple noise tends to average to zero. BPM misalignment, which causes even the ref-
erence particle to give transverse signals, gives spectral response at zero frequency,
which is easily distinguished from the true transverse lines.

But other effects may not be so benign. One can inquire whether a linear su-
perposition using coefficients other than the sinusoidal Fourier coefficients might be
found that achieves comparable distillation even when the signals are theoretically
less predictable. The answer is “yes”, the method is called “Principle Component
Analysis” (PCA) and the distilled parameters are called “Principle Components”
(PC). (By this definition, the Fourier transform values could be —but typically are
not—Ilegitimately referred to as principle components.)

Before spelling out this procedure it is appropriate to identify essential fea-
tures of the data. The turn-by-turn data from a single BPM, say the j’th, can be
expressed by a vector

J
z’

b
Ty

x) = R (4.18)
oy

A matrix can be formed from the measurements from M BPM’s, each arrayed as
in Eq. (4.18);

' z? z,M
T, oz’ z,M
1 2 M
1 g2 M m31 .7:32 .773M
X =(x' x xM)= |z =z, Ty (4.19)
vt ozt . xM
TNy T .. oz

(The upper indices have been shifted slightly to the right to make it natural, in
matrix operations, to regard the upper index as the second index. Also the matrix
has been been given the cosmetic appearance of being higher than it is wide, since
that is a requirement of the SVD method to be introduced in the next section; i.e.
N > M, more turns than BPM’s.) All entries in this matrix are commensurate,
meaning they have the same units—in this case length. This facilitates matrix ma-
nipulations since the coefficients of transformation matrices can be dimensionless.
Though all elements are commensurate, it is essential to realize that the character-
istics of columns and the characteristics of rows are different. In performing matrix
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operations on the matrix X it is important to use only methods that respect this
difference between rows and columns.

Within the matrix X the row index can be referred to as “temporal”, since time
increases from top to bottom of the matrix. The elements of any one column map
out a “temporal pattern”. In purely conservative, or Hamiltonian, motion there will
be no systematic tendency for the elements to become small with increasing row
index. But, for lossy or decohering systems, the elements will tend to get smaller
toward the bottom.

The column index of X, which distinguishes different locations in the ring, can
be referred to as a “spatial” index. In principle, in PCA, the different columns could
refer to quite dissimilar properties of the system under study. In our case the dy-
namics at different BPM locations is expected to have quite similar characteristics.
But the transverse scale can change discontinuously and erratically in progressing
from one BPM to the next. Such variation can be displayed as a spatial “pattern”
or “shape”. One may have some theoretical expectation of this variation, but in a
so-called “model independent analysis” (MIA) this spatial pattern is regarded as a
priori unknowable, and a major purpose of the analysis is to extract the transverse
scaling factors (i.e. v/B-functions) from the data.

There are too many optional features in the properties of data matrices like
X for all options to be discussed here. For example the various columns could be
multiple measurements from the same BPM. This is the case to be assumed for the
time being. Or each column could be derived from a different BPM, a case that will
be adopted later, for purposes of S-function determination. There could be more
turns than BPM’s, N > M (the only case to be considered here) or wvice versa.

An important algebraic parameter that helps to distinguish these cases math-
ematically is the rank R, which characterizes the extent to which the columns of
X are algebraically independent. If all columns of X have come from the same
detector, all with proportional initial conditions, all under ideal conditions, then all
columns would be proportional and R would be 1. Slightly more general would be
the same situation but with random starting conditions, in which case there would
be sine-like and cosine-like columns (actually superpositions thereof) and R = 2.

In any case R cannot exceed the smaller of M and N. Since we require N > M
it follows that R < M. Beyond this point, determining the value of R becomes a bit
squishy. The condition for R to be less than M is that one or more determinants
formed from elements of X vanish. Unfortunately, no experimentally measured
quantity can vanish exactly (because there is always noise at some level). But
the whole point of PCA is to identify linear dependencies among the columns of
X—such dependencies can be used to reduce the number of parameters needed to
describe the data. If exact, each such (independent) relationship corresponds to a
reduction of R.

In spite of this lack of rigor, the following approximate approach often succeeds.
For R = M the number of PC’s is M. Each PC quantifies the contribution to the
data of one mode. If the PC is big then the corresponding mode is important.
In practice, with “good” data, only a few of the PC’s are big and the rest are
“small” (without noise or other peripheral effects the small PC’s would presumably
vanish). Setting the small PC’s exactly to zero causes the rank R to be exactly
equal to the number of retained PC’s. Only the non-zero PC’s that survive deserve
to be called “principal components”. Such a phenomenological procedure is of
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course only approximate and its validity has to be investigated further on a case-
by-case basis. In the simplest nontrivial, but still ideal, case there will be two PC’s
corresponding to sine-like and cosine-like motions, and R = 2.

4.4.2. Rotation to Principle Axes. The matrix X contains a large number
M N of data points, probably all that will be needed to characterize the lattice, at
least in the case where each column represents a different BPM. Even so, one can
regard this data as just one sampling of M N random variables, or of M samplings
of an N-component random vector. In principle the SVD procedure works even
if these variables are mutually independent, but any useful inference to be drawn
reflects their internal relationships.

Consider multiple samplings of a particular column x7, and, for each sample,
interpret the entries as coordinates of a point to be plotted in an N-dimensional dot
plot. To simplify discussion take N = 3 and assume that all M columns correspond
to the same BPM. The points will be scattered in a roughly ellipsoidal region. A
general treatment would permit the vectors x7 to get contributions from noise,
from momentum dependence, from misalignment, etc. Because of effects like this
the ellipsoid would not necessarily be centered on the origin but, deferring this
possibility for simplicity, let us assume that the theoretical averages of all entries
are zero. The different data sets reflect evolution of the same system but with
random start times. As such the M data points in any one data set under study
will be imbedded indistinguishably within this plot.

It is natural to identify principle axes of this ellipsoid and to perform a rota-
tion to coordinates in which the ellipsoid is erect relative to all axes. Being erect
implies the absence of correlation between any pair of components. Restricting this
transformation to be a rotation exploits the commensurate nature of the elements
and prevents the distortion that would result when different multiplicative factors
are applied to components along different axes.

It could happen that the ellipsoid just discussed is very long and skinny. It
would be natural then to choose the axis along which the ellipsoid is long as the
first coordinate axis. The component along this axis would indeed be a principle
component since the motion would be essentially one dimensional, with this com-
ponent describing the state of motion. Normally the data will be more than one
dimensional. The next simplest case would have the data approximately restricted
to an elliptical region lying in some skew plane. The first principle component
would then be chosen along the major axis, the second along the minor axis. All
this discussion generalizes to the N-dimensional region needed to describe all NV
components of x7. In general there will be N principle components, ordered from
largest to smallest. If a few of these components are “large” and the rest “small”,
one will have reduced the dimensionality of the data set (in some approximate
sense) from N to the number of “large” PC’s.

4.4.3. The SVD Method of Determining Principle Components. The
numerical, algebraic “singular value decomposition” (SVD) method is described by
Press et al.[10] Though ancient (Beltrami, 1873, Jordan, 1874) the SVD method
was recently introduced into accelerator physics by Irwin, Wang et al[8]. Unlike
DFT, let us require all components and all coefficients to be real.
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SVD is a robust algebraic algorithm, that permits an arbitrary, not necessarily
square, N x M matrix X to be expressed in the form

X = USVT :U]U1VT—|—UQU2V;+.... (420)

Here S is an N x M matrix which, though not square, has non-vanishing elements
only along the main diagonal, their values being g1 > g9 > -+ > opr.. Matrix U,

U= (u1 uy ... uN) , ulTuj = dij, (4.21)

is an N x N orthonormal matrix whose columns are vectors u; that satisfy the
orthonormality relations shown. Similarly,

T
Vi

T
Va

vl = . Vivy =6, (4.22)

T
VM
isan M x M orthonormal matrix.
Because the vectors u; and v; are normalized, the magnitudes of the coeffi-
cients o; in Eq. (4.20) accurately reflect the importance of the individual terms.
Being ordered with largest o; first, the terms in Eq. (4.20) are ordered from most

important to least important.
By spelling out Eq. (4.20) in more detail;

U1,1 Uy,1 U211 U211

X=oy [vig | w2 v | U12 oo oo [ vag | U2 V2o | U2,2 R I S

one sees that u; describes the temporal pattern (defined earlier) of the i’th mode
and v; describes the spatial pattern of the same mode. Since the SVD factorization
is unique, and can be performed mechanically using readily available software tools,
one sees that considerable information can be extracted automatically from data
matrix X.

To obtain the spatial patterns v; one can introduce a matrix, referred to as the
“sample covariance matrix”, and defined by

[ p—t 1 i
Cl,=%X X|M:Nzk:mkxk;. (4.24)
The summation is over turn number k£ and division by N converts the elements to
average values;

<z'z'> <z'lz?> ... <z'z2M>
<z?z'> <z?z?> ... <z?2xzM>

Ciy = . (4.25)
<agMgpls «gMp2s | < gMpM

Using Eq. (4.20) and the orthonormality of U and V, one derives
1 1 1
CV=—X"Xv=—vsu’usv’'v=_vs 4.2
N N N (4.26)

This equation shows that the columns of V (which have previously been called
spatial patterns) are eigenvectors of C. Because it is symmetric, the eigenvalues
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of C are known to be real, and its eigenvectors are known to be orthogonal. Also
from Eq. (4.26) one infers that the eigenequations for individual eigenvectors are

CVZ' == )\Z-vz-7 == VlUlZ/N (427)

From each eigenvalue X of C this determines a diagonal element o = VAN of S.

The matrix C, to the extent it is statistically well determined by the data,
enables geometric determination of the principle components. Since the vectors v;
form an orthonormal set they define a characteristic reference frame. For an arbi-
trary data vector x, its principle components z; can be obtained as the components
of x along these axes. In vector algebra these components would be determined as
“dot products” v; - x. In matrix notation,

zi=v]x, or z=V'x, (4.28)

where, in the second form, the vectors have been arrayed within matrices. Finally,
consider the family of N-dimensional ellipsoids defined by the equation

x"C7'x = constant. (4.29)
Using Eq. (4.28), and the orthonormality of V, this equation can be expressed as
constant =z VIC 'Vz. (4.30)

By manipulating Eq. (4.26), this equation can be transformed to
S—2 1 XL 2

onstant =z’ —z=— Y & 4.31

constan 2 S r= ; ol (4.31)

j— 2

which is the equation of the characteristic ellipsoid in the coordinates in which it is
erect. This derivation has been formal. The detailed geometric interpretation of the
equation depends on the treatment of the previously-mentioned erratic behavior of
small o; values. Dropping such indeterminate terms from Eq. (4.31), the formula
is useful primarily in the case that it reduces to a relatively short sum of squared
terms. In this frame the distribution of points can be represented, at least crudely,
as a one dimensional distribution of points binned into ellipsoidal shells, with the
shell size parameterized by allowing the constant appearing on the left hand side
of the equation to vary.

4.4.4. Extracting Betatron Phases and Beta Functions. Much of this
section follows Wang et al.[7]. From here on it will be assumed that the M columns
in data matrix X consist of turn-by-turn data from separate BPM’s. The main
new physics the PCA approach is intended to address is the non-invariance of the
Courant-Snyder invariant evaluated from a bunch centroid when it is treated as
the position of a single particle. Such variation invalidates equations like (4.12) in
which the CS invariant € was assumed to be constant. In practice the decoherence
effect that causes € to vary is usually fairly weak and the fractional variation of e
during any one turn is tiny.

Based on the slowness of this variation, for extracting betatron parameters
from the turn-by-turn data matrix X, Wang et al.[7] suggest the following sensible
approximation. During any one turn € is taken to be exactly constant. This means
the spatial pattern introduced earlier will be exactly the same as for single particle
motion. But, to support decoherence or other non-Hamiltonian behavior, the emit-
tance is permitted to have arbitrary (though slowly varying) temporal dependence.
Notationally, the bunch CS-invariant is simply given a temporal index ¢ so that e;,
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even though its value varies with 4, is constant during any single turn. The centroid
motion can therefore be expressed as

;™ = \/€iBm cos(¢di + V), (4.32)

where 3., is the beta-function and v,, the phase at the m-th BPM and ¢; is the
time-evolving phase at some reference location in the ring (to be referred to as
“origin”).

As stated already, the measured components of X will have other extrane-
ous contributions (due, for example, to noise and dispersion) but we will trust
the PCA approach to suppress their effects. By substituting from Eq. (4.32) into
previously derived formulas we can derive theoretical expressions for the various
eigenvalues, eigenvectors, and patterns that have been introduced, in terms of the
newly-introduced parameters €;, 8., ¢m, and ;.

For a given data set, taken at arbitrary time, the starting phase at the origin is
arbitrary. The starting phase can be inferred from the elements in the top two rows
of X along with Eq. (4.32). Wang et al.[7] give an explicit formula (double-valued
and not reproduced here) for this phase, as well as the following formulas for the
two non-vanishing eigenvalues;

M
<€e>
Ay == ; B (1 4 cos 2¢,,)

== ] : (X bt \/(Z B €05 2)? + (3 B sin 26)?) . (4.33)

where and initial phase ¢q has been set to zero, by judicious choice of starting turn
index.2 Wang et al. also give theoretical formulas for the spatial shapes,

< €> Pm
v+:676cos1/}m7 m=1,..., M,
2 /%
7)7:wsinwm7 m:]_,...,M, (434)

2/A-
as well as for the temporal shapes,
261'
N <e>
26,;
 N<e>
Finally these formulas can be used at each BPM to extract, from the SVD expan-
sion, the betatron phase,

Uy = cosg;, t=1,...,N,

sing;. i=1,...,N. (4.35)

¢ = tan ' (%) (4.36)

2 2 2
= _ . 4.
B <€>(/\+v++)\ v?) (4.37)

and the g-function,

2The quantity < € > in Eq. (4.33) is multiturn average of the possibly-time-varying emittance.
If the centroid motion is damped, and the measurement extended to times long compared to the
damping time, then this average varies inversely with the number of samples. Obviously there is
no point in extending data collection into this region.
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4.4.5. The PCA Feature of the transverse bSimulator. The following
series of figures were obtained using the SVD feature of the transverse simulator.
FIG 4.7 shows the SVD opening window. Only the leading PC’s are shown. All
those not shown are tiny. As expected, there are only two large PC’s. The third,
not quite tiny PC is the subject of one of the assignments.

The spatial and temporal eigenvectors are shown in FIG 4.8. Their interpre-
tations will be discussed further in Chapter 7. The spatial eigenvector is closely
related to the f-function variation. In this case the interpretation is complicated
by the fact that the S-function is necessarily positive while the eigenvector compo-
nents can have either sign. The signs are resolved using Eqs. (4.36) and (4.37). The
[B-functions and phase advances derived from this data are shown in FIG 4.9. The
B-function extraction uses Eq. (4.37). Treating the emittance < € > as unknown,
this leaves an overall scale factor undetermined, but the variation of 8, around the
ring is determined. This “model-independent” determination can be seen to agree
will with the model-based determination. The phase advance determinations using
Eq. (4.36) also agree well with matrix-based determinations.

SIMULATION 4.1. Vary the noise level in the .apdf file and investigate the
degradation in accuracy of the PCA-determined Twiss functions. The noise level
(relative to signal level) which causes a typical degradation of, say, 10% in accuracy
should be determined.

PROBLEM 4.3. Suggest a possible source for the third, not quite negligible PC
indicated in FIG 4.7. Derive a quantitative fomula for the magnitude of this PC.

SIMULATION 4.2. Compare the PC’s obtained when the energy offset § of the
particle is varied. Pay especial attention to the third component and plot its value
against 4.

SIMULATION 4.3. Augment the SVD simulation feature so that it also extracts
the dispersion at the locations of monitor elements in the lattice.

SIMULATION 4.4. Radiation damping in an electron accelator causes the z,y,s
Courant-Snyder invariants of each particle to be multiplied each turn by factors
Ay, 0y, ag, each less than 1 by an amount that is typically of order one part in
10,000. ct — ag ct.

The presence of small deviations like these can be modeled in the simulator
in much the same way that noise is simulated. The main differences are that the
damping decrements are necessary negative and they are not stochastic. Rather the
decrements are proportional to the particle amplitude. For example x — x(1 — a,).

Augment the transverse simulator to model the presence of damping. Measure
the damping rate and relate it accurately to the damping coefficient as you have
buile into the code.
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Fi1GUuRE 4.7. Opening window for the UAL PCA simulator. The
leading principal components (PC)’s are shown.
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FIGURE 4.8. Spatial and temporal SVD eigenvectors derived from
the PCA simulation of the collider_mon lattice are exhibited.
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PROBLEM 4.4. In problem 4.1 a programmable calculator program $X operated
on the 4 components of an initial condition vector to produce a multiturn sequence
TRK by repeated multiplication by a matriz (here called MM so that M can stand for
the number of BPM’s). This code can be re-used here. The routine
$RI: << RAND RAND RAND RAND 4 ->ARRY $X TRK >>

repeats this calculation for a random starting position. $RI is used within the pro-
gram

$DATA: << 1 M START $RI NEXT M ROW-> TRN ’DATA’ STO>>

After transforming rows and columns with TRN, the result is an N x M (for example
16 x 8) data matriz, like that defined in Eq. (4.20).

The elements in each column are consistent with being the N measurements
on a single BPM. The random starting coordinates simulate random phase and
amplitude starting conditions at the same BPM. The columns are saved as a matriz
DATA. Using code like this, produce such a matriz and subject it to SVD analysis.
Again a programmable calculator is slow but adequate. You should find two large
elements on the diagonal of matriz S and the rest very small. Interpret this result.
Confirm that U and V are orthogonal.







CHAPTER 5

Analysis of Coupled Motion

5.1. Analysis of a 4 x 4 Symplectic Matrix

General 3D linearized propagation around a ring is represented by a 6 x 6
transfer matrix. Much simpler, and often approximately valid, is the representation
of one dimensional motion by a 2 x 2 transfer matrix. In this section an intermediate
approach is taken in which the coupling between two planes, usually z and y, but
sometimes x and s, cannot be neglected. This calls for a 4 x 4 matrix treatment.
In the last section a 6 x 6 formula is also given.

No matter how messed up an accelerator lattice is, as long as it elements are
constant in time, there is a small amplitude domain in which transverse motion
is accurately represented by a transfer matrix, which we are taking to be a 4 x 4
matrix M. In a computer simulation all 16 elements of this matrix would be
known but, operationally, in the control room, none of the elements are known a
priori. The task of “model independent analysis” (MIA) is to use measurements
from available instruments (in our case only beam position monitors (BPM) are
assumed to be available) to infer valid accelerator properties even though M is
completely unknown. Even though unknown, M is guaranteed to be a symplectic
matrix.

This chapter describes several MIA methods, using BPM data and FFT anal-
ysis, that can be used to infer tunes and closed orbit deviations. The first step is
to exploit symplecticity to derive a difference equation satisfied by M.

The transverse particle position is specified by a 4-element column vector
x = (x,2',y,y")". This vector represents small transverse deviations from the
equilibrium orbit. Note that the equilibrium orbit is not the same thing as the
design orbit. About the only feature guaranteed to be true about the equilibrium
orbit is that it stays in the vacuum chamber and repeats exactly turn after turn.
Any bunch, no matter how poorly injected, by decoherence and filamentation, even-
tually centers itself on an equilibrium orbit. The vector x, by definition, measures
deviations from that orbit. Linearized evolution of x from longitudinal coordinate
sp to s is described by the matrix equation

x(s) = M(s, s0)x(s0). (5.1)
The fact that M is symplectic, critical to the derivation of the difference equation
being sought, can be expressed using the matrix

0 -1 0 O
1 0 0 O

S = 0 0 0 -1 (5.2)
0 0 1 0

69
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For M to be symplectic, its inverse must be equal to its “symplectic conjugate” M,

M !=M=-sMmTs. (5.3)
Partitioning the 4 x 4 matrix M into 2 x 2 elements, it and its symplectic conjugate
are .
A B — A C
w-(8 B), m-(3 9) ”
A 2 x 2 matrix A and its symplectic conjugate are related by
—~ (a b\ _(d —=b\
A () (4 ) aaan o9

provided the determinant det |A| is non-vanishing.
Especially important for analysing the state of (z,y) coupling is a particular
off-diagonal combination from Eq. (5.4), E = C+B and its determinant £ = det |E|.

o) e f c11 + b2 c1a —bio
E=C+B= = , det|E|=eh—fg=&. (5.6

<g h> <021 —by ca2 bn) ’ Bl = 19 (56)
For a stable lattice, eigenvalues A4 and Ap, of M (with their complex conjugate
twins) satisfy the relations

Aa =4+ 1/A4 = exp(ipa) +exp(—ipa) = 2cos pa (5.7)
Ap =Ap +1/Ap = exp(iup) + exp(—iup) = 2cos up,

where pgq = 27v4 and up = 27wvp are real angles. The quantities Ay and Ap,
eigenvalues of M + M, satisfy

As+ Ap = trA + trD, (5.8)
AaAp = trAtrD — £.

For motion at small amplitude the linearized transfer matrix description gives a
thoroughly satisfactory description of the motion. In the presence of coupling the
tunes v4 and vp are only approximately equal to the ideal, (or nominal, or design)
tunes v, and v,. But vs and vp are readily measurable, no matter how badly
coupled the lattice is. For this reason, they can be regarded as known, or at
least operationally measurable, quantities. In fact the most common application
of Fourier analysis of particle motion (as measured with beam position monitors)
is for the operational measurement of these tunes. The formulation of this section
can be used to exploit this procedure.
As partially seen already, the combination

— 4 (trA 0 0 E
M+M=M+M <0 trD>+<E 0) (5.9)

has simpler properties than M. Using the fact that M~! can be used to propagate
backwards in time, this relation can be used to obtain four third-order, coupled
difference equations that relate the coordinates on three successive turns (labeled
-, 0, +):

T4 —trAmg + 2 = hyo — fy;
o, —trAxy + 2 = — gyo + ey (5.10)
yr —trDyo +y_ = exq + fx
Y, —trDyg 4+ y— = gxo + hay,.
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It is possible to uncouple these equations. Start by squaring Eq. (5.9), sub-
tracting 21, and using Egs. (5.8);

2 -2 tr2A + (5 - 2)1 0 0 E
M2+ M2 = < 0 02D 4 (¢ _2y1) TEFAFD) (g ) (1)

From Egs. (5.9) and (5.11), form the combination that eliminates the off-diagonal
blocks,

M’ +M 2= (A +Ap)M+M ")+ (24 AsAp)I=0. (5.12)
Using this equation to obtain a difference equation for the phase space coordinates
on successive turns yields

X+++X77 *(AA+AD)(X+ +X7)+(2+AAAD)X0 :0 (513)

This is the equation we have been seeking. Before applying it to practical problems

such as closed-orbit finding and feedback control, we note the simpler equations

that hold in case there is no cross-plane coupling. In that case, Eqs. (5.7) and (5.8)
reduce to

Ag =trA =208 iy, Ap =trD = 2 cos py; (5.14)

the right hand sides of Eqs. (5.10) vanish; and the first equation, for example,
becomes

Ty —2¢08 g To + - = 0. (5.15)

Tt is left as an exercise to show that this equation and the corresponding y-equation
are consistent with Eq. (5.13) when there is no coupling.

PROBLEM 5.1. In the case that there is no coupling between x and y motion,
show that Eq. (5.18) reduces to Eq. (5.15) and the corresponding y-equation.

PROBLEM 5.2. Algorithm for converting an almost symplectic matriz into a
symplectic matriz. Define

0 -1 0 0
1 0 0 0
S = 00 0 -1 (5.16)
0 0 1 O
The symplectic conjugate of a matriz M is defined by
M = -SMTs, (5.17)

where M7 is the transpose of M. One can write a calculator routine to perform
this operation

$BAR: << TRN S * S SWAP * NEG >>
A matriz My is symplectic if and only if
M, =M, (5.18)
Suppose that M is “almost” symplectic. Define a new matriz, close to M by
M - MMM
2

Neglecting terms quadratic in M — My, show that My is approximately symplectic.
Using 4 x 4 unit matriz 144, One can write a calculator routine,

$SYM: << DUP DUP $BAR * 2 / NEG I44 1.5 * + SWAP * >>

M, =M + (5.19)
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that “symplectifies” a transfer matriz.

In a simulation program an artificial manipulation like this is risky. Just be-
cause a matrix is symplectic does mot mean it is correct. But sometimes one is
quite confident that a matriz is essentially correct, and wishes to use it for itera-
tion, say millions of times. Fven the tiniest of failures of symplecticity will cause
this operation to give artificial emittance growth over such long times. In this case
artificial symplectification may be justified.

PROBLEM 5.3. The matrix M

0.231876 -0.029239 -0.031317 0.000000
32.36138 0.231876 -0.822722 0.000000
0.000000 0.000000 1.000000 0.000000
0.822722 0.031317 -0.012908 1.000000

appeared in an earlier problem. This matriz is very nearly symplectic but, to make
it look less gross in print, its elements are given to only 5 or 6 decimal points. It
can therefore not be exactly symplectic. Perform the “symplectification” defined in
the previous problem one or more times so that the matriz is symplectic to machine
precision, typically 12 places or so.

PROBLEM 5.4. With the symplectified matriz M obtained in the previous prob-
lem, confirm that Eq (5.12) is satisfied. It is necessary to first find A and Ap by
solving a characteristic equation.

5.2. Finding the Tunes and Closed Orbit, Uncoupled Case

Koutchouk[11] has described a closed-orbit finding procedure, based on Eq. (5.15),
which he ascribes to Verdier and Risselada.[12] That method, which assumes purely
uncoupled motion, will now be described and then generalized. Much the same de-
scription applies whether one is discussing operational procedures applied in the
control room of an actual accelerator or simulation in a computer. In either case
finding the closed orbit is usually performed by starting with a guess and iteratively
improving it.

In the derivations of the preceeding section it was implicitly assumed that
transverse coordinates were measured relative to an unknown closed orbit. Let
us assume that the BPM’s are positioned perfectly on the design orbit. This is
rarely precisely true, but to get our feet on the ground we have to start somewhere.
Then, in principle, the BPM is capable of measuring the closed orbit deviation at
that point; call it x.,. Making the replacement x — x — x, in Eq. (5.13), after
simplification, yields

Xpp+xX - —(Aa+Ap)(x4 +x_)+(2+AaAp)xo = (2—Aa)(2—Ap)Xeo- (5.20)
Making the same replacement z — = — x, in Eq. (5.15) yields

Ty — 208 iz Tog + ¢ = 2(1 — COS iz ) Teo- (5.21)

The parameters A4 and Ap in Eq. (5.20) are simple functions of operationally

measurable tunes, as is cosu, in Eq. (5.21). In the control room of an actual

accelerator, if circulating beam can be obtained, A4 and Ap can be measured

by spectral analysis of beam position monitor signals. Similarly, in a computer

simulation, if multiple turns survive, the tunes can be obtained by FFT analysis.
Unfortunately the “if’s” in the two previous sentences are sometimes not satisfied.
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FIGURE 5.1. Geometric construction indicating how tune and
closed orbit can be found from measuring the transverse displace-
ment for several successive turns. Open square symbols are mea-
sured. Solid circle symbols lie on and define the correct phase space
circle. Open circles lie on a candidate, but wrong, phase space
circle.

For this reason it is desirable to have a robust procedure for extracting tunes that
makes minimal operational demands. Following Verdier and Risselada we obtain
another equation like Eq. (5.21) by incrementing the indices by one, (which leaves
the right hand side unchanged), and then eliminate x., from the two equations,

T3 — 2COS iz To + T1 = Tg — 2COS iz T1 + Tp. (5.22)

Solving for u, yields
T3 — Ty +T1 — To

COS Ly = (5.23)

2(332 — ZE])
From this equation, starting with z, if the particle (or beam) can survive three
full turns, and the displacement measured on each passage through the origin, the
tune can be obtained. Once the tune is known, the closed orbit is obtained from
Eq. (5.21)

To — 2COS Uy T1 + Xo

(5.24)

Lco =

2(1 — cos )

This prescription can be foiled by measurement errors, by the presence of coupling,
or by the presence in the lattice of nonlinear elements that violate the conditions
used in deriving the difference equation. There is nothing we can do about mea-
surement errors except complain about the instrumentation. Before proceeding to
discuss what can be done about coupling we consider nonlinearity.

Because of nonlinearity, Eqs. (5.23) and (5.24) will be not quite satisfied and the
closed orbit not quite found. This performance is typical of almost all operational
accelerator procedures. The universal attempted fix is to proceed by iteration.
In this case, having found a tentative value for z., we launch another particle
from that point. Assuming a sensible prescription for picking the initial slope
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is available, the ability of nonlinearity to foil this approach will rapidly decrease
with each succeeding iteration, as the orbit will stay in progressively reduced, and
hence more linear, regions. It can certainly happen however, that the first iteration
fails due to nonlinearity. FEither the particle is lost completely, (a possibility the
derivation excluded) or the errors make the “improved” closed orbit worse than
the tentative starting value. In either case an alternate approach must be found.
In practice the alternate approach is usually trial-and-error or “knob-twiddling”,
which normally succeeds eventually. From that point rapid convergence employing
Egs. (5.23) and (5.24) is typical.

A procedure for improving the starting slope would improve the convergence.
The earlier derivation showed that the slope variables satisfy the same difference
equations as the displacements. As a result we obtain

! ! !

, Ty — 2c08 Uy ) + T
Ty = . 5.25
Teo 2(1 — cos ug) (5:25)

Assuming slope values are available (which is certainly true in a computer simula-
tion, but would only be true by using and adjacent BPM in the laboratory) this
equation can be used to improve the tentative closed orbit initial conditions.

5.3. Example of MIA in a Coupled Lattice

We now wish to generalize this prescription in order to make its convergence ro-
bust even in the presence of coupling. In practice, the presence of coupling seriously
compromises the effectiveness of closed orbit determinations. Because coupling is a
“linear effect”, its fractional importance does not reduce with succeeding stages of
iteration. For too great coupling the iterative approach described above simply does
not converge. For this reason we contemplate using the more general Eq. (5.20) to
obtain simultaneous convergence in both planes. As in the uncoupled case, there
are two stages, the first to find the tune(s), the second to find the closed orbit.

Several alternative approaches to finding the tunes suggest themselves. The
first two are applicable only if the coupling is weak (which is often the case since its
presence is unintentional) and hence its effect on the tunes is likely to be negligible
(because tune shifts depend quadratically on skew quadrupole strengths.) In this
case the “design” tunes could be used in a computer simulation, but this is not really
practical operationally. Instead the few turn determination of yu, using Eq. (5.23)
and a corresponding determination of u, might be adequate.

A more robust approach is to obtain equations for A4 and Ap in a manner
analogous to the derivation of Eq. (5.23). We write the vector equation

X4 + Xg — (AA + AD)(X3 + Xl) + (2 + AAAD)XQ
= X5 + X1 7(AA+AD)(X4 +X2)+(2+AAAD)X3. (526)
Collecting terms yields

<:U4 — X3+ To — 11 —I3 —|—a:2> (AA —|—AD> _ (az5 — X4 + 223 — 220 + 21 —a:0>

Ya—Ys+y2—y1  —yz+yo AsAp ) \ys—ya+2ys =202 +y1 — w0 )

(5.27)

These equations can be solved for A4 and Ap if data from five consecutive full
turns is available.

By far the most accurate determination of A4 and Ap is applicable when

multiple turns can be obtained. Define the expectation value < f > of N samples
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fi by Z:V fi/N. Multiplying the x and y components of (5.13) by zg and yq
respectively, taking expectation values, and rearranging to express as equations for
A4 and Ap yields

<< (ry + 2 )30 > — < 28 >> <AA + AD> _ << (T1y + 2 )1g > +2 < 22 >>
< +y-)yo> —<yg>)\ Auldp ) \<(y4+ +y—)yo > +2<y3 >
(5.28)
When this equation was applied for 512 turn data at LEP and solved for A4 and Ap,
accuracies of approximately £0.003 were obtained for the tunes v, and v,.[13] Once
the tunes are known, the coefficients in Eq. (5.20) can be evaluated, and improved
values for all four closed orbit coordinates can be obtained from the equation
Xo

(2—A4)(2-Ap)

In an accelerator control room the quantities A4 and A are usually available to
high accuracy from one of the ubiquitous spectrum analyser displays. Since these
are global quantities, they can be measured anywhere in the lattice. In this case
Eq. (5.29) can be applied to find the closed orbit position at every dual-plane BPM
with no further ado.

If the BPM’s are not dual-plane, they are usually arranged alternately around
the lattice, with vertical measured at vertically-focusing quads, horizontal at hori-
zontal quads. In this case, to use Eq. (5.29), say at the location of a horizontally
focusing quad, it is necessary to “interpolate” a vertical measurement from the ad-
jacent vertical BPM’s. This operation cannot be said to be “model-independent”
since it relies on the lattice design in the region of the three quads. But, barring
serious field imperfections over such a small region, the interpolation can be said
to be “somewhat model-insensitive”.

Xeo = Xgp +X__ — (Aa+Ap) (x4 +%x_) + (24 AsAp) . (5.29)

5.4. Eigenanalysis of 3D Maps

Possibly the most difficult step in the MIA analysis of 2D coupled motion was
the derivation of explicit formulas for the eigenvalues of a symplectic 4 x 4 equation.
(The quadratic equation formed from Egs. (5.8).) It is possible to perform the
analogous calculation even in the most general case. For fully-general 3D motion
the linear transfer matrix M, and its symplectic conjugate M can be written in
partitioned form as

A B E A C G
M=|C D F|, M=|B D H (5.30)
G H J E F J

Let us assume that interplane coupling is sufficiently weak that the matrices A,
D, and J, are “not too far from” the uncoupled 2 x 2 “design” transfer matrices
corresponding to pure z, y, and z motion respectively. However, the purpose of this
assumption is not to justify a perturbative expansion, since the formulas will be
exact. Rather it is to resolve ambiguities in identifying the roots of the equations
by considerations of continuity. Because M is necessarily symplectic, its symplectic
conjugate, defined using block-diagonal matrix S, each of whose diagonal blocks is
0 —1
()

M= -SMTs, (5.31)
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is also its inverse

M=M"" (5.32)
We define an auxiliary matrix,
E=M+M=M+M!, (5.33)

having much simpler properties than X. In particular, if (as it does) M has eigen-
value A = e with pu real, then Z has real eigenvalue A = A + A~! = 2cos . This
implies that E has three, real, double eigenvalues, A,, A,, and A, for a stable
lattice.

Explicitly E is given by

== T wDI V |, (5.34)
U Voot
where
B+€:T:<h‘ f), T:(e f), (5.35)
-9 e g h
E+6—U—<” _l>, U—(’“ l), (5.36)
-m k m n
F+ﬁzvz<S q), V:(” q). (5.37)
-r p r S

Note especially that the 2 x 2 diagonal blocks of E are proportional to identity
matrix I. For simplifying formulas which follow, two relations, valid for 2 x 2
matrices, are useful:

AA=detA=|A|, A+ A=trAl (5.38)
The characteristic equation is
A(A) = det T (trD — A)I % =0. (5.39)
U v (trJ — A)T

This determinant can be worked out by following Gantmacher.[14] To simplify the
algebra it is useful to introduce a symbols

a=(trA—A)I (5.40)

Though this is a 2 x 2 matrix it commutes with everything and can be treated just
like a scalar factor. We obtain

A(A) = A% — pi A2 — poA — p3 (5.41)
where
pr=trA+trD +trJ=As+Ap + Ay (5.42)
p2 = —trAtrD — trAtrJ — trDtrJ — |U| — |T| — |V
= — (AaAp +AaAy+ ApAy) (5.43)
p3 = —trD|U| — trJ|T| — trA|V| + tr(VTU) = AsApA,. (5.44)

The expression for ps has a suspicious-looking lack of symmetry, but it is invariant
to reordering of the (z,y, z) coordinates; so also is its last term. For a stable lattice
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the three roots of Eq. (5.41) are all real, and an explicit formula can be written for
them. Following Press et al.[15], and defining

3p2

Q=p+4 (5.45)
R= —2p° — 9pips — 2;1:3 (5.46)
0= arccos(R/\/@), (5.47)
the roots are given by
A= =2 Qcos(g) +p1/3 (5.48)
Ay= =2 Qcos(9+2ﬂ)+p1/3 (5.49)
Ay = — 2D cos(EAT) 413, (5.50)

The eigenvalue triplet (A1, As, A3) is some permutation of the triplets (A;, Ay, As).
These can also be labeled (Aa,Ap,Ay) assuming the perturbations away from
design, uncoupled optics, leaves the tunes close to their design values. We will
assume relabeling has been performed so that (1,z, A) go together, as do (2,y, D)
and (3, z,J).






CHAPTER 6

Longitudinal Dynamics

6.1. Synchrotron Oscillations

6.1.1. Equations of Motion. When passing through an RF cavity at phase
angle ¢g(t) the reference particle acquires energy AFE,qr given by

AEB, et = QV sin ¢ (t) — trer (1), (6.1)

with @ and V both assumed positive. Here Qf/ is the maximum possible energy
gain in the RF cavity. For electrons or protons @) = |e|, for ions @) = Z|e|. Possible
energy loss represented by u.ef(t) is due, for example, to synchrotron radiation or
beam wall interaction. This loss is distributed more or less continuously around the
ring, but we assume that it can be adequately represented by a single loss occurring
at the RF cavity. It is obviously important for correct relativistic formulas be used
to calculate energy E gains and the corresponding changes in total momentum py.
We will return to these detailed calculations after describing the essential features
of synchrotron oscillations.

Formula (6.1) may represent storage ring operation for which < AE >= 0, in
which case, neglecting possible small shift due to nonlinearity, ¢¢ adjusts itself such
that

QV sin ¢g = Ures. (6.2)
Formula (6.1) also applies to acceleration, in which case the maximum possible
energy gain per turn is given by

AFet < AEpax = QV - Uref(t)- (63)

Since the stable bucket area vanishes in this limit, the acceleration rate has to
be made substantially smaller. To support an acceleration interval followed by a
storage interval, or any other acceleration scenario, the time dependence of ¢q(t)
has to be programmed accordingly. For truly adiabatic acceleration the acceleration
has to be much less than the limit given by Eq. (6.3). Much of the following analysis
assumes that a steady energy beam is being described, but the formulas will apply
also even during acceleration, at least in the truly adiabatic case.

Since we are primarily interested in motion of a general beam particle relative
to the reference particle we wish, to the extent possible, to suppress the variation of
E.et(t) from the formulas, or rather to “hide” the dependence by making it implicit.
The energy gain AFE of a general particle, with arrival “time” ct, relative to the
reference particle, is

AFE = QV sin (%ct + ¢0) — Qf/ sin ¢g — Au, (6.4)

where Au represents energy loss over and above that suffered by the reference
particle. In electron accelerators the Awu term, because of its dependendence on

79
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position in phase space, influences bunch distributions. In this chapter Au will be
set to zero.

It is necessary for the RF frequency w,s to be synchronized to the revolution
frequency wrey, but the former can differ by a (typically large) integer factor known
as the “harmonic number” h, defined by

h = Wrf

o (6.5)

With ¢g near zero, the sign of the first term of Eq. (6.4) has been chosen such
that a particle with ¢t > 0 (which arrives late) has its energy increased by the
cavity. Below transition, where revolution time is affected more by velocity than
by circumference, this is the sign of energy increment needed for stability.

The particle’s revolution period Ty, = T(0) is related to the revolution fre-
quency by Trey = 27 /wrey- The single most important lattice parameter influencing
longitudinal motion is 7, the so-called “slip factor”' ? defined by

i _ Atcir(‘,((s) + Atvel((s)
60 Trev .
The tildes present in this equation require explanation. The need for introduc-
ing & = d/Bo to describe less-than-fully-relativistic motion was explained in sec-
tion 2.6.1. Eq (6.6), following tradition, defines the slip factor in terms of fractional
momentum, for which our symbol is 5.

The energy gain given by Eq. (6.4) is negative below transition, where the
second term, which is negative for positive §, dominates the first. The (linearized)
change A(ct) in arrival time of a particle at the RF cavity is governed by the slip
factor;

nrfg = et (66)

A(ct) = Trev (e / Bo)0. (6.7)

Egs. (6.4) and (6.7) are equations of motion relating the dependent variables by
giving the change in A§ = AE/(poc) on a given turn due to ¢t and vice versa.

To analyse longitudinal motion it is practical to use either a continuous inde-
pendent variable ¢, (with subscript a used to differentiate absolute, wall clock, time
from relative-to-reference-particle arrival time t) or to use turn index i. Though
the latter choice is usually adopted for analysing transverse motion, the use of ¢,
is common for studying longitudinal motion. Because the longitudinal oscillation
period is always long compared to the revolution period, the longitudinal phase
advance per turn is small compared to 27 and, except for a scale factor, turn in-
dex i is a kind of (not very fine grain) “discretized” version of t,. Quantitatively
the transition to continuous time is based on the relation between continuous and
discrete rates, which is

(6.8)

L As explained in the text, the phase space variable § = AE/(poc), as defined in Eq.(2.26), is
now being used. Until now it has been suggested that the distinction between § and 6 was largely
cosmetic. But the very phenomenon of transition crossing reflects not quite fully relativistic
motion, where the distinction is important.

2In the electron world the dispersion function D(s) is often denoted by n(s) which must not
be confused with n.¢. In the “toy” lattice files, this accounts for the use of eta as the variable
name for dispersion. The purpose for the subscript “rf” on n.¢ is to avoid the same ambiguity.
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where A(ct) is a ¢t deviation ocurring in one turn. The so-called “smooth ap-
proximation” assumes that the fractional variation of this ratio during one term is
negligible.

6.1.2. Small Amplitude Motion. As usual with oscillations, it is easiest to
start with small amplitudes. For arrival time ¢t the (linearized at ¢t = 0) change
Ad is
B AFE B QVwrf cOS @g ot

boc Poc? ’
For stability this impulse needs to be “restoring”. However, what constitutes
restoration switches sign at transition, because ;¢ changes sign there. There are two
choices for the angle ¢y that lead to the same acceleration per turn of the reference
particle; their typical separation is somewhat less than 7. As the beam accelerates
through transition it is necessary to switch from one of these choices to the other
to preserve stability. To do this the RF phase ¢g is altered discontinuously.

Neglecting the Au term in Eq. (6.4), and assuming small amplitudes, the change
in § at the RF can be expressed by a difference formula, using 7 as turn index;
6i+ — (5,;, = Q—V (Sin (ﬂcf + ¢0) — sin ¢0) ~ M Cti. (610)

Poc c Poc
Since the energy is constant everywhere except at the cavity, the end points of
this difference can be taken anywhere in the post and pre-passage turns. The
longitudinal evolution for two consecutive turns is given by

Cti+1 —ct; = CTrev(nrf/60)6i+: (611)
Cti — Cti,1 = cTrev(nrf/ﬂg)&-,. (612)

AS (6.9)

Subtracting these two equations, and applying Eq. (6.10) yields®

i
ctitr — 2ct; + cti—1 = (Trevwrr) ((me£/ Bo) cos ¢o) % ct; (6.13)
0C

Depending on the relative values of the parameters, the solution of such a second
order difference condition can be oscillatory.

PROBLEM 6.1. Using standard trigonometric identities show that either of the
functions (sequences, if you prefer)

C_ sin(uog) .
z;=A cos(jio §) j=0,1,2,..., (6.14)
satisfies the second order difference equation

Tjy1 — 2 COS o 5 + Tj-1 = 0. (615)

If the numerical value of the coefficient of the second term exceeds 2 in absolute
value it is clear that the equation represents unstable motion as there is no real
angle po consistent with the equation.

3There are two rationales behind maintaining factors grouped in the combination
((nee/Bo) cos o). Tf the phase is “jumped” appropriately, then this combination is continuous
in passing through transition, and the grouping (n.¢/80) was justified earlier.
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Using the result of the previous problem, in the oscillatory case, the us can
be obtained by inspection of the equation because the coefficient of the ct; term is
—2c0S ius;

cos pts = 1+ (Trevwrr) ((mer / Bo) cos o) QV (6.16)

2poc
In most practical cases u, is sufficiently small to allow the small angle approxima-
tion, so that

12 = — (Trevtont) (1 Bo) cos o) 2L
PocC

For stable motion it is required that us be real, which implies that the choice of
angle ¢o must be such that cos¢q and (7.¢/F0) have opposite signs. To complete
the analogy with transverse formalism, the synchrotron “tune” vy is introduced as
b
=5 (6.18)
The description has been in terms of difference equations, rather than differ-
ential equations. With the RF concentrated at one point this constitutes a correct
description. But, because u, is usually small, the angular steps in phase space
each turn are small, and the usual approximation is to introduce a “smoothed”
description in which the longitudinal variables execute simple harmonic motion.
In this spirit, the “synchrotron (radian) frequency” €5 can be obtained from the
synchrotron tune;?*

(6.17)

Vs

[bs
Q, = . 6.19
TI‘QV ( )

We can employ transfer matrix notation for longitudinal motion but using lon-
gitudinal quantities (ct, ) rather than (z, z') as phase space variables. In analysing
motion in longitudinal phase space the following points should be noted:

e Unlike ', § is not d(ct)/ds. The correct relation will be given shortly.

e Because of the externally imposed time dependent RF, it is natural to use
“absolute” time t, rather than s as independent variable.

e If the longitudinal focusing were uniform around the ring it would lead to
pure simple harmonic oscillation but this is not the case. The RF cavity
acts like a “thin lens” for longitudinal motion, retarding front runners
and advancing tardy particles once per turn. In principle, with more than
one cavity, a longitudinal “g-function” formalism would be required. But
we assume that the focusing is weak in the sense that the effective “focal
length” of the RF cavity is long compared to the ring radius. This is
equivalent to assuming that the sychrotron oscillation phase advance per
turn pg satisfies ps << 1.

Longitudinal, once-around evolution can be described in Twiss-like form by®
ct COS lUg B sin g ct
5 =( ¢ . 5 (6.20)
1 —sinpus/Bs  cos s n
4There is an unfortunate redundancy of symbols. The quantities us, Vs, and Qg, differ only
by constant factors and are therefore essentially equivalent parameters. The main virtue of Qg
is that Qs/(27) is the frequency observed on a control room spectrum analyser that is sensing
synchrotron oscillations.
5The tilde that appears over B, (which is a beta function, not a relativistic factor) in this

section, is completely unrelated to the distinction between § and 5. This tilde represents the fact
that (s is almost, but not quite, the analog of a transverse beta function.
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The analogy between 3, and an ordinary beta-function has to be established. Con-
sistent with S, being treated as constant, the analog of the Twiss alpha function
has been taken to be zero. To convert to circular phase space motion the scale
along the energy axis can be changed;

ct [ cosps  sinpg ct
()., = (S5 o) (55), 62

The factor BS provides the phase space aspect ratio or, what is actually observable,
the ratio of (r.m.s) bunch length o.; to the (r.m.s.) “fractional”® energy spread o;;

0wt = Bs 0. (6.22)

In an electron accelerator the energy spread is calculable from synchrotron radiation
formulas, so this equation establishes the bunch length. In a proton accelerator
the energy spread is inherited at injection, and evolves adiabatically, causing the
aspect ratio in phase space to be governed by w,¢, RF voltage 177 and beam energy
Ey (or equivalently ~y). The usual way to change this aspect ratio appreciably is
by “rebucketing”. This maneuver requires the turning off of cavity excitation at
one frequency and turning on a cavity at another frequency.

It is again convenient to change the scale of the second component so that

the phase space motion is circular. For this purpose, as always in simple harmonic
d(ct)
dtg

this result with Eq. (6.22) and Eq. (6.8), components (ct, 5,0) map out a circle in
phase space if

motion, the phase space coordinates need to be in the ratio (ct, QL ). Combining

as Hs
This is the result needed to obtain bunch length from energy spread. In partic-
ular, to lowest approximation, the bunch length goes to zero at transition, where
(met/Bo) = 0. Passage through transition will be analysed shortly. A UAL simula-
tion is shown in FIG 6.6.
For using beta-function terminology, the circular phase space coordinates need

to be (ct, B dslcst)). This requires

1
Bs = IC(O)' (6.24)

This can be regarded as the “longitudinal beta-function”. The phase advance per
turn ps is rarely as great as 0.1. As a result the “longitudinal beta function” [,
normally greatly exceeds the ring radius R. This justifies some of the assumptions
that have been made, such as neglecting as and treating 3, as constant. It can also
be noted, since the transverse beta function satisfies <8,> =~ C(0)/u., that

P Ha
<Bo>  ps’
the ratio typically being in the range of hundreds or thousands.

(6.25)

6.1.3. Large Amplitude Motion. The analysis to this point has been lin-
earized, but description of large amplitude motion is also important, especially in
hadron accelerators for which the region of stability can be nearly filled. In general

6Recall that calling 6 = AFE/poc “fractional energy spread” is only really valid for fully
relativistic motion.



84 6. LONGITUDINAL DYNAMICS
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FiGURE 6.1. "Fish diagram” of longitudinal phase space motion.
On passing through transition the pattern is right-left reflected.
i.e. the fish points in the opposite direction.

this requires numerical treatment, but analytic formulas for features of the separa-
trix, such as the maximum excursions of the variables and the approximate “bucket
area”, can be obtained. The large amplitude motion is easiest to understand in con-
nection with the “fish diagram” shown in FIG 6.1.

Because RF cavities cause essentially discontinuous motion it would be appro-
priate, and not difficult, to continue to use difference equations for this discussion.
But most accelerator physicists are more comfortable using the differential equation
that becomes a good approximation for us << 1. This is known as the “smooth ap-
proximation” because the acceleration is regarded as spread out uniformly around
the ring. This approximation is excellent for essentially all hadron accelerators
and most electron accelerators. In this approximation the result of the following
problem can be used to derive the appropriate differential equation.

PROBLEM 6.2. If the quantity z;, i = 0,1, 2, ... varies slowly enough (i.e. |z;41—
zi| << |zi|) the indezx i can be considered to be continuous rather than discrete.
Then the continuous time variable t is given by t = Tsi, where Ty is the revolution
period. Derivatives dz(t)/dt and d?(t)/dt* can then be approzimated by difference
formulas based on successive values, z;_1, z;, and z;11. Derive these formulas.

For large amplitude motion Eq. (6.13) can be repeated, but without lineariza-
tion, by substituting directly from Eq. (6.4);

ctiy1 — 2ct; + ctiq c QV(Sin (#tct+ o) — sin ¢0)
T2 = (mt/Bo) .

rev Trev PoC

(6.26)
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Interpreting the left hand side as a difference approximation to the second derivative
d?(ct)/dt2, one obtains the “Newton’s law” equation satisfied by ct;

‘ Qf/(sin (“Let + ¢o) — sin gzﬁo)
Trev Dboc .

d?(ct)
T

Especially in situations where ¢g is not changing, this equation is simplified con-
siderably by introducing a new variable ¢, defined by

= (1t / o) (6:27)

¢=""ct+ o, ct=—(¢— o). (6.28)
c Wrf
In terms of ¢, Eqgs. (6.8) and (6.27) become
d(¢ — d2 — T V . .
(‘ﬁTa%) = Wi d, % = (et /o) ;f %(smqﬁ “singg).  (6.29)

“Fixed points” are points where the “force” on the right hand side of the second
equation vanishes;

sing =singg — ¢ =¢g, or ¢=m— ¢Pp. (6.30)

Referring to FIG 6.1, the angle ¢ has already been defined so that the stable fixed
point, at the center of the pattern, is at ¢t = 0, which is to say at ¢ = ¢¢. The
unstable fixed point, the point of maximum excursion of ct, is therefore given by

d)max =T — ¢0- (631)

The separatrix separating stable and unstable motion passes through the ct axis at
this point. The rest of the separatrix is determined by analogy with “conservation of
energy”, which will be explained next. Quotation marks indicate that the quantities
being discussed do not actually have the dimensions of energy. To exploit the fact
that the right hand side of Eq. (6.26) depends only on the dependent variable ¢,
the equation can be written

d*(¢ —¢o) _ OV

- 27 .32
dt? d¢p’ (6:32)
where V is a “potential energy” function given by
we QV .
V = (net/Bo) T ' %(Coﬁﬁ —cos o + (¢ — ¢o) sin do). (6.33)

Note that, without spoiling its use, a constant term cos¢g + ¢g sin ¢g has been
subtracted so that V vanishes at the stable fixed point. The “total energy” is the
numerical value of a function H, known as the “Hamiltonian”;

1y oy v QV .
= SR + (e 50) 2 L (con s — cosg + (6~ ) sindn). (630

To recover small oscillation theory one must extract the leading term in the poten-
tial energy term;

wi QV
Trev PoC

H(6.8) = 5 w6 — 5 (/o) cos o) G- (63)
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As explained previously, the parenthesized factor has to be kept negative for sta-
bility; that is, for H to be positive definite.

As always in oscillatory motion, energy sloshes between kinetic and potential,
and phase space trajectories are curves of constant H. In this language, the first
term of H is to be thought of as “kinetic energy”. The area enclosed by such a
trajectory is known to be an adiabatic invariant e5. (The true adiabatic invariant
is the area in true momentum phase space. Since we work with §, our phase
space area actually shrinks proportional to py which, in the relativistic regime, is
proportional to 7. This is the well-known “adiabatic damping” as it influences
longitudinal motion.) For any individual particle this area is the analog of the
Courant-Snyder invariant of transverse motion. For the bunch as a whole it is
known as the longitudinal emittance. All particles in the bunch, if they are not to
be lost, must lie inside a separatrix enclosing the stable bucket.

Since 4 = 0 and ¢ = m — ¢¢ at the maximum excursion point of the motion,
the maximum value of H is given by
Wrf QV

T poc (2~ (T 200) tan ). (6.36)

Hmax = 7((nrf/60) CO8 ¢0)

The maximum value of ¢ is then obtained from the stuation when the “energy is
all kinetic” by
2Hmax

6maX (nrf/ﬂ[))wrf -
The particular curve for which H = Hax, because it separates stable and unstable
motion, is referred to as the “separatrix”. It encloses the so-called “stable bucket”.
The approximate bucket area is mOmax(ct)max When the phase space axes are &
and ct. The bucket area, re-expressed in units of electron-volt-seconds, is given
approximately by

(6.37)

A & Tmayx (ct)maxPoc/c. (6.38)

One of the UAL/USPAS simulations will investigate longitudinal bunch evolu-
tion within the stable bucket, emittance growth due to filamentation and passage
through transition. “Rebucketing” in which RF of one frequency is gradually re-
placed by RF of another frequency is also a candidate for simulation. The purpose
of rebucketing is to permit the use long bunches during passage through transition
and shorter bunches at collision (in a colliding beam facility.)

6.2. Some Formulas for Relatistic Kinematics

For the study of longitudinal dynamics it is necessary to calculate deviation of
the revolution period, and for this both the circumference C(8) and velocity v(8)
must be calculated as functions of the fractional momentum offset. For electrons
the velocity is normally close enough to the velocity of light that the difference
from ¢ can be neglected, but for protons the following calculations are necessary.
The dynamical variable governing deflection in a magnetic field is the momentum

p, which deviates from the central momentum pg according to
p=po(l1+9). (6.39)
This defining equation for § was introduced earlier in Eq. (2.25). Note that Eq. (6.39)

is an exact equation and the use of the incremental quantity ¢ by no means implies
that linearized equations are necessarily being used.
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A few relativistic results will now be quoted without proof.

v 1
—_— S — 6.40
b= "= (6.40)
E? = p*c® + m?c" = total energy squared, (6.41)
p=mvy, E=mcy (6.42)
2 dE 2 d

=K oK, Bk (6.43)

E dp E P

These may be familiar or can be looked up or derived. The relation we will actually
use, evaluated on the central orbit, is

d (1) - 11 (6.44)

v

d\v/5_og R
and )
1 1 11,2 1ovf=
e (4P (6.45)
v Vo Y5 Vo 2¢

Near transition even the 42 term has observable effect.
For comparison purposes a few formulas will next be copied from Jie Wei’s
thesis[16].

1 _v=v s 3 (150005 .
1+ Atyet(8)/T(0) vo N 2% 273
The first two terms agree with Eq. (6.45). The corresponding dependence of cir-
cumferential length is defined by

c)—co 4

C(0) "

For a closed orbit made up of straight line segments, such as general fodo.adxf
the coefficients in this expression can be obtained by comparison with Eq. (6.58).

Using the expansion coefficients just defined, a more detailed expansion of the
slip factor can be defined;

(6.46)

(14 ar1d+ ad®>+---). (6.47)

e =10 + Mo +1m20” + -+ (6.48)
The coefficients are given by
1 1 ar 171 1 33
T}O = —5 T "5, 77] = ———(— ——) FeECREERE (649)
% % S TN P A

This expansion is useful for a purely analytical treatment of passage through tran-
sition. But for numerical simulation there is little point in using such term-by-term
expansions. Instead, the direct evaluation of the time delay At(d), as given, for
example, in Eq. (6.59) below, gives the needed phase slip per turn at the RF cavity
for arbitrary 9.

6.3. The Off-Momentum Orbit Length

For longitudinal dynamics the arrival time of the particle at the RF cavity
is of critical importance. As well as depending on particle velocity, the arrival
time also depends on the off-momentum path length. Because of the elongated
geometry in a large ring, the geometry of this calculation is difficult. The so-called
“momentum compaction factor” aq, (also known as 1/42) the fractional momentum
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proportional increase in circumference C, is calculable in terms of local radius p(s)
and off-momentum closed orbit function D(s);

1 dc/co 1 O g
= = &c/eo _ —/ D(s) 2= (6.50)
Vi ds C(0) Jo p(s)

For reasons already discussed ; is known as “transition gamma” A rule-of-thumb
formula gives Dyyp,. in terms of the horizontal tune Q;

= C(0)
typ. ~ m

From this follows the semi-quantitative heuristic relation,

Ve~ Q- (6.52)

This section now proceeds to calculate the excess arc length for our thin el-
ement, general_fodo lattice. For this calculation, to simplify the geometry, we
assume the dipole fills the entire half-cell length (I; = 1) but still apply the entire
deflection as a kink at the midpoint. This is not very accurate but the (relatively)
simple formulas convey the essence and the difficulties of the calculation.

As shown in FIG 6.2, the on-momentum, design path length through one halfcell
is Cijp = AQ—ZH tan %, Referring to FIG 6.3, and using coordinate axes s,z centered
at ¢; with s being normal to the multipole plane, the equation of the off-momentum
closed orbit is

(6.51)

xr = (El - qlﬁls)g. (653)
The equation of the transverse plane through the dipole center is
A6
s = (z + po) tan - (6.54)

where py = 1/A#f is the bending radius of the reference orbit. At the center of a fo-
cusing quad, using its local (s, z) coordinates, the coordinates of the off-momentum
closed orbit are (0, D, 5), and the coordinates of the intersection with the centerline
of bending magnet are

sa1(0) = = 2 (6.55)

NS NS Af
-?7,11(5) _ D15—q1l~)1£5p0tan7
1+q1D15tan%

Starting from ¢o the corresponding quantities sq42(d) and xg2(d) are obtained
by replacing 1 by 2. The contribution to the circumference of the off-momentum
closed orbit, from one halfcell is

Ci/2(0) = \/(-le () = 4D1)% + 53, (8) + \/(-sz(g) —0D)? +53,(5).  (6.56)
There is a useful numerical trick that avoids the need for evaluating these square
root expressions. (In a “kick che” the trajectory consists entirely of straight line
segments like this.) Defining C(§) as the off-momentum path length along a straight
line segment, and C(0) as the corresponding on-momentum path length, the quan-
tity needed is

- C2(8) — C2(0) _ C%(5) —C*(0
C) e - CD O e6) ¢
C(0) +€(0) 2€(0)

(6.57)
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FIGURE 6.2. Geometry for transition gamma calculation.

~—(0,Dp)

s:(x+p0)tanA—29

be) (d)
‘ l®) (58) X20) )

FIGURE 6.3. Geometry for calculation of off-momentum, polygo-
nal path length. The on-momentum and off-momentum orbits are
shown. The bending magnet is represented by a prism symbol.

For each straight line segment the numerator expression is one of the factors under
the square root signs in Eq. (6.56). The final approximation here is adequate for
most purposes. Applying this formula and Eq. (6.56) to the general fodo.adxf
lattice, the fractional momentum-dependent increase in circumference is

CO) = Crpp _ (war(8) = 3D1) + 53,(0) + (a2 () = 3D2)? + 53,(8) = 0.5C3
~ - _

Ci/2 C1/2

(6.58)
(For improved numerical accuracy, the TEAPOT code expands the numerator ex-
pressions to take advantage of the explicit cancellation of the dominant length
terms.)
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With there being n/2 cells in all, the off-momentum arrival time delay after
one revolution, relative to the reference trajectory, is

s =3P -3t =g S0 (G- ) e

= Atcire((s) + Atvel(é)'

The two terms in Eq. (6.59) can be interpreted separately. The first is the delay in
arrival time due to altered circumference

nCi(3) ~Ci(0) _ 1 .de(d)

Atci,,c(g) = ~ 2§ = normally positive for 6 > 0. (6.60)
2 v vo  do
. C(O) .
Ateire(0) = ) 6.61
® = (6.61)

The second term in Eq. (6.59) is the delay in arrival time due to altered velocity;

< 1 1 C) 1 -
Aty (8) =C(0) |- — — ) ~ ———= =4, 6.62
@) =cO(5-5) = (6.62)
which is always negative for 6 > 0. Combining Eqgs. (6.61) and (6.62) yields
1 1=
At =Tiev| 5 — = )9, 6.63
~(5) (059

where T,ey is the period of one on-momentum revolution. Near transition, where
this expression vanishes, more accurate determination of At may be called for.

The term At does not depend on lattice design but At.;.. can be altered over
a large range by altering the machine optics. Notice the possibility that At(d) =
0, which is known as the condition for “transition”. In this condition there is
no change in revolution period accompanying an increase in momentum because
the increase in circumference cancels the effect of increased velocity. In electron
accelerators 2 is normally so large that transition would be crossed only at energies
far below the injection energy. In proton accelerators transition crossing normally
occurs for energies of several or several tens of GeV. If transition is regarded as
too undesirable, 1/97 can be reduced to zero, or even made negative, by causing
the average dispersion to be artificially small (by making the dispersion negative
over large sectors of the ring.) In this case y; becomes imaginary, which violates
no physical principle. The toy lattice isochronous.adxf has been designed to give
Yt = 0.

6.4. Numerical Approach Using TIBETAN

Within UAT, instead of element-by-element tracking, it is (optionally) possible
to treat transverse motion in linearized fashion while representing longitudinal dy-
namics with faithful nonlinear formulas. This formalism (due to Jie Wei) is called
TIBETAN. It is a semi-empirical formalism in which propagation around the ring is
represented by linear transfer matrices and the representation of RF cavity (or cav-
ities) effects include realistic nonlinear dependencies. For the general fodo.adxf
lattice introduced earlier, most of the needed parameters have already been ob-
tained.

The APDF (Accelerator Propagator Description Format) file for this simulation
is especially simple. In its entirety it is
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<apdf>
<propagator id="tibetan" accelerator="blue">
<create>
<link algorithm="TIBETAN: :0OneTurnTracker" sector="Default" />
</create>
</propagator>
</apdf>

There is no RF entry because the RF parameters are under control of the GUI. This
permits these parameters to be adjusted without requiring any code recompilation.

SIMULATION 6.1. Investigate the longitudinal behavior of the racetrack lattice.
Though there is an element named rf in this lattice, it is designated as a drift
element. This is not inconsistent with the design of the longitudinal simulator.
The reason for this is that the longitudinal simulator “takes control” of the lon-
gitudinal dynamics, applying a longitudinal kick to each particle on each turn. This
puts the relevant longitudinal parameters under the control of the GUI.

Since the racetrack lattice was originally generated with electron rings in
mind, it might not seem to be appropriate as an accelerator for gold ions. Neverthe-
less, to begin, leave most parameters the same as for the simulation of acceleration
of fully ionized gold ions in RHIC, which stands for “Relativistic Heavy Ion Col-
lider”. But the beam energy should be adjusted to be below transition. Before being
able to make this setting you have to find ;. Allowing the simulation to run you
should see filamentation like that exhibited in FIGs 6.4 and 6.5. Find the emittance
growth the beam has suffered due to filamentation, from the time it is injected until
it has equilibrated. Since there are no quantum fluctuations, nor radiation damping,
this simulation is not at all applicable to an electron storage ring. Then find the
fraction of beam captured by the RF. Finally, change the initial bunch length and
momentum spread to be “matched”, and as large as possible so that all or most
of the particles are captured. Calculate the longitudinal emittance of this mazimal
beam bunch. Compare your values with formulas given in the text.

SIMULATION 6.2. Reproduce FIG 6.4 and FIG 6.5.

PROBLEM 6.3. This problem should only be attempted by individuals with ex-
perience in object-oriented programming, preferably C++. The previous tutorial
identified the location of the code to be modified to introduce ad hoc damping
into the longitudinal motion. The problem here is to study the code, starting
with ~/USPAS/examples/longitudinal/src/run.cc to figure out how the program
calls the code that was modified in the tutorial.

6.5. Typical Parameter Values for RHIC

A consistent set of parameter values can be taken from a paper by Montag and
Kewisch[17], which describes longitudinal bunch manipulation in RHIC. Some of
these values are given in Table 6.1. They apply to the acceleration of fully-ionized
gold ions in RHIC. Harmonic number A is defined by h = w,¢/wrey and nonlinear
momentum compaction factor a; was defined in Eq. (6.47).
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TaBLE 6.1. RHIC parameters for fully stripped gold ions[17].

Property Symbol Value | Unit
Transition gamma Vi 22.8
Acceleration rate dy/dt =+ 0.5 1/s
Maximum off-energy parameter Omax 0.0043
Circumference C(0) 3833.845 | m
Atomic number A 79
Atomic weight A 197
Transition energy per nucleon E; 214 GeV
Peak RF voltage 1% 300 kV
Harmonic number h 360
Nonlinear momentum compaction parameter ay -0.54
Characteristic nonadiabatic time T, 0.053 S
Chromatic nonlinear time T 0.188 S
Transition gamma jump A 1.0
Transition gamma jump time Atjump 0.030 S

6.6. Simulation of Longitudinal Motion

The following figures show various examples of longitudinal bunch evolution,
as exhibited by the UAL longitudinal simulator. The conditions are indicated in
the captions, and in the inset parameter boxes. (The contents of these baxes are
not readable in the figures shown in this text, but, using the GUI, the boxes can be
resized for readability.) In each case 10,000 gold ions are tracked for for some thou-
sands of turns, and the distributions are updated every 100 turns. The simulation
uses a realistic representation of the RHIC accelerator. In FIG’s 6.4 and FIG 6.5
the figures are grouped into quartets defined in the figure caption. In longitudinal
phase space plots the abscissa is longitudinal phase ¢ and the ordinate is AE/(pgc).
“Mountain range” plots (which are commonly available in the control room using a
longitudinal profile monitor) consist of a series of one dimensional plots with beam
charge density represented by color code, or by shading, at regular intervals. By
shifting the plots up the plot as time progresses, evolution of the longitudinal beam
profile is displayed. The three dimensional spatial bunch distribution is exhibited
in the upper left corner of each quartet.

6.7. Longitudinal Dynamics Near Transition

The condition that must be satisfied for the adiabatic analysis described so far

to be valid is
1 dQ
02 dt,

Stating this in words, during unit advance of longitudinal phase, the fractional
change in Q is small compared to 1. This condition cannot be met at transition
since (1:¢/Bo), and hence g, vanish at that point. Redefining the time variable ¢,
to be zero at the instant of crossing transition, the beam energy evolves according
to

<< 1. (6.64)

v = + vt (6.65)
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FiGURE 6.4. Top: Particle distribution just after injection of
slightly over-sized 10000 particle beam. Bottom: Particle distribu-
tions 100 turns after injection of the same beam. Counterclockwise,
starting at upper left, the figures are 3D space, longitudinal phase
space, transverse phase space, and turn number vs. longitudinal.
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Some form of alternative analysis (such as numerical simulation) has to be per-
formed during a time interval containing the transition time. The length T, of an
adequately long interval can be obtained by working problem 6.4.

Another complication of transition crossing is that, because the particles have
different synchrotron oscillation amplitudes, and hence different values of (g, they
do not all cross transition at the same time. This means that, in principle, the time
origin has to be defined for each particle individually. For beams of small enough
longitudinal emittance this effect is negligible since {2 is essentially the same for
all particles. But for bunches that nearly fill the stable bucket the effect becomes
important. In fact, in that limit, some loss of particles out of the stable bucket is
inevitable. Again this effect is best studied numerically.

To quantify the nonlinear effect one defines a “chromatic nonlinear time” Ty,
such that, for a particle of maximal energy offset +d,.x, the transition-crossing
time is shifted by +7},. As a following problem, Ty,; can be derived using formulas
given previously. A typical numerical value is given in section 6.5.

If nothing else were to be done, the beam would become unstable after transi-
tion crossing, and it would blow up inexorably and be lost. One therefore switches
the RF phase as has been discussed previously. The time taken for this phase
switch to occur can be assumed negligible relative to the other times that have
been discussed.

If beam degradation during transition crossing is too great some other longitu-
dinal gymnastics are called for. Because of the large inductance of superconducting
(or any other) magnets, it is typically not practical to increase 7; by increasing
the magnetic ramp rate. But recall from Eq. (6.52) that ; depends on lattice
properties and hence ~; can potentially be increased by shifting @), toward lower
values as the beam energy increases through transition. This is done by impulsively
altering the currents in some lattice quadrupoles. Of course this cannot be done
instantaneously. For the example given in the next section, for a jump A~y = 1,
the time taken is Atj,mp = 30ms. This increase the effective value of v; by a factor
of 60 which, according to Eq. (6.67), reduces T, by a factor of about 4.



96 6. LONGITUDINAL DYNAMICS

PROBLEM 6.4. For times t close to the time of transition crossing, show that
the synchrotron frequency is given approzrimately by

, |t
02 ~ T—L (6.66)

where

E;32+3 1/3

T= (ot tﬁ”f —) (6.67)
QV[cosde|yhwle,

Time T, is referred to as the “characteristic nonadiabatic time”. Typical values for

T. and other parameters are given in section 6.5.

PROBLEM 6.5. Estimate the chromatic nonlinear time Ty, to be
‘051 + 1-56[2)(smax7t|
Vi

SIMULATION 6.3. Reconstitute the simulation illustrated in FIG 6.6. In that
figure, to illustrate phase space evolution, an unrealistically small emittace bunch
(especially as regards energy spread) was used. Alter the phase space before tran-
sition to be better matched and to almost fill the stable bucket. Then calculate the

growth of all three emittances €., €,, and €, as gold ions are accelerated through
transition in RHIC.

Tw =

. (6.68)
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FIGURE 6.6. Series of distribution snapshots (every 1000 turns
for a beam of 10000 particles) starting just before, and ending
just after transition. The RF phase is jumped at the instant of
transition crossing.






CHAPTER 7

Decoherence and Filamentation

7.1. Introduction

Even in electron rings, where some damping due to synchrotron radiation is
to be expected, the damping is so weak that the Courant-Snyder invariant of any
one particle is, in fact, almost constant for thousands of turns. The sensitivity
of the beam position monitors (BPM) used to record such motion are usually “in
the noise” unless a bunch of some large number N of co-moving particles, equal
to millions or more, are sensed. If all of these particles were exactly superimposed
then the observed signal would simply be N times greater than the signal from a
single particle. Of course this is not the case. Commonly there is some physical
phenomenon limiting the density of particle in phase space, with the result that
the more particles there are present in a bunch, the larger the phase space volume
containing all particles tends to be. Even so, if all deflections in the ring were linear
(as that term has been defined in earlier chapters) then the signals induced in a BPM
would be very nearly the same as that of a single, magnitude N “macroparticle”
situated at the centroid of the moving bunch. Again, this is unrealistic, since the
linearity requirement is never met exactly.

Many effects differentiate bunch motion and single particle motion. Some of
these, such as space charge forces, including beam-beam forces in colliding beam
facilities, beam wall forces, and coherent synchrotron radiation, are further compli-
cated by the need to treat the charges both as sources (from which force fields have
to be calculated) and dynamical objects whose trajectories need to be determined.
Other multiparticle topics, such as feedback and stochastic cooling, are complicated
by the fact that external pickups and kickers are implicated in the bunch dynamics.

To avoid these complications, in this chapter, particles are assumed to not
interact with each other, or with other “external” apparatus (not including the
magnets and RF cavities making up the basic lattice.) Even so, there are impor-
tant multiparticle effects, that go by names such as filamentation, decoherence,
Landau damping, and beam echos. Even though these phenomena are all based on
essentially the same basic physics, the different terms are used to distinguish among
seemingly different observed phenomena. These are the topics of this chapter.

7.2. Experimental Observation

An example of filamentation from CESR[18] is exhibited in FIG 7.1. This data
was obtained only by simulation, but signals observed in real life were in semi-
quantitative agreeement. For this plot a bunch of electrons was injected off-axis
and tracked for 1000 turns. The centroid displacement is calculated each turn and
recorded as a point on the plot. Since this is an electron beam, some damping, due
to synchrotron radiation, is expected. But the observed damping time (seen from

99
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FiGUure 7.1. Multiparticle decoherence. Using the modeling pro-
gram TEAPOT, an appropriately distributed “beam” consisting of
200 macroparticles, og/E = 0.0006, is tracked for 1024 turns and
the horizontal centroid coordinate is plotted each turn.

the plot to be about 700 turns) is some 10 times shorter than can be accounted
for by radiation damping. In this case the nominal tune setting has @, = @, and
the chromaticities were large and highly unbalanced, @), = +5, @, = —20, (in
connection with a study of an effect called “chromaticity sharing”). The data of
FIG 7.1 look very much like what would be observed in single particle dissipative
motion with a damping time of 700 turns. The term “Landau damping”, applicable
in this case, includes the term damping even though there is no dissipation anywhere
present in the system. The effect is also known as decoherence. In a bunch of
particles injected off-axis, if the bunch dimensions are smaller than the offset, all
particles have sufficiently the same amplitude that they each contribute the same
amplitude to the centroid signal. But there is inevitably a tune spread; call it AQ,
typically a part in a thousand or so. With A@Q = 0.001, two particles with identical
starting conditions, but with tunes differing this much would, after 500 turns, have
phase space phase advances differing by «. In this condition their contributions
to the centroid amplitude would cancel. This would give the centroid motion the
appearance of being damped, even though there is no actual dissipation present.
This phenomenon is known as “decoherence”, conveying the notion that particles
initially in phase, gradually drop out of phase over multiple turns.

The fundamental tune spread causing the centroid damping visible in FIG 7.1
is due to momentum spread. In the presence of large chromaticities this causes
the large tune spread that causes the observed decoherence. This form of damping
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is present, even if the lattice is perfectly linear. The result is the approximately
exponential damping observed in the figure. It will be seen in the next section that
the apparent damping due to decoherence is not necessarily exponential, whether
it is observed in the laboratory or in a simulation.

Furthermore, because of the relatively small number of particles used in this
(or any) simulation, the damping cannot be expected to be faithfully represented
over times much longer than are shown in the plot. For such a small number of
particles as 200, once the apparent centroid motion has dropped to some “floor”
value, it can be expected to exhibit erratic motion depending on the accidental
constructive and destructive combinations of the particles present.

The phenomenon of filamentation is closely related to the decoherence just
described, in that the effect is due to tune spread. The different terminology is
used to convey the idea that the tune spread in the case of filamentation is due
to nonlinear forces (of the RF waveform in this case). An example of longitudinal
filamentation was shown in the lower left of the sequence of plots in FIG 6.4 and
FIG 6.5. These are phase space plot that corresponds to the “mountain range
plots” shown in the same figures. Nonlinearity causes the longitudinal tune to
depend on longitudinal amplitude. As a result the rate of revolution in phase space
changes with increasing phase space radius. This causes the beam extremities to
“shear” gradually as time advances. According to Liouville’s theorem, this process,
even though it depends on nonlinearity, should still preserve the local density of
particles. This is not contradicted by the figure. The final figure in the sequence o
plots ending with FIG 6.5 shows the same phase space distribution a long time later,
after the extremities have completely wrapped around many times. The wispy tails
have become so narrow that they deserve to be called filaments. This picture is
still consistent with conservation of local phase space density. But this has become
academic because the filaments are so skinny and so hopelessly entwined with areas
initially devoid of particles. One could say that vacuum has been stirred into the
fluid. For all practical purposes this has reduced the density of particles in phase
space. This still does not contradict Liouville’s theorem. But, for all practical uses
of the beam, its density has been diluted. The corresponding emittance increase
due to filamentation can be inferred from the data inserts shown in the figures.

7.3. Analytic Treatment of Decoherence

The decoherence and filamentation phenomena mentioned so far can be anal-
ysed theoretically. As well as knowing the distribution of amplitudes it is necessary
also to know the dependence of the tunes on the transverse and longitudinal am-
plitudes. Dependence of tunes on amplitude for the racetrack.sxf file are shown
in FIG 7.2,

Phase space evolution can be studied with plots like FIG 7.3, which shows
(z,p) betatron phase space. Such plots, showing a particle’s position each turn, are
also known as “Poincaré plots”. Actually, in order to suppress the dominant, small
amplitude evolution, this is a Poincaré plot in a frame rotating at a rate such that
a small amplitude particle appears not to move at all. Vectors in the figure show,
therefore, changes in position over and above what their linear motion would cause.

The scales have been adjusted so that (linearized) motion in phase space is
along circles centered on the origin, with phase advance per turn Apug. Scaling p
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tune vs momentum curves for racetrack lattice neede

FIGURE 7.2. Average transverse tunes exhibited by a single par-
ticle executing longitudinal oscillations in the racetrack lattice,
for various chromaticities @, and @,
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FiGUure 7.3. Evolution with turn number ¢ of a point P in be-
tatron (horizontal) phase space, as viewed from a frame rotating
at nominal phase advance per turn po. The trigonometry of this
figure only makes sense for small perturbations (Ap << R) which
is assumed.
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to be a length, and assuming the beam is Gaussian and isotropic in phase space,
the beam distribution can be expressed either as Pg(R) or as P,(z)P,(p), depend-
ing on whether polar or cartesian coordinates are employed. The particles are
also distributed with distribution Pg(g) in § which is the maximum value (as the
particle oscillates longitudinally) of its fractional momentum deviation dp/p. The
distributions are given by

1 x?

Py(z) = QWUGXP(_W)’
Pyp) = ——exp (= 25 (7.)
p\D) = o exp 292 ) .
Pr(R R R?
Poylen) = P Py(p) = TR o pay = Tesp (- 1),

T

The last distribution can also be expressed as a joint probability distribution
Prs(R,®) = Pr(R)/(2m). In every case the probability of a particle lying in
a differential interval of the subscripted variable(s) is obtained as the P-function
multiplied by a differential (or product of differentials) of the indicated variable(s).

To start the decoherence investigation a “kick” Ap is administered to every
particle in the beam at i = 0 and hence also to the beam centroid. Motion of
a particle initially at point P is shown in FIG 7.3. If every particle advances at
the same angular rate, the centroid does the same and the centroid radius remains
constant. But, in general, since u(R, ®,d) depends on the location of P, as well as
on 9§, the particle motions “decoherere” causing the centroid amplitude to “damp”.

Digression. There may or may not be a subsequent recoherence. The predomi-
nant decoherence/recoherence occurs through each cycle of synchrotron oscillation.
As the energy of a particle oscillates due to synchrotron oscillation, the particle
tune is too small when the particle energy is positive (relative to the reference
particle). As a result its betatron phase accumulates negatively. On the other
hand, when the relative energy is negative the betatron phase accumulates posi-
tively. During one complete cycle of synchrotron oscillation the net betatron phase
accumulation is zero to excellent accuracy. At the instant the transverse kick is
applied the longitudinal phases are distributed uniformly. Thereafter, depending
on their starting longitudinal phase, some particles initially gain betatron phase
and others lose betatron phase. This causes decoherence and (transverse) centroid
damping. At a later time, exactly one synchrotron period after the initial kick, ev-
ery particle, whatever its initial longitudinal phase had been, will have completed
exactly one cycle of synchrotron oscillation. As just shown, the excess betatron
phase accumulation during this time will have averaged exactly to zero. As a result
the bunch “unscrambles” itself, and reconstitutes the original just-kicked distribu-
tion. This phenomenon is commonly observed in most accelerator control rooms.
The reconstituted pulse is often referred to as an “echo”. The effect is simulated
in FIG 7.6. There are also situations in which even more complicated, even with
nonlinearity-caused decoherence, that exhibit echos. End of digression.

To simplify the present discussion, let us neglect synchrotron oscillation (either
because the beam energy spread is negligible or because we will be concerned with
times long compared to the synchrotron period). Averaging over the longitudinal
motion, any surviving (small amplitude, transverse) tune dependence is expressable
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FIGURE 7.4. On the left the betatron phase space distribution is
visualized as a sum of distributions, uniform over disks of radii suc-
cessively changing in steps of Ap. This permits deviations from the
unkicked distribution to be represented by positive and negative
distributions uniform over the “lunes” shown on the right.

as dependency of phase advance ;1(5)7 where 4 is the longitudinal Courant-Snyder
invariant expressed as the maximum energy offset.

We assume the transverse decoherence is due entirely to the “shearing” motion
along circles of different radius in phase space for different values of 5. This neglects
the small effect that, because of nonlinearity at large R, the transverse phase space
curves, even while remaining regular, become distorted (though not chaotic).

For points close to the origin in transverse phase space, and having small 3,
the shear is negligible and the distribution rotates undistorted, as if rigid. To take
advantage of this, FIG 7.3 is a snapshot (of the i’th turn) from a frame of reference
rotating at rate pg. The effect of kick Ap is to change the initial phase space
location of point P to (approximately)

Ap cos P’
—5

After the kick, the particle tune is ug + Au(R', 5), and its positions on subsequent
turns are indicated by short arrows in FIG 7.3. After i turns its coordinates are

zi(Ap, R, ®,0 . (cos ' . [~ sin @'
(p%((Ai‘R ® 65) = [ cosApi <sin q>'> + R sin Api < o8 &' ) . (73)

The centroid coordinates are given then by

()= [ oo [ (R momnio.

These formulas are impractical for calculation because of the complicated depen-
dence of @' on position P. Since the trigonometry of FIG 7.3 breaks down near the
origin, we assume

R'=R+AR=R+ Apsin®, & =0+A®>=0+ (7.2)

Ap << R. (7.5)
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Even with assumption (7.5), it is not legitimate to approximate ®' by ®. If
this approximation is made, Eqs. (7.3) and (7.4) give a seriously incorrect answer
even for Ay = 0 and ¢ = 0. This failure is at least partly due to the extravagance
of not taking advantage of the strong tendency for cancellation in pairs of particles
symmetric about the origin.

To take advantage of this cancellation, we reformulate the calculation by fol-
lowing instead the evolution of deviations from the unperturbed distributions as
suggested by FIG 7.4. (For the time being we suppress indications of 4 dependency
from the formulas, since they will be easily restored later.) Since volumes in the
plot on the left correspond to probabilities, the units along the vertical axis are
length—2 and the total “volume” is 1. Planning eventually to apply kick Ap to the
beam, the unkicked beam distribution can be re-expressed in terms of the particular
deflection Ap that will be applied.

The volume shown in FIG 7.4 can, on the one hand, be visualized as nested
“collars” of inner radius R — Ap/2, wall thickness Ap. The height of a collar is
constant and can be evaluated along the z-axis to be P,(0)P,(R). On the other
hand, the volume can be visualized as the pile of stacked disks shown in the figure,
with radius R + Ap/2 and

disk thickness = P, (0)( _ M) Ap= Bty - PrlBAD 0
dp /p=R 2wot 2mo?

When the beam is displaced by Ap along the p axis most of the probability
in any particular one of the stacked disks, for example the one with radius R,
can be regarded as unchanged; the entire change can be ascribed to an increase
in probability density in the positive-p “lune” shown on the right in FIG 7.4 and
a corresponding reduction in the negative-p lune. (Though the latter probability
density is negative the total probability density in the region remains positive.)
Since the entire deviation in this region comes from this particular disk and is
accounted for by these lunes, and the subsequent shearing motion respects ring
boundaries, it is sufficient to work out the subsequent evolution on a ring-by-ring
basis. From these distributions the ring centroids will then be found and finally the
overall centroid location.

Toward this end the lune (two dimensional) density can be squashed into an
angular (one dimensional) distribution. Furthermore the negative lune can be
dropped, compensating by doubling the positive-lune probability. With the area
of one lune being 2RAp, the volume it represents is equal to the lune area times the
disk thickness. Including both lunes, this volume is equal to 4R(Ap)? Pr(R)/(2ma?).
Since volumes represent probabilities, this quantity will be referred to as “deviation
probability”. Even though not normalized, this volume can be used for centroid
calculations as if it is a normalized probability distribution, since the extra volume
needed to yield unit total probability contributes no centroid shift.

Letting Pa°VdR stand for the deviation probability in range dR we have

_2Ap

mo?

PR (R) RPg(R). (7.7)
Because the shearing motion preserves the radius in phase space, P¢" is indepen-
dent of turn index i. When distributed in z, the just-kicked deviation probability
Pd*V(R)dR is uniform. Therefore, when distributed in ®, which is related to = by
x = Rcos®, the distribution is proportional to dz/d® = Rsin®. We therefore
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define a (normalized) angular probability distribution,

0 for ® <0
Ppo(®) =¢ (1/2)sin® for0< ® < 7. (7.8)
0 form < ®

This is a universal initial angular distribution, independent of R.
Then the joint probability distribution Pg,"(‘ﬁ defined so that Pg,"gdl?d@ stands
for the deviation probability in range dRd®, can be factorized

PRy (R, ®,i) = Pi™(R) Py (%, R, i). (7.9)
Initially it is given by
A
Py (R, ®,i=0) = P (R)Po(®,R,i =0) = —pRPB(R) sin @. (7.10)

Except for the eventual integration over R, all that is required is to evaluate an-
gular distribution Pg(®, R, ) as it evolves away from Pg o(®)—a one dimensional
calculation. Furthermore the R dependence allowed for notationally by the second
argument of Py (®, R, 1), will be present only to the extent the betatron motion is
nonlinear.

The centroid coordinates are obtained as the averages of x = Rcos® and
p = Rsin ® weighted by Pg?&’, (R, ®,1);
T _ [ 1 pder - (cos®
<p_,;(Ap)> 7/0 RPE™(R)AR | d® Py(®, R, i) sind |- (7.11)

Here the limits of the ® integration are not indicated. They can safely be set large
since, for finite i, the integrand vanishes exactly outside a finite range. At i = 0
the non-vanishing range is from 0 to 7 and for other values of i the range needs to
be extended only by Apmaxi where Apmax is the maximum possible tune deviation
from nominal.

To check for consistency, let us calculate the ¢ = 0 centroid location;

sin’ &

d® = Ap,
(7.12)

p_g(Ap):/ RdR/ d® Py (R, ®,i=0)sin® = Ap— /
J0 J0 0

as expected.
The only dependence on i in Eq. (7.11) is introduced via

®; = Oy + Apu(R, )i, (7.13)

which, for a particle with initial phase ®g, gives its phase after i turns. Any
contribution to Au(R,d) that is independent of R and ¢ causes no shearing and
has been subsumed in ®j. The leading dependence of Ay is then given by

Ap(R,8) = rR+rR> + -+ dyd + dopd® + - . (7.14)
After i turns the distribution originally given by Pg o, having precessed through
angle Apu(R,6) i, will have become Py ;(®, R, 6) = (1/2) sin(® — Ap(R, 8)4), (and
zero outside the central lobe.) This, along with Eq. (7.11), is exact in the small kick
limit where approximation (7.5) is valid, and the dependence is simple enough for
easy and accurate numerical evaluation. But, because of various other uncertainties,

great precision is rarely justified. This makes it sensible to approximate the angular
distribution in a way that will simplify subsequent calculations. Also we take the
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opportunity to introduce a more convenient azimuthal angle © in terms of which
the starting distribution is symmetric about © = 0;
™
0=o— 3 (7.15)

The approximate form to be used is

Gl Ap(R, 9)i)?

exp(—

V27ogt 20,
This form eliminates the need for the multiple cases of Eq. (7.8) and permits an
infinite ® integration range. The quantity og¢ is simply a dimensionless number
(an angle in radians) chosen to make the approximation in Eq. (7.16) as accurate

as possible. The value og; = (27)~!/¢ = 0.736 would match the quadratic variation
at ® = w/2, but we choose instead

Po.i(0,R,d) ~

). (7.16)

exp ( - %) - 27 or o = 0.695, (7.17)

which causes Eq. (7.12) to be satisfied, thereby avoiding a (small but inelegant)
error in the just-kicked centroid location. Substituting Eq. (7.16) into Eq. (7.11)
yields

%] _@—aprHDE /0
<$Z(Ap7 > A / dR_R? d@ ;e zﬂf?“ ( Sin O)
Di(Ap ) —00 V2mogg cos ©
(7.18)

2 1 o0 2 /g ; 00 7@_5
= Ap—; 7/ dRR?¢™ %7 < i A'u.7> / dO cosOe *iit (7.19)
TO* \/2woga, cos Api e

p—o /oo dRR%e % < sin A“(R’A‘S),’j (7.20)
204 Jo cos Au(R,0) 1

where the dependence on § has been restored to the notation. This formula, with

Au(Rﬁ) expressed, for example, as in Eq. (7.14), is the main formula describing

the effect of decoherence due to R-dependent tune caused by nonlinear betatron

motion. For small i, evaluating the integral numerically is easy. For large i, the

method of stationary phase may be applicable.[19]

Since there has been no averaging over § as yet, Eq. (7.20) should also be
valid with & replaced by §. The major effect of this would be evident in FIG 7.3
where the phasor amplitudes would vary sinusoidally because of chromaticity and
synchrotron oscillation. Whatever shearing this causes is exactly undone over a
complete longitudinal cycle, causing periodic decoherence/recoherence each period
of synchrotron oscillation. By performing these calculations it would be possible to
compare to a formula due to Meller et al.[20] but this has not been done. The
feature distinguishing the present calculation from Meller’s is that he assumed
no systematic dependence of tune on 5. It is not easy to compare formulas here
with his paper since the order of integation is different and he does not make the
approximation Eq. (7.16). (This should cause only small numerical differences.)

We continue, but now keeping just the term AM(R,S) = did (which permits
the R integration to be performed) and assume that § is distributed according to

Py(5) = % xp ( - %) (7.21)
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DECOHERENCE DUE TO MOMENTUM SPREAD
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Ficure 7.5. Time evolution of (fractional) centroid position
x/Ap, slope p/Ap, and \/z? + p?/Ap after initial deflection Ap,
viewed in a frame of reference rotating at the small amplitude tune,
as given by Egs. (7.23-7.25). An exponentially decaying function
1.2 exp(—0.38d;051) is also shown for comparison.

and average over d to obtain!

BAp) 1 [ . Ny
Ap U—g J. dé 0 exp ( ﬁ) cos(dyd 1) (7.22)
=1-(d U(ji)Z + 1(d U(ji)4 - L(d 052')6 + #(d U(ji)g +
! 3+ 753" 9.75.3" ’
(7.23)
and
T:(Ap) T[> .. 02N e T , (dyosi)?
Ap = fg—g' ; do § exp (f ﬁ) sin(d10)i = — E(dmgz) exp (fT)
(7.24)
The most directly observable quantity is the “decoherence factor”,
' o[ (Ti(Ap)\? | (Ti(Ap)\?
o) = (20" (Fdny: 725)

These functions are plotted in FIG 7.5. As explained previously, the quantities
7; and p; tend to vary slowly because they refer to a frame of reference rotating

Formula (7.23 is poorly convergent and can only be used for values of the argument less
than 2 or so.
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at rate pg. The corresponding invariant amplitude \/ﬁz + 77 varies even more
slowly. But when it is viewed as a vector in a stationary frame it rotates rapidly
and is interpreted as the betatron oscillation of the centroid. The magnitude of the
invariant amplitude is the same in stationary and rotating frames. This was the
basis for the statement made above that the “decoherence factor” Fj is the theoret-
ical quantity that can most easily be correlated with experimental observations.?
From FIG 7.5 it can be seen that the time evolution of Z; and p; are very different,
the latter falls off in more or less Gaussian fashion while the former rises initially,
then falls. Neither of these behaviors seems deserving of the name “damping”, but
the function F; falls off more nearly as the decaying exponential that is normally
associated with damping. To illustrate this point a pure exponential decay curve
that crudely matches F; is also shown in FIG 7.5.

When damping rates are measured experimentally in the control room, the ob-
served response is usually not a pure exponential decay. Rather, an initial transient
(that is hard to interpret and may be instrumental in nature) is followed by a curve
well fit by a pure exponential. An empirical recipe extracting damping rates has
been to select the range over which the log plot is most nearly linear as the signal
falls by 1/e typically this is from about 0.8 to about 0.3 of the just-kicked signal.
This is not very different from the range over which the exponential described in
the previous paragraph gives a tolerable fit to the theoretical response curve. Con-
sidering the only-semi-quantitave “absolute” accuracy of the measurements and the
lack of accuracy with which the various parameters influencing the phenomenon are
known, we therefore judge the exponential fit shown in the graph to be a reasonable
representation of the theory, for comparison with the experimental data.

We have obtained a simple prescription for predicting the “damping rate” a, dec
with which the centroid will be observed to damp after the beam has been pinged.
By particle tracking in the lattice under consideration (CESR in our case with
parameters corresponding to FIG 7.1), for a particle with invariant longitudinal
invariant equal to the r.m.s. value 6 =05 = 0.6 x 1073, the tune shift is found
to be AQ(os) ~ 1.5 x 1073, Assuming the dependence linear, this fixes the d;
coefficient in Eq. (7.14);

a, = 2mAQ(s) (7.26)
o5
Then the centroid amplitude varies as exp(—a,dect) = exp(—0.38 x 27 x |AQ(04)]i),
where time ¢ and turn number i are related by t = i/ fo, with fo = 0.39 x 10° Hz.
Then we obtain
Qg dec = 239‘AQ(0’5)‘f0 (727)
When parameters appropriate to FIG 7.1 are used, the predicted damping rate
is 1160s~!. This exceeds the rate inferred from the multiparticle simulation by a
factor 1.7. Considering the various uncertainties, this is probably as good agreement
as can be expected.

2Though more detailed information about the beam is measurable in principle, we are mainly
concerned with signals from the beam position monitors which contain only information about
the centroid.
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7.4. Simulation of Decoherence/Recoherence Echos

More than one of the decoherence phenomena mentioned above may be oper-
ative at the same time. This is illustrated in FIG 7.6, which was obtained using
the decoherence simulator on the racetrack lattice. Initially there is decoherence
in both horizontal and vertical motion due to the spread of tunes. That is, the
centroid motion “damps”. As discussed earlier, the centroid amplitude is expected
to recohere to give an echo after one complete synchrotron period and to repeat this
cycle at the synchrotron frequency. This is visible in both z and y motion. From
the graphs it is clear that the situation is a bit more complicated than this expec-
tation. Especially the < z > centroid does not return to its full starting amplitude.
This presumably indicates the presence of (betatron)-amplitude dependence of the
transverse tunes. These phenomena are to be investigated in assignments given
below.

Two views of the GUT used for this simulation are exhibited in FIG 7.7 and
FIG 7.8. As shown in FIG 7.7 the requested chromaticities are @}, = 20 and
Q;l = —20 in the basic lattice description. Modified entries can be typed into
those two slots. From the racetrack.sxf file one can infer that the names of the
chromaticity sextupoles are sextl and sext2. These names are to be typed into
the slots labeled b2f and b2d. Clicking on the setup button adjusts the strengths
of sextupoles with those names to achieve the desired chromaticities. Successful
completion of this process is printed.

For simulating decoherence a bunch of, say, 1000 particles is initialized, then
kicked transversely by the kicker element, and then tracked for, say, 1000 turns.
All three centroids < = >, < y >, and < s > are plotted every 10 turns. These
values are plotted in FIG 7.6.

The detailed simulation is controlled by the APDF file. Two such files are
shown in Table 7.1. How the kick is administered is governed by the line

<link algorithm="UAL::USPAS::0OneTurnKicker" elements="kicker" />
which is common to both APDF files. Propagation around the ring can be done
in element-by-element, kick code, fashion. This calculation is governed by the
teapot.apdf file. Alternatively the tracking can proceed by truncated power series
(TPS) tracking. This calculation is governed by the mapping.apdf file. For this
propagation method the maps from every bpm to its adjacent bpm are first calculated,
and then the map is used to evolve individual particles. Not shown in the APDF file
(for now) is the truncation order, which was 3, “octupole order”, for the simulation
shown in FIG 7.6.
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FIGURE 7.6. Beam echos observed one synchroton period (and
multiples thereof) after a beam is kicked both horizontally and
vertically in the racetrack lattice. Q) = 20, Q;, = —20.
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TABLE 7.1. Two APDF files for simulating the same decoher-
ence/recoherence phenomenon by two different methods—element-
by-element, and map tracking.

<apdf>
<propagator id="teapot" accelerator="ring">
<create>
<link algorithm="TEAPOT::DriftTracker" types="Default" />
<link algorithm="TEAPOT::DriftTracker" types="Marker |Drift" />
<link algorithm="TEAPOT::DipoleTracker" types="Sbend" />
<link algorithm="TEAPOT::MltTracker" types="Quadrupole|Sextupole|Multipole| [VH]kicker"/>
<link algorithm="TIBETAN::RfCavityTracker" types="RfCavity"/>
<link algorithm="AIM::Monitor" types="Monitor | [VH]Imonitor" />
<link algorithm="UAL::USPAS::0OneTurnKicker" types="Kicker" />
</create>
</propagator>
</apdf>
<apdf>
<propagator id="mapping" accelerator="ring">
<create>
<link algorithm="TEAPQT::MapTracker" sector="Default" />
<link algorithm="AIM::Monitor" elements="bpm" />
<link algorithm="UAL::USPAS::0OneTurnKicker" elements="kicker" />
</create>
</propagator>

</apdf>
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SIMULATION 7.1. Use the decoherence simulator to correlate decoherence time
with momentum-dependent tune spread. One can adjust the tune spreads by adjust-
ing the chromaticities. One can plot the tunes versus § by preparing initial particle
conditions for various values of §.

SIMULATION 7.2. By wastly reducing the number of bpm’s in the racetrack
lattice, speed up the decoherence/recoherence simulation that uses map tracking.

SIMULATION 7.3. Investigate the dependence of decoherence time on initial kick
amplitude. Since the kick amplitude is not available from the GUI it is necessary
to “hard code” the kick amplitude and recomplile that part of the code.




CHAPTER 8

General Transverse Motion

A linearized treatment of transverse particle dynamics was given in Chapter 2.
Here, starting from a more general formulation of the equation of motion, we include
the possibility of nonlinear deflections. The next few sections spell out the bending
effects of the simpler magnetic elements. Then the generalization from transfer
matrices to transfer maps, in order to include nonlinear effects, is discussed. The
following sections discuss symplecticity-preserving evolution algorithms. Finally the
discussion of FFT beam diagnosis, started in Chapter 4, is extended to nonlinear
effects.

8.1. Magnetic Deflections

The magnetic field of an ideal, erect, accelerator magnet can be expressed as

B 0 0B, [y 1 823y 2xy
BBU<1>+ or (7')_'—5—8’1‘2 .’17271/2 4o (81)

Though not indicated by the notation, the (constant) coefficients, B, and its deriva-
tives, are evaluated on the magnet centerline, in the interior of the magnet. Only
2 and y components are shown, since the fields are assumed to be transverse. Also
the fields are assumed to be independent of z (except for vanishing outside the
magnet). One can confirm immediately that V- B = 0 and that

x 0y s
VxB=|98/0z 0/dy 0] =0. (8.2)
B, B, 0

In fact the form (8.1) amounts to starting with a field for which only B, is non-
vanishing for x = 0, but is otherwise arbitrary, expanding it in powers of z, and
then extrapolating off the x = 0 plane using the Maxwell equations to obtain the
y dependendence and B,.

Using the Lorentz force law, the change in velocity dv, as charge () passes
longitudinal distance ds, is given by

my dv
— —=vxB=
Q ds/v M
X y s 0B, X y 8 1 628, X v S
By |v, vy v +8— Up Uy Vg 2 92 Vg vy ve | +--- .
0 1 0 T \y z 0 T 2zy 22 —y? 0

(8.3)

To treat such a magnet as a single “short” element, while allowing for fringe fields,
it is necessary to integrate this formula from well before the magnet to well after
it. The effect of passage of a particle through such a magnet are “kinks”, i.e.

115
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discontinuities Az’ and Ay’ in the slope coordinates ' = dz/ds and y' = dy/ds.
For a dipole (the first term) the bend angle Af (assumed small) is determined by

()~ () - () - Jor e (). o
Ay') = \aGw,/v,) pelQ
with the result that B,
c

AG = / ot (8.5)
This has neglected any variation of vy, x, or y as the particle passes the magnet.
From the derivation this result might seem to provide only a rough approximation
to the deflection. But, in fact, a thick magnet can be segmented into arbitrarily
many thin magnets. So this formulation can be the basis for accurate numerical
integration of particle orbits through (ideal) magnets. Because B, and pc vary
proportionally, Af has the desired property of being momentum-independent. Fur-
thermore A# is dimensionless as an angle must be.

For a quadrupole (the second term of Eq. (8.3)), the strength (i.e. inverse focal
length) ¢ is determined by

—r Az’ A(’Uw/vs)> / F@By/aT (—x)
= = = dS —_— 5 86
1 < Y ) (Ay') (A(vy/US) . pc/Q Y (86)
with the result that 0B,/
¢ i
g= [ ds —2 . 8.7
/ pe/Q (8.7)
Like Af, ¢ is a purely geometric quantity, an inverse length. It is independent
of particle momentum and charge which cancel against B,. The inevitability of

opposite-sign focal properties in the two transverse planes has also been exhibited.
For an erect sextupole (the third term of Eq. (8.3) the strength S is determined

by

Lg (”32 - y2) = (M) -1 /ds <0"By /02 <$2 N y2> : (8.8)

2 2zy Ay 2, pe/@Q 2y
with the result that 2

S = / c0”By/0x" (8.9)
pe/Q

Expressions like A6, g, and S are known as “field integrals” because integration over
a complete element is implied. Higher pure multipole magnets are defined similarly.
A potential source of error to be aware of comes from the factor 1/n! that enters
the relation between multipole strength and 0B™/9z™. This factor comes from the
Taylor series expansion formula. For the sextupole the factor is 1/2.

In spite of the fact that such magnet fields violate Maxwell’s equations, it is
customary to treat the fields of ideal magnets as uniform within an effective or
“magnetic” length I,,, and dropping discontinuously to zero outside that length.!
In this convention the field B, and its derivatives are evaluated at the longitudinal
center of the magnet and 1,,, is adjusted to match the field integral over the magnet.
For this reason [,,, tends to be close to, but not exactly equal to the geometric length
l. Repeating the discussion of thin elements made earlier, though these magnetic
strength definitions have the appearance of being crude approximations, they can
be made increasingly accurate by reducing [,,. (This accuracy is vitiated by the

Within ADXF the notation for magnetic length l,;, isml which is distinct from the “geometric
length” [, notation 1. But, by default, m1 and 1 are taken to be equal.
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inevitable presence of longitudinal field components, present when transverse field
components depend on s. But in most cases the deflections caused by B, are
extremely small.)
In this approximation the above formulas become,
cB, cOB, /0x ¢’ B, | 0z*

g _ _ e
P T T T g (#10)

8.2. ADXF and SIF Element Strengths and Deviations

Within “standard input format” STF, which has evolved into MAD input format,
the strengths of magnetic elements can be expressed using the formulas just derived.
In particular, for quadrupoles and sextupoles, the leading factors in Eqgs. (8.10) are
expressed as

_ L 0B, _ caBy/am, K9 — 1 8233, _ (:82By/8m2, (8.11)
Bp 0Oz pe/Q Bp 0x? pe/Q
where the conventional “B-rho” quantity is defined by either of these equations or,
better motivated, by the first of formulas (8.10):
_ o dm _pe/@Q
(Bp) = ByA_g -
where, as usual, rather than canceling factors, it is convenient to retain the combi-
nation pe/@) which has S.I. units, namely volts.

As already implied, the merit in grouping factors into Bp is to reduce strength
parameters to purely geometric terms. The dimensions of K1 and K2 are m~2
and m~? respectively. These dimensions are appropriate for longitudinally variable
“thick element description” for which integration over the magnetic element re-
mains to be performed. Generally speaking, element strengths is SIF are expressed
as local strength functions, like K1 and K2. The convention in ADXF’s generic ele-
ment <element> is different; strengths are represented by integrated (over length)
values of local strength functions. Examples ¢ and S were given earlier. As has
been mentioned before, this distinction is purely cosmetic, and is unrelated to ac-
tual precision of representation. Actually, for backward compatibility, ADXF also
supports a MAD-like syntax which, other than being expressed in XML is equivalent
to MADS.

The main way in which ADXF extends MADS is that pre-existing elements can
be assigned new attributes such as magnetic field deviations. A simple example file
showing the syntax for including deviations is eq_-tune _fodo.adxf. In ADXF a dis-
tinction is drawn between uninstalled elements (in Etienne Forest’s PTC terminol-
ogy they are called “on-the-bench elements”) and installed elements. The latter are,
of necessity, fully-instantiated, meaning they have their own individual names, posi-
tioning, and strength deviations. The strengths shown in the eq_tune_fodo.adxf,
say for quadhf elements, are uninstalled properties, shared by all occurences of
quadhf elements in the lattice. Within ADXF there is an “inheritance” mechanism
in which an individual installed element, with its own individual name, can be
referred to a design element, such as quadhf, from which it inherits parameters.
Such an installed element can be assigned parameters that override or augment the
uninstalled parameters.

This can be illustrated by the following code fragment

K1

: (8.12)
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<elements>
<marker name="mk1"/>
<sbend name="bend" 1="1q" angle="deltheta"/>
<quadrupole name="quadhv" 1="1q" ki1="kql"/>

</elements>
which amounts to re-expressing MAD input language as XML, with an example
exhibiting inheritance:

<elements>
<sbend name="dOmp08" 1="3.58896" angle="-0.0151186"/>
<element name="bi8-dh0" design="dOmp08"/>
<mfield b="0 0 0.005476 0.033503"
a="0.0 -0.010166 0.024366"/>
</element>
</elements>

where the ”bi8-dh(” element is based on the ”dOmp08” design element, but with
field deviations described within the <mfield> tag which is associated with mag-
netic field attributes.

In ADXF, as in most lattice descriptions, magnetic field deviations are expressed
as multipole series. For a bending magnet the magnetic field, as well as the effect
of transverse positioning deviations (Az, Ay), are expressed as a (complex) series:

M
(By + iBy)lm = Bolm » _(bn +iay)((z — Az) +i(y — Ay))". (8.13)
n=0
The maximum multipole index M is usually fixed at a moderately large value,
such as 10, but with dynamic memory allocation M can be made larger, if desired.
When truncated power series (TPS) are used a highest retained power is defined.
Multipole terms with index higher than this are simply ignored in TPS calculations.
Field expansions for B, and B, individually are obtained by separating Eq. (8.13)
into real and imaginary parts. The factor l,,, has been intentionally left as a com-
mon factor on both sides of this equation. Note that this representation includes
the possibility of arbitrary roll angles around the longitudinal axis, even including
purely vertical bends. The actual factors expressing dipole field deviations in the
ADXF file are

bn = Bolmbn, and @, = Bolymay,. (8.14)
In particular, for an ideal thin sector bend, by = —A#. For an arbitrary sector bend
magnet this formula becomes

b
Af = —2sin"! 5“ (8.15)

Note that, like similar quantities introduced previously, bo is a “field integral”
quantity. Bend fields that depend on longitudinal coordinate s can be represented
numerically and accurately by longitudinal segmentation.

The coefficients in multipole series (8.13) can be related to other conventional
magnet strength parameters as shown in Table 8.1. Real and imaginary coefficients
R, and I, are defined by

(x4 iy)" = Ry + il,. (8.16)
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TABLE 8.1. Deflections caused by standard magnets and notations
for their strengths

|n R, I, bn Qn Az’ = fo Ay = B,
Horz. bend|0 1 0 Ab,, 0 —Af, 0
Vert. bend 0 A6, 0 A6,
Erect quad|l T y g=1/f 0 —qr qy
Skew quad 0 qgs=1/fs qsy qsT
Erect sext[2| z® —y” 2zy S/2 0 —%(av2 — 9 §2my
Skew sext ‘ . 0 S./2 %2.7:11 . T(Tz —?)
Erect oct |3|z® — 3zy®> 327y —¢° | O/6 0 *%(.TS — 3zy°) %(3-7'21/ —y7)
Skew oct 0 0:/6 Oﬁ"‘ (3z%y — %) Oﬁ“ (z3 — 3zy?)
Erect decaldfz® — 627y dzy(2® — y?)| D/24 0 — D (z" —62°y" +y') Lday(z® —y?)
Skew deca +y* 0 D,/24 | Zeday(a®—y®) Ze(z' —627y" +y)

The factors 1!, 2!, 3! entering the definitions of quad strength ¢, sextupole strength
S, octupole strength O, etc. are conventional. Notice, for example, the relation to
SIF syntax;

~ S  K2xL

by = 5= 5 (8.17)

Formulas giving transverse kinks are
Az' = — Bylp = —bpRp + anly, (8.18)
Ay' = Bylp = bl + @n Ry

Multipole expansions to express field nonuniformity are reasonably standard
for dipoles.? But magnet types other than dipoles have vanishing fields on axis,
which makes it necessary to replace the factor By if an expansion like Eq. (8.13) is
still to be used. Otherwise the coefficients, as measures of fractional deviation, can
be placed in one-to-one correspondance with dipole field multipoles, but with the
indices shifted by one. A common choice for an (approximately) erect quadrupole
is to write

dBY M z + iy)"
(b BY) + i1 BL) = (b ) (o + iy +107 3 (6 + mg)%y (8.19)
n=2 r

where R, is a reference radius, such as 1cm. The value of R, and the factor 1074
are normally chosen such that the numerical values of a¥ and b are of order 1
for “bad”, low order, multipoles and much less than 1 for high order multipoles in
well-designed magnets.

8.3. Nonlinear Magnetic Field Example

The outline of a typical horizontal steering magnet, viewed from downstream,
is shown in FIG 8.1, which also shows the same magnet rotated to steer vertically.
The measured, midplane, vertical magnetic field B, is plotted in FIG 8.2; it has
the form

B,(2,y = 0) = Byo(1 + baz® + byz?), (8.20)

2Actually expansion (8.13) is standard only in America. In Europe, coefficients are defined
initially in an expansion of a vector potential which is then differentiated to obtain a series similar
to Eq. (8.13) but with factors of n! and indices shifted by 1.



120 8. GENERAL TRANSVERSE MOTION

FIGURE 8.1. A horizontal steering dipole and the same magnet
rotated so that it steers vertically. The median-plane field and
its multipole approximation is shown in FIG 8.2. The analytic
description of the rotated fields is given in the text.

where By is the nominal value of B,. For this magnet the dominant multipole
imperfection coefficient happens to be decapole bs. Referring to Table 8.1 it can be
seen that this form can be continued off the median plane by

By(z,y) = Byo(1 + ba(2? — y°) + ba(a” — 62%y* +y*)). (8.21)
This also yields the other field component;
B, (z,y) = Byo(b22zy + badzy(z? — y?)). (8.22)

Note that the field uniformity of the actual magnet is somewhat better at small
amplitudes than either multipole would give by itself. This illustrates the not
uncommon possibility that truncation of the multipole series can, by defeating
desirable cancellation, yield overly pessimistic field values. Also plotted in FIG 8.2
is the “wrong field component” B, (z,y = 10) plotted as a function of z, along a
line displaced to positive y = 10 mm.

If the steering magnet is rotated by 90 degrees (anti-clockwise to an observer
looking from downstream, so that positive horizontal deflection becomes positive
vertical deflection) the new multipole expansion can be obtained from series (8.21)
and (8.22) by transformations suggested by the labels on FIG 8.1,

—B,(2,y) = (—Bgo)(1 + ba(y? — %) + bs(y* — 692 + z*)), (8.23)
By(2,y) = (=Buo) (b22y(~2) + bady(~2)(y* — z°)),
where the nominal field is now B, with sign opposite to Byy. Hence we have
By (7,y) = Byo(bs2zy — bsday(z? — y?)), (8.24)
B, (z,y) = Bao(1 — by(2® — 9?) + ba(z* — 62°y* + ).

Renaming the original multipole coefficients bs g1a and by 14, to make this form
match expansion Eq. (8.13) it is necessary to introduce skew coefficients as and a4
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Ficurr 8.2. Midplane magnetic field B, in a transversely-
limited erect dipole magnet. Curves with sextupole or decapole
“turned off” are also plotted, as well as a curve showing the de-
capole contribution to the off-median-plane, “wrong field compo-
nent” B, (z,y = 10mm) (displaced upwards by 250 Gauss for plot-
ting purposes.). The multipole coefficients are b, = 6.99m~2 and

by = —1.46 x 10° m~—*. When the same magnet is used for verti-
cal steering the non-vanishing coefficients are a = —6.99m 2 and
as = —1.46 x 10° m~*. The field calculation is due to Sasha Tem-
nyck.

into Eq. (8.18);
By(x,y) = Bgo(—a22xy — asdzy(z? —y?)), (8.25)
Ba(2,y) = Bao(1 + az(2® — y*) + as(z* — 627y +y*)).

If the field of the erect magnet is described by the series in Eq. 8.13 with the
parameter set (Bg = By, b2, as = 0, b4, as = 0) then the field of the same magnet,
anti-clockwise rotated by 90 degrees, will be described by the same series (8.13) with
the parameters set (Bg = Byo,ba = 0,02 = —ba o1, b4 = 0,a4 = bs 01a). In general,
the multipole coefficients a,, and b,, for a rotated magnet are linearly related to the
old a,, and b,,, which coefficients depending on the angle of rotation.

8.4. TRANSPORT Matrix Elements

8.4.1. “Canonical” Coordinate Definitions. A notation for describing low
order transfer map elements was originated by Karl Brown, at Stanford, in his
program called TRANSPORT. This program was initially devoted to spectrometer
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design but the notation has been adopted for accelerator lattices, and the elements
referred to as “TRANSPORT elements” even though, by now, their definitions
have been slightly changed. The details though purely conventional, have to be
understood for any inveestigation to higher than linear order. In TRANSPORT
notation the general spatial motion of a point particle in a lattice is described by
it 6 displacements from an ideal, or design, or reference particle;

Tr r
To z'
T3 | | Y
=1 =1y (8.26)
Iy 4
g 1)

where /¢ is longitudinal deviation from bunch center and the other components
have been defined earlier. Small amplitude propagation from point (0) to general
downstream point in a lattice can be approximated by the teading terms in a Taylor
series;

6 6
Jj=1 =16 k=j

One detail, now obsolete, was that by TRANSPORT convention, to reduce storage
requirements and evaluation time, Brown chose to keep only “above diagonal” el-
ements of Tjj,. i.e. the k summation starts at £k = j. This exploits the fact
that z;(0)zx(0) = z4(0)z;(0). So, when comparing matrix elements, one has to
check whether the corresponding off-diagonal elements are symmetric, or have had
above-diagonal elements doubled and below-diagonal elements dropped.

A more significant distinction between conventional matrix element definitions
concerns the choice of components for x. In order for Hamiltonian dynamics to be
applied most directly to particle propagation, true “canonical” coordinates should
be used. But, to “geometricize” lattice theory, one divides all momentum compo-
nents by the total momentum pg, yielding a form of “scaled” phase space. (This,
basically, is the source of the « factor in the definition of invariant emittance.) In
UAL the longitudinal spatial coordinate is usually referred to as —ct which has units
of length, with the sign adjusted so coordinate increases toward the front of the
bunch. Following MAD, which follows MARYLIE, the longitudinal “momentum” is
taken to be AE/(poc). Only by choosing these coordinates to be canonical can the
requirements of symplecticity be exploited economically. All these definitions re-
duce to the original TRANSPORT definitions in the small amplitude, fully relativistic
limit.

I xr
T Pz /Po
T3 | _ Y

X = = , 8.28
Ty Py/Po ’ ( )
Ts —ct
Tg AE/(poc)

From Hamiltonian point of view the fifth component is ¢time, but for convenience this
component is expressed as a distance by multiplication by ¢. For fully-relativistic
motion this is, in fact, longitudinal displacement from reference position. The actual
numerical values of the matrix elements depend on what conventions have entered
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the coordinate definitions. Fortunately the R;; elements are largely independent of
these choices and conversion of the T}j;, elements is fairly straightforward.

8.4.2. Linear Matrix Elements in a “Toy” Lattice. To illustrate the
evaluation of matrix elements, and to check the UATL code, matrix elements for the
eq_tune_fodo “toy” lattice illustrated in FIG 3.1 will be worked out and compared
with output from the code. According to Egs. (3.11) and (3.12) the transfer matrices
through one complete full cell are given by

(2) 1—-2¢%1*  20(1+ ql)) COS fi1 By sin
M = - (829
11 (—2q2l(1 —ql) 1- 2¢°1? —sin ul/ﬂim) COS 41 ( )

MW ( 1—2¢%12 20(1 — ql)) B COS [i1 B](y) sin fuq
1 =2¢°1(1+ql) 1-2¢°1° — sin gy /By’) cospy )

where expressions for B](z) and B](y) were given in Egs. (3.16).
The diagonal R-matrix elements describing propagation through the fullcell
can be read off by inspection;

Ri1 = Roy = R33 = Ryq = cos iy, (8.30)

and, because § is conserved
R55 = R66 =1. (831)

Off-diagonal elements are
Ris =sinp 8", Roy = —sinp /81", (8.32)
R34 = Sin /l,lﬁl(u), R43 = — SlIl,ul/B](y)

Since the deflection in sextupoles is quadratic in = and y the sextupoles do not
contribute to R. The deflections in quads depend on ¢ but they are also linear
in ¢ and y, so quads do not contribute to Rs; and Rgg. But the deflection in the
bending element (here treated as if at a single point) is (inversely) proportional to
momentum. It is left as an exercise to show that

1
Rig = 21(1 + 5zq)Ae, Ros = (2 — lg — I’¢*) A\6. (8.33)

Working out these formulas also makes a good start toward working out the T}y,
elements.

One can check the R matrix elements with the values shown in Table 8.2. (Note
that, as displayed (for programming convenience) this printout actually reads as
the transpose R”.) For this data the relevant numerical values were

nhalf := 200

lhalf := 10

q := 0.061909
deltheta := 0.031415
cellmu := 1.33517

sl := 0.05767

s2 := -0.10939
betaxl := 33.302
betayl := 7.8345
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TABLE 8.2. R;; elements for a weakly-coupled system

0.231876 -0.029239 0.000000 0.000000 -0.031317 0.000000
32.36138 0.231876 0.000000 0.000000 -0.822722 0.000000
0.000000 0.000000 0.233472 -0.124089 0.000000 0.000000
0.000000 0.000000 7.619439 0.233472 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 1.000000 0.000000
0.822722 0.031317 0.000000 0.000000 -0.012908 1.000000

PROBLEM 8.1. Adjust the input parameters to eq_tune_fodo.adxf to replicate
the R matriz listed as Table (8.2). The value nhalf=200 has been chosen to be large
enough to make this a big accelerator, to de-emphasize the dipole focusing effect.
Give two matriz elements that are very nearly equal, but would be exactly equal,
if there were no bending elements in the FODO cell. The surviving x,z coupling
figures prominently in the following problems.

PROBLEM 8.2. Use formulas in this section to derive all R matriz elements
except Rs;, i=1..6. Note that Rgg=1 and Rg;=0 for i# 6 since magnetic elements
cannot change the particle energy or, therefore, §.

PROBLEM 8.3. Using any matriz processing device you have available, such as
programmable hand calculator or spreadsheet program, to calculate the determinant
det M. Is this correct? If, as a last resort, you choose to work out the determinant
by brute force calculation with a matriz-deprived calculator, be sure to observe that
there are no off-block-diagonal elements coupling either x or z to y. This means the
y elements can be treated as a 2 X 2 matriz and the x and z components as 4 X 4.

PROBLEM 8.4. Refer back to formulas in the section 5.1, “Analysis of a 4 x 4
Symplectic Matriz”. Those formulas emphasized coupling between x and y but the
same formulas apply to the x and z coupling in the matriz M under study. Simply
suppress the third and fourth rows and columns. Since any elements dropped having
indices corresponding to x or z vanish, the remaining 4 X 4 maitrixz can be analysed
as in that section. Evaluate the elements of the off-diagonal submatrices B and C
and show that the coupling terms of our (now 4 x 4) matrix M do not shift either
horizontal or longitudinal tunes.

PROBLEM 8.5. Use Eq. (5.3) to derive M~ and confirm the result to be correct
by evaluating M~'M. This proves (or not) that M is symplectic. Unit determinant
is a necessary, but not sufficient condition for symplecticity.

PROBLEM 8.6. Previously all but the elements Rs;, i=1..6 have been checked
analytically. Use symplecity to determine the Rsq, Rsa, and Rsg elements.

8.4.3. Second Order Matrix Elements For Individual Elements. In
working out the Tj;; elements for the full FODO cell one must first have second
order expressions for the individual elements. For a thin quad the deflections are

Az = —

aq 1 q
N — dqr, Ay =——y=qy—90qy. 8.34
TNt Ay =-—sy~ay—day (8.34)
These formulas yield second order thin quad elements

To16 =q, Tuze = —q. (8.35)
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FI1GURE 8.3. Labeling of points in a full cell of the eq_tune_fodo lattice.

Referring to Table 8.1, for a thin sextupole the deflections are given by

S
AQZI = _5 (2132 - y2)= Ayl = S;Uy (836)
which produce
S S
To = 3 Ty33 = 3 Ty = S. (8.37)

To quadratic order in d the deflections in a thin dipole are given by

A
Az = _1+—05 =—AG+ A5 —ANGS*, Ay =0, (8.38)

which give
Toee = —Af, (8.39)

as the only non-vanishing second order matrix element.

8.4.4. Concatenation of Matrix Elements. Even for the simplest possible
nontrivial lattice (namely the eq_tune_fodo full cell we are working with) it is fairly
laborious to work out even second order elements. (This is known as “concatenat-
ing” the maps sequentially.) Still it is worth working out a few to get a feel for what
is involved. Within UAL this concatenation is performed using differential algebra
(DA) on truncated power series (TPS) but here a more elementary approach is to
be used for calculating some of the elements.

Labeling of intermediate points is given in FIG. 8.3. Let us work on only hor-
izontal motion. To obtain the subsequent effect of a deflection at one point it is
useful to define an “influence function” or “sine-like function” G,(j,4) that gives the
effect at element position j of unit deflection at position i. As this function propa-
gates through subsequent elements it neglects all but linearized deflections. Extra
deflections at downstream points will each launch their own sine-like contributions.
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For our lattice it is straightforward to work out all needed G,(j,7) entries.

G.(5,1) = 2A(1+ql), Go(5,1) = 1 - 241,

G.(5,2) = gl +ql?, G.(5,2)=1- éql — ¢*1?, (8.40)
G.(5,3) =1, G (5,3)=1—dl,
Gz(5,4):%l, G;(5,4):17%qz,
G.(5,5) =0, G'(5,5)=1.
(8.41)

Defining Az’ (i) to be the ezact deflection at location i, propagation from 1 to 5 is
given by the exact equations

5
z(5) = cospxz(l) + Bl(m) sin py z' (1) + Z G, (5,1)Az' (i), (8.42)
i=1
5
'(5) = — ﬁsinul 2(1) + cospy a'(1) + Y Go(5,1) A (i).
1 i=1

Here a sine-like contribution is added for each perturbation (i.e. at sextupoles) and
(if 0 # 0) at bends. These equations are deceptively simple. The ezact deflections
Az'(i) can only be obtained by exactly accounting for all preceeding deflections.
But, since we are satisfied to calculate only quadratic terms, it is easy to drop terms
that don’t contribute. Eqs. (8.42) are also somewhat ambiguous as to the treatment
of momentum dependence. Certainly the deflections depend on momentum, but it
is not clear whether § is to be treated as a parameter in a 2D approach or as a
component of x. We will follow the latter, 3D approach.

We plan (here) to keep only linear terms, x, ', and §, and quadratic terms z2,
za', %, 62, £, and 2'8. Of course there is also the possibility of a constant term
appearing. Even though it is not mathematically consistent, let us refer to such a
constant term as also being “linear”. The only possible justification for doing this
is that the presence of such a term really implies a shift of the equilibrium orbit
which could be used to suppress this term.

There is an important physical distinction between “geometric” terms z°, zz’,
and /> and “chromatic” terms 62, 24, and 2'5. The former terms are nonlinear
functions of the dependent variable x. They have the property of becoming arbi-
trarily large as « or 2’ becomes large. Such terms inevitably cause motion to be
unstable at sufficiently large amplitude. (The only exception to this behavior is
when the nonlinear term is, by itself, unphysical. This can occur when a force that
is well-behaved at large amplitude, such as a beam-beam force, is approximated
by a term, such as a cubic, which diverges at large amplitude.) This leads to the
concept of “dynamic aperture” that will be pursued later on. The chromatic terms
actually leave the theory linear. All such terms could be incorporated exactly by
treating § as a parameter rather than as a coordinate. This could be regarded
to be a more elegant, though less straightforward, approach. The leading effect
of chromatic terms is to cause the equilibrium orbit to be displaced more or less
proportional to d and to cause the tunes to depend on momentum. In practice, the

2
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optical degradation due to § is often at least as serious as the degradation due to
nonlinear terms.

Suppressing the (0)’s from the initial displacements, Eqgs. (8.42) can be ex-
pressed in terms of R-matrix elements

5
2(5) = Rux+ Ria' + Rig 0+ Ga(5,4)Ax’ (i), (8.43)
i=1
5
37’(5) = RQ] x + R22 ZEI + R26 ) + Z G;(5 Z)AQZI(Z)
i=1

Apart from having introduced the term linear in ¢ the only new feature of these
equations is that we need retain only quadratic terms in the final summations.
To calculate to this accuracy it is adequate to calculate them using the following
unperturbed (i.e. first order accuracy) trajectory.

z(1) = x,
z(3) = (1 —gql)z + 12" + AH% J, (8.44)

) 1
z(5) = (1 —2¢%1%)x + 21(1 + ql)z' + 21(1 + qu)AG 5.

The second order deflections at the various points in the cell are

Ax'(1) = qx(1)6 — % (1)

Az'(2) = — A§S>

Az'(3) = —2qz(3)0 — Sa 2%(3), (8.45)
Az'(4) = — A2,

Az'(5) = qu(5)d — % 2% (5)

To get an element T, or Thjx for the full cell we substitute into Eq. (8.45) from
Eq. (8.44) and then substitute the result, along with Eq. (8.40), into Eq. (8.43).
Then the Tj; elements are obtained by matching terms. For example the coefficient
of £? in the expansion of z(5) is

Tig = —S1l(1+ql) — S21(1 — ql). (8.46)
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All second order elements for z and =’ are:
T]]] = — S] l(l + ql) — SQ l(l — ql)Q,
Tiga = — Sol®,

1 .
Tige = —2A601(1 +gl) — ZSQAQZ 3,

Tiis = — 2S5, 1%(1 = ql),

Tiie = 4¢°1* — SeAGI(1 — ql),

Tiss = —2q1° — SAQ1°, (8.47)
Torr = — So(1 — 3¢°1* +2¢"1"),

Topo = — Sol?(1 — ql) — 25, 12(1 + ql)?,

1, . A 1.
Togs = — AB(2 — 2q1 — 3¢°1%) — 1% IA6%(1 —ql) — 25, I A6 (1 + qu)z,
Tora = — 2S5 1(1 —ql)? — 2S5, 1(1 — 2¢°1*)(1 + ql),

Tor6 = 4¢°1(1 — gql) — SoAB1(1 — gl)? — 251 1A6(1 + %ql)u —2¢%17),
Tose = 4q°1> — Sy 1PAQ(1 — gl) — 451 PAG(1 + gl) (1 + %qu.

As mentioned earlier, some of these elements depend on the detailed definition of
the components of x. Unless adjusted appropriately these elements will therefore
not agree well with values calculated by UAT.

PROBLEM 8.7. Using formulas (8.47), check several entries in the T;j, table
resulting from the processing the eq_tune_fodo lattice. Be sure that all parameters
are identical to the parameters used in the earlier problem set in which R;; elements
were derived. It may be necessary to modify the code to cause the T;j;, elements to
be evaluated and printed.
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8.5. Truncated Power Series and Lie Maps

8.5.1. Function evolution. Truncated power series play an important role
in UAL. They are used to approximate the “maps” that express “output” particle
coordinates (at a later place in the ring) in terms of “input” particle coordinates
(at an initial place in the ring). When truncated to linear order these power series
reduce to the elements of the traditional, Courant-Snyder, transfer matrix descrip-
tion of the accelerator lattice. Historically, most of accelerator physics has been
(very successfully) based on analysis performed in this linear limit. But effects
appearing already at a “next order of approximation” such as chromaticity and
amplitude-dependent detuning, have ways of intruding, even in elementary con-
texts, and nonlinearity becomes increasingly important as amplitudes are increased
to achieve higher beam current. As soon as any nonlinearity whatsoever is allowed
to enter the description the issue of symplecticity, or rather lack thereof, rears its
head. Especially for hadron accelerators, for which there is essentially no true
damping, any anti-damping artificially and erroneously introduced through non-
symplecticity can ruin an accelerator simulation program’s ability to predict the
long term future.

Symplectic maps (typically nonlinear) are also known as Lie maps. One
therefore seeks to describe particle trajectories in an accelerator by a Lie map.
As with all physics, such a description can only be approximate. For one thing
the idealized model of the accelerator, on which the “idealized map” is based,
is undoubtedly inaccurate and incomplete. Accepting this as inevitable, possible
further inaccuracy results from the computer program’s representation of the map.
It is the latter source of inaccuracy that is the subject of this section. Maps based on
truncated power series can only approximate idealized maps. For reasons explained
in the previous paragraph, failure of symplecticity is expected to be more serious
than other inaccuracy. An important goal of UAL is to preserve symplecticity, or
rather to keep the inevitable failure of symplecticity controllably small.

There is no shortage of excellent reference material concerning Lie maps; for ex-
ample Dragt[24] and Forest[25]. Because the subject is abstract, and is sometimes
considered impenetrable, this section tries to give a self-contained, elementary dis-
cussion of the general ideas. To reduce complexity the discussion will be restricted
to two dimensional (x,p) phase space, with p used instead of p,. All results gener-
alize naturally to higher dimensions.

If (xq,po) represents input particle coordinates, the sort of map M’y under
discussion expresses output coordinates (x1,p:1) as functions of input coordinates
(zo,po). (The prime on M’y will be explained shortly.) For linear maps this map
reduces to a 2 x 2 matrix, the traditional transfer matrix of standard accelerator
theory. If nonlinearity is present it is natural to introduce a “generalized transfer
matrix” M'io in which the four matrix elements are nonlinear functions of o and
po- Usually these nonlinear functions are expressed as truncated Taylor seris. Like
it or not, this is the representation one is forced to use in a computer representation
of the map.

Consider an arbitrary function f(z,p) one may think of f as expressing the
dependence on position in phase space of some physical quantity. A particle tra-
jectory defines an evolution of the particle coordinates and it is natural to inquire
about the corresponding evolution of f. One has to be aware of the ambiguity ac-
companying the distinction between function form and function value. For example,
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suppose transformation M'yq yields forward formula 21 = z1(x0,po) = apo + bpo
and backward formula zq = zo(x1,p1) = cz1 + dp1, and that the value of function
f is defined to be “the first component squared”; at input this is 22, at output it
is 7. An assignment one might have received in calculus class was to figure out
the value of z2 from knowledge only of x; and p;. Expressed in terms of output
coordinates the input value of f is (zg(z1,p1))? = (cz1 + dp1)?. From a physicist’s
point of view, this is tortured usage. By the “evolved value of f” one presumably
means z7, the square of the first component, evaluated at the evolved location.
This is the way functions of coordinates are to be interpreted; for example

a3 = f(z1,p1) = f(M'10(20), M'10(po)) = (azo + bpo)*. (8.48)

Since the form of the function does not change, to evaluate this evolution, as
Eq. (8.48) shows, it is adequate to have formulas for the evolution of individual
components. This is the functionality provided by the vectors of truncated power
series provided, for example, by UAL. But, for theoretical purposes, a slightly more
abstract generalization of transfer matrices is preferable. Let us define transfer
map Mo as operating on functions (of location phase space) rather than acting
individually on the components. That is

fr = Mo fo, (8.49)

which is defined to mean the same thing as Eq. (8.48). Forest calls M a “compo-
sitional map”. It is a one-component map acting in an infinite dimensional space
(of functions defined on phase space.) Note that it is the value of the function that
evolves; the form of the function does not change. Since zy and pgy can, individu-
ally, be thought of as functions of the (xq,pg) pair, the specialization back to the
representation by a vector-organized set of nonlinear functions is immediate. So
there is no “physics” in Eq. (8.49) to distinguish it from Eq. (8.48).

Assuming, as we are, that the physical elements in the lattice are known per-
fectly, the equations of motion can, in principle, be used to determine z(s), p(s),
the dependence on longitudinal coordinate s of a particle trajectory. Commonly
the equations of motion are written in Hamiltonian form and knowing the equation
of motion is sometimes expressed as “knowing the Hamiltonian”. Because of the
complexity of accelerator lattices it is almost never practical to solve the equations
of motion analytically and it is rarely practical to solve them numerically. Rather
the map through a sector of the lattice is formed by concatenating the maps of the
individual elements in the sector. This usually involves truncation of power series.

8.5.2. Taylor series in more than one dimension and Lie maps. The
Taylor series representation of one dimensional functions is second nature to most
scientists (perhaps because learned about in high school as the binomial theorem?)
The function of Lie maps is to generalize this description to more than one dimen-
sion.

The theory of function evolution, as invented by Lie, has been applied a century
later, in the context of celestial mechanics, by Hori[26] and, in the context of
accelerator mechanics, by Dragt.[27] The discussion here more nearly follows Hori
than Dragt.

Let (z,p) be coordinates in 2D phase space, and f(z,p) be a function that
is arbitrary (except for possible requirements such as smoothness and absence of
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vanishing derivatives.) We wish to express the value of f at some phase space point
in terms of the values of its derivatives at some other point.

We know how to do this in 1D use a Taylor series. We therefore try to reduce
the 2D problem to 1D. Toward this end we draw a family of smooth curves in phase
space (to be referred to as a “congruence” of curves) that have properties: (a) there
is a curve through every point, (b) no curve crosses any other in the region under
discussion, and (c) there is a function S(z,p), not necessarily unique, such that
x(7),p(7) (the coordinates of the curve as functions of a running parameter 7) are
solutions of the equations

de _9S dp S

& ar o (8.50)

The function S(z,p) is such that its derivatives on the right hand side of this
equation define, at every point (z,p), the direction of the tangent to the curve
passing through that point. Note that S is a priori an arbitrary function, unrelated
to the dynamics under study.

Along any one of the curves of the congruence, the value of arbitrary function
f can be expressed, as a function of 7, by f(z(7),p(7)). One can define an along-
the-curve derivative operator

d| _ded dpd 059 959

{’S}fdr g_ d78x+d78p_ Op 0x Oz Op (8.51)
In this notation the - is a “place holder” indicating the operator {-, S} is “waiting
for” a function, such as f, for its argument. (Except for change in sign/order-
of-arguments, {-, S} is the same as the function for which Dragt introduced the
notation : S :.) When acting on function f, the result is {f,S} = : S : (f), which
can be recognized as the “Poisson bracket” of f and S.

Now we can exploit our congruence of curves for its advertised purpose of
relating values of f at separated points This is especially easy if the points happen
lie on the same curve because, on that curve, the function depends only on the single
variable 7. In this case, let the parameters of the points that are to be related be 7
and 7+ €. It may be helpful conceptually to regard € as being “small”, and this may
be appropriate when discussing the convergence of the series, but no such formal
requirement is assumed. Expressing the Taylor series in new, unconventional form,
we have

1. 1
f(T+€) = (1+F{/S}+ 552{{75}15}-’_ 563 {{{75}15}7S}+)f(7-+€) )
) ’ e=0
(8.52)
As usual the derivatives on the right hand side must be evaluated for general e but
then € is set to zero. This is known as the Lie map corresponding to function S.

Recognizing the terms in this series as corresponding to an exponential function,
this series is traditionally abbreviated to

fr+e) =e U5t p(r); (8-53)

but, to evaluate the series numerically, expansion Eq. (8.52) is what is required.
Furthermore the evaluation has to be truncated at some point. Any differential
algebra package, such as COSY[28] or the ZLIB module of UAL, can calculate
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derivatives of functions, and can therefore evaluate the Poisson bracket expressions
appearing in Eq. (8.52).

This section has been about calculus, no more, no less. There has been no
mechanics, Hamiltonian or otherwise. If the signs in Eq. (8.50) had been chosen
differently, say both positive, the analysis would have gone through unchanged,
except for the switching the sign in the bracket expression, which would therefore
no longer deserve be called a “Poisson bracket”.

8.5.3. Symplecticity of Lie map. Hori[26] gave a different interpretation to
Eq. (8.53), regarding it as a change of variable rather than as an evolution equation.
To encourage this interpretation let us replace (xq, po) by (§,1) and (z1,p1) by (z,p)
and interpret the equation as a change of variables from (&, 1) coordinates to (z, p)
coordinates. The coordinates (£,n) are assumed to be “canonical”—this means
that their Poisson brackets reckoned using some known-to-be canonical starting
coordinates, call them (z',p'), have the appropriate, 0 or 1 values. Copying from
Eq. (8.52) and restoring the 2D arguments of f;

Fr.p) = (1+e{, S} ({8}, 51+ 30e” ({1 5),5), S} ) f(6m)| - (8:54)

0
Here S is, as before, an arbitrary function, and evaluation of the derivatives on the
right hand side depends upon the congruence of curves determined by Egs. (8.50).
(The cryptic subscript 0 is supposed to convey this.)

It was mentioned earlier that either one of the coordinates, say £, is a satisfac-
tory version of the function f. Plugging this into Eq. (8.54) yields

r=(+ef, S+ %62 {{-.S},5) + %8 ({{, S}, 81,8} + )¢ (8.55)

0
and a similar formula relates p to 1. By restoring the single variable, along-curve
parameterization (and for brevity, arraying formulas as components of a vector)
these equations can be written in a more useful form;

n(r +€)

(S0L9) = () = aretsiege (88 g 10518k 80 (S 1

(8.56)
This shows that the pair (z,p) are, except for “translation” along a curve of the
congruence, the same as the pair (£,7).

This has still been “just calculus”, but let us now use the assumption that (&, 7)
are canonical variables of a Hamiltonian system. Then Eq. (8.56) provides a change
of variables to new variables (z, p). Now the amazing part; since the (¢, n) variables
are, by hypothesis, canonical through the region under discussion and (z, p) are just
“translations” of (&, n), transformation (8.56) is necessarily canonical.

Hori[26] goes on to develop a perturbation theory based on this formulism.
He regards the function S as a kind of “generating function” (though it must not
be confused with a “Goldstein” generating function) and goes on to develop an
iterative procedure to determine S and new coordinates in ascending powers of a
“small parameter” of the perturbation. None of this is relevant for UATL. What
is relevant is that transformations generated by Lie maps are symplectic. By
controlling the number of terms retained in the power series evaluation one can
control (or even make negligible) the degree of nonsymplecticity.

n(T +€)

e=0
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8.5.4. Hamiltonian maps. Returning to the trajectory evolution interpre-
tation of our equations, the Taylor series derived so far might seem to be useless
for the following reason: it relates only phase space points lying on the same curve
and no prescription has been given for choosing the function S(z,p) such that two
arbitrarily chosen points lie on the same curve. But, as it happens, we do not have
to insist that the points be arbitrarily chosen. We are interested in points lying on
a single particle trajectory. One visualizes this trajectory as a three dimensional
curve in the (z,p,t) space, where ¢ is time, or if one prefers, a longitudinal coordi-
nate. Projected onto the (z, p) plane the curve passing through input point (zg,po)
necessarily passes through output point (z1,p1). The orbit is determined by solving

Hamilton’s equations;
do _OH - dp_ OH (8.57)
dt Op dt ox
where H(x,p) is the Hamiltonian function. Notice that these equations are iden-
tical to Egs. (8.50) if the function S in those equations is replaced by H (and 7
by t.) This magically eliminates both limitations of the formalism of the previous

section. The map has become
f(to +1t) = et 1M} f(t0). (8.58)

(As explained above, when written in this form, the notation is too compressed
for the required operations to be exhibited explicitly, as they are in Eq. (8.52).)
Replacing f by the individual coordinates, as before, yields

(ﬁfﬁig) = et (283) : (8.59)

Generalized to six dimensions and truncated to arbitrary order, Eq. (8.59)
is a form in which the evolution of a particle trajectory can be simulated in a
computer. If Hamiltonian H is only approximate the evolution it produces can be
only approximate, but any failure of symplecticity can be reduced by keeping more
terms in the expansion.

8.5.5. Discrete maps. Eq. (8.59) represents a continuous mapping—the ex-
plicit appearance of ¢ invites taking the limit ¢ — 0. Similarly the occurence of
factor e in Egs. (8.56) invites the limit ¢ — 0 and a continuous interpretation. But,
if the e factor is subsumed into the S function, Eqs. (8.53) represents a discrete
map, potentially propagating the particle coordinates through a sector of arbitrary
length.

For example consider the function

S = Six® + Sia’p + Syap® + Sip’. (8.60)
Substitution into Eq. (8.56) yields propagation (z,p) — (z',p")
o =x+{z,S}+ - =2+ Sz +2S5xp+3Sip” + ..., (8.61)
p=p+{p,S}+--=p—3Sgz” —2Siap— Sip” +....

This map is special in that it is an identity map to linear order. It could therefore
not represent arbitrary propagation through a general sector. But, after “factoring
out” the linear part of a general map the remaining part can be reduced to Eq. (8.60)
by truncation to quadratic order.

Perhaps the procedure just mentioned can be reversed? Suppose that prop-
agation formulas (8.61) have been determined by applying some integrator to an
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arbitrary lattice sector. If the sector has more than a few nonlinear elements such
a determination would have required truncation, for example to quadratic order,
as in Eq. (8.61). The integrator will therefore have determined the coefficients in
expansions

o=z + XJzP + Xiap+ Xip* + ..., (8.62)
p':p+P(]2m2+P12mp+P22p2+....

For these equations to be consistent with Eqgs. (8.61) the six equations obtained by
equating coefficients must be satisfied. Regarding the four S} coordinates as the
unknowns, they can be determined from just four of the equations. The remaining
two equations will not, in general, be satisfied. But, if the integrator determining
series (8.62) were symplectic (to the order of terms retained), then these equations
would be redundant and the redundant equations would necessarily be satisfied.
These equations can therefore be applied as a check on the symplecticity of the
integrator.

Assuming the integrator is symplectic, so that the redundant equations (to qua-
dratic order) are satisfied, the function S will have been determined to cubic order.
A function S determined in this way can be called a “pseudo-Hamiltonian”. By
using this function in Eq. (8.56), and retaining more terms in the series, propagation
formulas for the coordinates can be obtained to higher than quadratic order. Such
formulas would be useless for studying large amplitude features such as resonant
islands, onset of chaos, or dynamic aperture. But for “intermediate” amplitude
trajectories the formulas can represent propagation that is both “correct to qua-
dratic order” (for example modeling chromaticity) while being symplectic to higher
than quadratic order.

This procedure can be illustrated by explicit example. Consider a map

X9 = MX1 ~ M(]) X1, (863)

where M) is the necessarily symplectic, linearized matrix approximation of the
map. (Since x represents the components as a vector, we may as well take it to

represent the coordinates in 6D phase space.) Define M such that
xs=MMUx;, or M=MM®D " (8.64)

Suppose that M has been obtained to some order of accuracy, say M(*). Then M
is known to corresponding order. Let S be determined such that

M® = MO MO =14, S). (8.65)
Defining
M® =14 {5} + 5 {{-5).5.), (8.66)
then
M~ M® MO, (8.67)

is symplectic to higher order than was M®).

Quadrupole end field correction is an example of this procedure. Since the
longitudinal interval for this correction was taken to have zero length, terms beyond
the first vanish because they are proportional to higher powers of e.
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8.5.6. Bunch Evolution Using Maps. In Section 7.4, which discussed a
decoherence/recoherence simulation, it was shown that particle evolution could be
described either by element-by-element tracking, or by map tracking. It would be
just as logical for that example to appear here as there.

SIMULATION 8.1. Run the decoherence/recoherence example using the map track-
ing option for various order of truncated power series (TPS). For the results shown
in FIG 7.6 the order was 3, which is also known as “octupole order”.

8.6. Thin and Thick Elements, and Symplecticity

8.6.1. Pure Kicks. Elements that are thin enough that they can be repre-
sented by discontinuous slope changes (or kinks) at fixed position s are known as
“kicks” and computer codes that employ only kicks are known as “kick code”. The
rationale for the existence of kick codes is that, consistently employed, they preserve
symplecticity. The transfer matrix for such an element is

Migex = ( f(lx) ?) , (8.68)

where f(x) is an arbitrary function of transverse position x. The Jacobean for this
matrix is 1, independent of x. Unity determinant (for all x is the necessary and
sufficient condition for a 2 x 2 matrix to be symplectic. Furthermore a 4 x 4 kick
can be decomposed into a product of two 2 x 2 kicks. It follows that kicks always
preserve symplecticity.

Another way of assuring that a transformation is symplectic is to derive it
exactly, rigorously respecting Maxwell’s equations and Newton’s law (appropriately
generalized to relativistic mechanics).

8.6.2. Pure Drifts. Since kick elements are unphysical idealizations, one
would greatly prefer to represent accelerator elements by symplectic, thick element
matrices. Unfortunately the number of element types for which such matrices are
known is quite small. Even the transfer matrix for a drift

1 ¢
Maige = <O 1) ; (8.69)

is symplectic only for appropriate transverse coordinates. This matrix corresponds
to the exact transformation equations for a drift, which are
_ dr| dx
¢ dslo’ dshi dslo
Assuming (unrealistically) that there is no vertical momentum, and recalling that

p; is the actual transverse momentum divided by the total momentum pg, one sees
from a momentum vector diagram that

T1 — To dz

de P (8.71)

ds \/1 = pi
But, knowing that = and p, are canonically conjugate variables, one sees that x
and dz/ds cannot be. So, without taking care to include the square root factor,
even a drift can be non-symplectic. Because p, << 1, one is sometimes justified
in neglecting the denominator factor. But in a hadron accelerator, where particles
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rotate for billions of turns, even the tiniest of failures of symplecticity can give
totally wrong results.

8.6.3. Drift-Kick Split. We have seen that pure kicks are naturally sym-
plectic and that, with care, drifts can be treated symplectically. For a purely
numerical calculation of a particle trajectory in an arbitrary magnetic field it is
natural to introduce “symplectic integration algorithms” in which the deflections
are concentrated in (infinitely) thin elements and the thick dimension is filled up
with drifts. The simplest such algorithm is known as drift-kick split. A thick ele-
ment is segmented into two or more drifts with a kick sandwiched at each interface.
This approach was introduced in TEAPOT[6] and it is documented further in the
TEAPOT manual. This code has been ported to C++ as one of the propagation
algorithms available in UAL.

8.6.4. Symplectic Propagation Through Sector Bends . Other than for
drifts, the only static magnetic elements for which exact, thick element equations
are available are uniform field magnets. The trajectories are perfect circles or, in
three dimensiona, helices. Even in this case, finding the exact exit coordinates
requires the use of quite complicated geometry. In the following calculation we
have the temerity to work out in detail a result due to E. Forest, which he states
(without derivation) in his Beam Dynamics book.

To meet the “exactness” requirement for a thick element one needs analytic
expressions for output coordinates as functions of input coordinates. To meet the
requirement of polymorphic description with coordinates given either as numbers
or as truncated power series (TPS), these formulas need to be explicit and free from
branched evaluation routes. For a finite sector bend of angle —® these conditions are
met by the following formulas, which relate to the geometry exhibited in FIG 8.4.
These formulas are given as Eqs. (12.18) of Forest’s book.

To reduce complexity a bit the figure illustrates pure radial (typically hori-
zontal) motion. (i.e. in the plane of symmetry of the magnet.) This can also be
regarded as the projection onto the magnet midplane of a completely general orbit
of momentum po(1 4 d). By conventional definition of transverse “momentum” co-
ordinate p,, if the nominal momentum is pg, then the actual transverse momentum
is pgpo. With vertical momentum (scaled the same way) given by p,, the total
in-plane momentum is

p| = (1+0) - pz (8.72)

which is independent of s. Using this, (radial) entrance angle 6, and the exit angle
0.(s) are given in terms of momentum components by

sinf, = 22 sing,(s) = 228 (8.73)

P P
The coordinate s, arc length along the design orbit, satisfies

="
pe

where p. is the design bend radius. As shown in the figure, the exit momentum
components, expressed in the appropriate local exit frame, are

Pels) pu(s) = pyr pals) = [+ 6)2 = 3 = p(s). (8.75)

(8.74)
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FiGUure 8.4. Shown along with the central trajectory is the pro-
jection of a general trajectory onto the midplane of a sector bend
of nominal bend angle —®. With the total particle momentum
being (1 + §)po, where pg is the central momentum, the scaled
momentum is 1 + 4. (A vector of magnitude py would have unit
length in the figure.) Since vertical and horizontal motion is un-
coupled it is valid to regard the projected curve as the trajectory
of a particle actually lying in the midplane of the magnet but hav-

ing momentum p; = /(14 4§)? —p2. This quantity is conserved
along the orbit. The radial coordinates at the magnet faces are
displacement z and (in units of py) radial momentum p,.

Expressed in the entrance frame coordinates, with origin at the apex of the sector
bend, the coordinates (Z, X) of the center of curvature of the displaced trajectory
are

(Z= X) = (pcpz: T+ pc(l _ps))z (876)

and the equation of the exit face of the sector bend is

zcos® + zsin® = 0. (8.77)
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The perpendicular (directed) distance from the center of curvature to this line is

d= Zcos® + X sin®. (8.78)
From the right triangle with vertex at (Z, X) we get output angle 6, (s) to be given
by
) d
sinf,(s) = . (8.79)
PeD|

In view of the second of Egs. (8.73), after simplification, this gives the locally-radial
output momentum component to be
De(8) = pycos® + (pi +1- ps) sin ®. (8.80)
c
Notice that this has automatically re-expressed the radial momentum in the local
Frenet frame of reference appropriate at the exit face of the magnet. This is Forest’s
Eq. (12.18.b). It meets the exactness requirement as well as the TPS description
requirement by giving one output coordinate as an explicit analytic function of the
input coordinates. Subsequent formulas can be regarded as explicit even if they
depend on p,(s). In particular, ps(s) is given by the third of Eqgs. (8.75). As has
been implicit in the discussion so far, the fractional momentum maps according to
d(s) =4.
The actual arc length /(s) and the visible-in-figure arc length /) (s) are related
by 1(s)/1(s) = py/(1 + ). The total bend angle ¥ can be determined either in
terms of /) (s) and radius of curvature or in terms of the angles visible in the figure;

I(s)  Uls)

= =—9=—-®—-0,(s)+6,. (8.81)
pc(]- + 6) pcpH
Solving for I(s) yields
I(s) = pe(1 + 5)( S sin 2B) ’ﬁ). (8.82)
D D
Vertical evolution is given similarly by
y(s) :y+pypc(—<1>—sin’1pz—(s) + sin* &) (8.83)
p p
All that remains is to determine z(s) using the same output right triangle;
pe+(8) = pep) cosBy(s) + Zsin(—@) + X cos ®. (8.84)
Re-expressed, this becomes
z(s) = pc( — 14 ps(s) — pysin® + (E + 1 — py) cos ‘I>). (8.85)
Pe

All of the needed output coordinates have now been obtained.

8.7. Identifying Sources of Nonlinearity by Spectral Analysis

This section can be regarded as an extension, to nonlinear motion, of chap-
ter 4, in which analysis of diagnostic instrumentation was discussed. The present
emphasis is on identifying sources of nonlinearity. The idea is to correlate peaks
observed in spectra, derived from multiturn BPM output, with the sources which
could produce them. These spectra can be obtained using a hardware spectrum
analyser or by Fourier transformation of digitized BPM turn-by-turn data.
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TABLE 8.3. Fourier Expansions and Labels for Nonlinear Motion

o = cos((mgvy + myvy)2mt), tm, = |my oy 1=,
T = ay cos(2ny,t) = az|:]
Y = ay cos(2myyt) = ay|?
2 o G52 a,12/0 ai—azo
-0 = - B LB
1
2@y = amay‘il
3 3a,a’ 3a3 — 6a,a’
5 a
a:3—3:ny2:—“\3— zy\]‘+ = Iy\]
410 4 E2 4 0
322y — o — G_z‘o 3aa, |2 B 3ai - 6a3a, |0
y=v = 413 4 1 4 1
6aza? . al
4 2 2 4 _ 44 %y |2 y |0
z" — 627y +y *am|0_ ] ‘i2+?‘4
4alt — 12a§a§ |2 N 4a; — 12a§a5 0, 3al — 12aia5 + 3a; |0
8 0 8 2 ) 0
4a3a, 3 da, a3 12a2a, — 12a,a>
3 3 _ Y Yy Y %y
4$y_4$y7T +1 - A |i3+ 3 1
(8.86)

For sufficiently small amplitudes all nonlinear terms become negligible and the
motion is described approximately by the pure (uncoupled by preference) beta-
tron motions z; = a, cos(2wv,t) and y; = a, cos(2myyt) for ¢ = 0,1,.... These
“fundamental oscillations” can be regarded as the “zero’th” approximation to the
motion. These time dependencies, and the time dependencies they produce when
nonlinear elements are present, are shown in Table 8.3. Like quantum numbers in
spectroscopy, integers m, and m, can be used to label observed lines. The notation
e my in the table, having z-harmonic number m, on top and y-harmonic number
m, on the bottom, is intended to help in assigning labels to spectral lines. When
longitudinal motion is included another, similar index, mg, is introduced.

A nonlinear element can be treated perturbatively, with the deflection it causes
proportional to a quadratic or higher power of the fundamental oscillations am-
plitudes. Since the small amplitude motion is harmonic these extra contributions
are periodic with the same periods, and they can be expessed as “nonlinear har-
monics”, also known as “higher harmonic frequencies” of the fundamental oscilla-
tions. Exploiting this feature, a sextupole deflection proportional to z? appears
as a double-frequency motion—though with aliasing this line may appear at an
initially-unexpected location. Octupole deflections proportional to z* cause tripled
(and other) lines. Other nonlinear deflections, for example proportional to zy, can
also cause “mixing” (sum and difference frequencies).

The power of Fourier expansion is to “linearize” this weakly nonlinear motion.
In lowest order of perturbation theory, a nonlinear element contributes as if linear,
but driven at sum and difference frequencies of the fundamental frequencies. Higher
order perturbation theory can be described by iterating this procedure, but the
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possible harmonics proliferate badly, and the spectra rapidly become uniterpretable
as the basic amplitudes increase. Eventually the motion becomes chaotic.

There is one case in which proceeding to second order perturbation theory is
justified. It is the (quite common) case in which a nonlinear element has no effect
in lowest order. An example of this is the absence of tune shift due to sextupoles
in lowest order. To calculate amplitude-dependent tune shifts it is necessary to
include octupoles in first order and sextupoles in second order.

Observing which peaks are present, and with what strength, and then corre-
lating with Fourier expansions of particular multipole fields can give clues as to
which fields are causing the motion to be nonlinear. Conversely the importance
of nonlinearities known (from magnetic measurements) can be assessed. For in-
terpreting spectra in this way it is necessary to write Fourier expansions of the
multipole expressions for deflections Az’ and Ay’ appearing in Table 8.1. The
following formulas are needed for those expansions:

Since the factors a, and a, are presumeably, in some sense, “small”, the dom-
inant lines tend to be those having minimal powers of these factors.

The convergence (i.e. the extent to which succeeding terms become less im-
portant) of the multipole series as a formula for magnetic field at displacement a,,
can be assessed by the numerical value of ratios (b"*ta?*t)/(b"a?) = (b"*1/b")a,.
But to estimate the absolute influence on accelerator performance of a particular
multipole an estimator like that calculated in Problem 8.10 is needed. In practice,
as mentioned before, there is a strong tendency for lower powers of a, and b, to
dominate.

Example spectra extracted for the toy lattice general fodo_rf are shown in
FIG 8.5. These plots were obtained by using the graphics program xmgrace to
post-process turn-by-turn data produced by UAT. (This uses the PERT interface
that is being in the process of being phased out.) The code is run by

$ cd /home/ualusr/USPAS/uall/examples/UI_Xmgr
$ perl shell USPAS.pl

The lower three graphs show the horizontal, vertical and longitudinal turn-by-turn
data and the upper graphs are the corresponding tune spectra. Low order tune lines
are shown, labeled with triplets (m,,m,, m.). The fundamental lines are shown
by solid vertical lines. They are located by first finding the maxima in the three
spectra. From these tunes, tune combinations are formed as m,v, + m,v, + m,v;,
where m,, m,, and m, are small integers. Furthermore the tune lines have to be
“unaliased” into the range from 0 to 0.5. (This amounts to finding the absolute
deviation from the nearest integer.)
Some features that can be observed in these spectra are:

e The fundamental tunes are ), = 0.26, @, = 0.28, @5 = 0.08.

e There is a strong 1,0, 0 signal visible in the longitudinal spectum. This is
evidence of coupling between horizontal and longitudinal.

e A reciprocal 0,0, 1 line is visible in the horizontal spectrum.

e The vertical signal is almost pure harmonic. Absence of 1,0,0 signal
implies the absense of x,y coupling.

e There is a weak 2,0, 0 line in the horizontal spectrum. This is due to the
presence of chromaticity sextupoles.

e The line 1,—1,0 in the vertical spectrum comes, presumably, from the
same source.
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Similar plots can be obtained using the UAL player.



TABLE 8.4. Spectral lines in X-spectrum (horizontal) caused by particular multipoles. a, and a, are “fundamental”
amplitudes. There are also numerical factors, of order one, not shown.
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TABLE 8.5. Spectral lines in Y-spectrum (vertical) caused by particular multipoles. a, and a, are “fundamental”
amplitudes. There are also numerical factors, of order one, not shown.
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ProBLEM 8.8. Show that the effect of closed orbit displacements Az and Ay
are to produce “feed-down” such that the presence of multipole coefficients b, and
a, leads to multipoles

551%) = —nb,Az, a(ﬁ) = —nap,Az, b

= napAy, aglATwl) = —nb,Ay.

(8.87)

PROBLEM 8.9. The Courant-Snyder invariant € of a particle executing one
dimensional betatron oscillations is given by v,z + 20,2z’ + wa’Q. With proper
azis-scaling, if the motion is linear, the point in phase space with coordinates (x,z')
lies on a circle and rotates at uniform rate. The effect of a deflection z' — ' + Ax’
will sometimes be to increase € and sometimes to decrease it. Show however that
on the average there is a net increase given by

< Ae >= B, (Ax')>. (8.88)

PROBLEM 8.10. Consider the one dimensional motion of a particle with am-
plitude a, through a bending element that bends the central trajectory through angle
Af. The field nonuniformity of the magnet is described by a multipole coefficient
bn. Show that he deflection suffered is bpal AG times an oscillatory factor in the
range from —1 and 1. Continuing to drop a numerical factor of order 1, show that
the average fractional increase in the Courant-Snyder invariant in passing through
the magnet is

< Ae >
€
where a, is quoted as No, where €, is the horizontal beam emittance and o, =

V€z By is the r.m.s. horizontal beam size. This formula is not valid for n = 1. Why
not?

~ n—1 2N 2 "TH "TJH n—1
(bpa™ " Bo AO)? ~ (b, AB)2e,? Bo? N7V (8.89)

PrOBLEM 8.11. Check all (or at least many of ) entries in Table 8.4.

PROBLEM 8.12. An erect quadrupole is misaligned from its design orientation
by a small roll angle A¢p << 1 around the longitudinal azis. In its natural (z',y")
coordinates, the quadrupoles multipole expansion is

By +iBy = bi(z' +iy'), (8.90)
and in the design lattice coordinates it is
By +iB, = (b +ia1)(z + iy). (8.91)
Show, to lowest order in A¢, that
by = b, a1 = —2b]A¢. (8.92)

In modeling the effect of a misaligned quad the factor of 2 in Eq. (8.92) must not
be overlooked. A mnemonic for remembering this factor is that a quadrupole need
only be rotated through angle 7/4 (not 7/2) for pure by to become pure aj.

PROBLEM 8.13. Perform the numerical calculations (accounting for aliasing if
necessary) to account for the locations of spectral lines labeled 200, 001, 10-1, and
10+1, in the Q, plot of FIG 8.5.




CHAPTER 9

Colliding Beams

9.1. The collider.adxf lattice

The collider.adxf lattice is derived from the general_fodo lattice, via the
racetrack lattice. The long straight sections of racetrack are replaced by “low
beta optics” appropriate for achieving maximum luminosity from given beam cur-
rents. The elements making up the irtoarc transition section are shown in FIG 9.1,
and their parameter values are listed next; the initial numerical values are such that
1fac=1.0 m.

<constant
<constant
<constant
<constant
<constant
<constant
<constant
<constant
<constant
<constant
<constant
<constant
<constant
<constant

name="1fac"
name="101"
name="112"
name="123"
name="134"
name="145"
name="156"
name="1lqir"
name="qir1"
name="qir2"
name='"qir3"
name="qir4"
name="qir5"
name='"qir6"

value="scale*20%nhalf/100"/>
value="1.397753023209%1fac" />
value="1.497222048429%1fac" />
value="12.177703590031*1fac"/>
value="5.0%1fac"/>
value="5.0%1fac"/>
value="5.0*1fac"/>
value="0.001"/>
value="-1.05/1fac"/>
value="0.5494/1fac"/>
value="-0.33/1fac"/>
value="0.1837/1fac"/>
value="-0.2389/1fac"/>
value="0.1194/1fac"/>

<sector name="irtoarc">

<frame
<frame
<frame
<frame
<frame
<frame
<frame
<frame

ref="mkst"
ref="dr01"
ref="quadi
ref="dr12"
ref="quadi
ref="dr23"
ref="quadi
ref="dr34"

12 ‘

/>
/>
ri"/>
/>
r2"/>
/>
r3"/>
/>
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<frame ref="quadir4"/>

<frame ref="dr45"/>

<frame ref='"quadir5"/>

<frame ref="dr56"/>

<frame ref="quadir6"/>
</sector>

Not shown in this listing are the regular arc quadrupole half-strengths; ¢1 =
0.1194 and ¢2 = —0.1199. The lattice functions for the lattice with these values
are shown in FIGs 9.2, 9.3, and 9.4. One sees from FIG 9.2 that the IR region is
well matched to the arcs (which are the same as in the racetrack lattice). But
the presence of small beta functions at the intersection point (IP) cause high beta
values nearby. This follows inexorably, as can be seen, for example, from Table 2
in Chapter 2. Since the lattice is mirror symmetric about the IP’s, a® = of = 0
at the IP. Here the use of asterisk to specify IP is a traditional notation. It then
follows from Eq. (3.4) that

i 6,
B’ B

The optics has been adjusted so that 87 << 8%. Egs. (9.1) then shows that 37
increases much more rapidly than ¥, as s increases from zero. This requires the
first quad, @1, to be vertically focusing, as shown. (The concave/convex symbols
refers to horizontal focusing character in this figure, and all ); are taken to be
positive.) FIG 9.4 confirms these features.

Quadrupole lens optics is too complicated to be taken lightly, as you will dis-
cover if you start changing parameters recklessly, but certain features of a beamline
like this are subject to quite simple treatment. One good plan is to work with
“doublets” which, together, behave something like glass lenses by having the same
character (either focusing or defocusing) in both # and y planes.

The dominant visual feature of these IR optics is that lo3 is much greater than
either lg; or l15. This, plus the match to the FODO arc optics, is what leads to
small beta functions at the IP. There is a “beam waist” at the origin. This is as
close to a point focus as ever occurs in lattice optics. Basically the @)1, )2 doublet
focuses rays emerging from the origin to an image somewhere in the vicinity of
(3 or beyond. With ly3 assumed large, we may as well assume that the @, Q-
doublet focuses “at infinity”. In other words we want this doublet to produce point
to parallel focusing.

BT =Bi + By =pY + (9.1)

PROBLEM 9.1. Let M* and MY stand for the 2 X 2 matrices governing propa-
gation from the origin to point 2. Show that, for point to parallel focusing, we need
M$, = MY, = 0. Work out these matriz elements and then, assuming lo1 and l12
are known, show that the doublet quadrupole strengths are

1 lor + 112 1
_ 1 Oy — 9.2
@ lo1 lios Q: (lo1 + l12)l12 (32

Finally, show that the entries in the collider lattice are in rough agreement with
your values; (actually somewhat greater in magnitude because we don’t really want
the focus as far as infinity.)

In practice lp; is chosen to be as short as possible, consistent with fitting the
required particle detector into that drift, and allowing for @), itself to use some of
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the space. Typically Q)5 has design similar to ()1 and is butted right up against @1,
effectively fixing 115 ~ lo1.

Commonly it is the large value of 3} that fixes the minimum achievable value
of BY. Viewing FIG 9.4 let us assume that the optics has been adjusted to satisfy
the constraint Y < A™2* = 200m. From Eq. (9.1), treating the leading term as
negligible, we therefore have
l2
BY > ﬁ
Though quad @), restrains (Y, it causes 8% to increase even more rapidly in the
region from )1 to ()». This increase is stopped by (2 but, typically, not before *
has increased until it is equal, or almost equal, to 5™2*. For simplicity, we take this
to be the same as the maximum tolerable vertical value. (i.e. 85 ~ 200m.)

(9.3)

PROBLEM 9.2. With Q1 and Q2 given by Eqs. (9.2), find the value of BT such
that 85 = 200 m, under the (reasonable) requirement that the maximum of B* occurs
at Q. FIG 9.4 shows this assumption is quite accurately correct, but you cannot
expect comparably good agreement for the value of B since other approximations
have been made.

FIG 9.4 shows that the optics is roughly matched to the arc optics already at
@4. In fact, to make the matching clearer, Q)4 could be treated as two thin lenses
@41 and (42, butted together, with Q4o = ¢;. With this observation, and noting
that ()5 = 2¢» and ¢ = q1, one sees that the optics are quite accurately matched
already at a point “part way through” Q4.

What this has meant is that, with all lengths fixed, as well as strengths (1 and
()2, the only adjustable parameters left are Q3 and @4;. All Twiss functions are
constrained (by the need to match the arc optics) at the boundary between (41
and Q42. The other constraints that must be met are a® = a¥ = 0. These two
equations fix @3 and Q4.

If all lengths are held fixed, by the arguments given so far, the entire optics is
fixed, at least approximately. There is little point, therefore, in trying to adjust the
IP beta functions by just altering quadrupole strengths for the simple IR collider
configuration. It is typically difficult (but not impossible, using rails,) to change
drift lengths in a storage ring. From the arguments given, one sees that this makes
it quite difficult to change the beta-star values using the collider intersection
region optics.

Of course one can vary all lengths in the entire ring. By equations like Eq. (3.17),
scaling all lengths up and all quadrupole strengths down in the same ratio, will leave
the optics, including the IR optics, matched. The lengths 3% and 3¢ would there-
fore be reduced in the same ratio. But one never has the luxury of scaling the
circumference of a storage ring, so this alteration is impractical.

PROBLEM 9.3. In spite of its impracticality, scale all lengths in the collider
lattice, and scale all quad strengths by the inverse factor. Use the simulation code to
determine the new optics and confirm the scaling behavior described in the previous
paragraph.

If one must change beta-star values, the most promising procedure is to alter
lo1 and ;o by the same (preferably fairly close to 1) factor and preserving ring
geometry by altering lo3. For simplicity, let all other lengths remain unchanged.
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By Egs. (6) @1 and @, scale inversely with lg; and l;2. Then it should be possible
to restore the match by adjusting @3 and Q4 using a® = o =

By varying the ratio lg; /112 it would be possible to vary the ratio 3Y /8%. But, as
explained earlier the use of “doublet optics” forces this ratio to be large. Switching

the signs of @, and Qs would produce 3% << BY.

PROBLEM 9.4. Using the UAL simulation code, determine accurate values for
B% and B2 and compare your values with values calculated by formulas in this sec-
tion.

The optics that has been described is typical of electron accelerators, where the
vertical emittance is already much less than the horizontal emittance rendering the
beams ribbon-shaped. In hadron accelerators the transverse beam emittances are
normally approximately equal and there is a luminosity advantage in having the
beams approximately round at the IP. This can only be achieved by using “triplet
optics”, more complicated than can be achieved with the collider toy lattice.

Just replacing the doublet @, Q> by a triplet, most of the preceeding argu-
ments will remain roughly true, and more-or-less equal betas at the IP can be
achieved. Though Y% = 1cm, is practical with doublet optics in an electron ac-
celerator, %% & Y% &~ 1m is more typical of hadron colliders. This is partly due
to the inherently longer focal lengths achievable using triplet optics and partly due
to the much higher particle momenta (and hence longer quadrupoles) in hadron
accelerators.
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Twiss functions for the collider lattice.
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IR REGION OFTICS

151

200 Limur version 8 2308 270305 (00815

X

P (i

a0,

40,

200

0.0 1
6.0 25 50 75

8 poc = 0.
Table name = TWISS

F1GURE 9.4. Twiss functions for the IR region of the collider lattice.

Horizontal plane

3
5(m)

180
160
140
120
100
80
60
40
20

-Hi|III|III|III|III|III|III|III|III|II|

N
IN]
o

230 240 250 260 270 280 290

300

Vertical plane

160

140

120

100

80

60

40

20

0

i i 1 1 1 i 1
230 240 250 260 270 280 290

FiGure 9.5. UAL-generated Twiss functions for the IR region of
the collider lattice.

300



152 9. COLLIDING BEAMS

This remainder of this chapter is rather more technical than is appropriate for
the USPAS accelerator simulation course. It is more appropriate as a section of
the Physics User’s Manual. A beam-beam test program bmbm.cpp is appended as a
convenient way to convey various numerical coefficients. A tar file with consistent
README, data and makefile is available for actual use of the code.

As of March 2005, the elements headonbb and remotebb have not yet, in fact,
been implemented in UAL. As a result, parasitic beam-beam interactions cannot be
concatenated into nonlinear TPS lattice maps.

9.2. Particle Deflection Caused by Oncoming Bunch

The deflection of a charged particle caused by an approaching charged bunch
can be modeled as deflection by an artificial beambeam element that is located where
the bunches meet and acts much like any physical lattice element. The oncoming
beam is assumed to be Gaussian in all six phase space coordinates.

In practice the bunches are long (z coordinate) compared to their transverse
(z,y) components. Invariably both bunches are fully relativistic. It is well known
in this circumstance that the electromagnetic fields of the bunch are compressed
longitudinally to become almost exactly transverse. This makes it appropriate to
treat the fields as purely transverse and derivable from a charge distribution with
shape dependent only on transverse coordinates and magnitude proportional to the
longitudinal bunch distribution.

To a lowest, approximation the beam-beam interaction can be treated as a single
transverse impulse at the crossing point. More accurate, and especially for non-zero
crossing angle of long bunches, it is appropriate to “slice” the bunch longitudinally
and to represent each bunch crossing by several, londitudinally-displaced deflec-
tions. Even in this case, it is a good approximation to assume transverse fields that
are independent of z except for being modulated by the longitudinal bunch pro-
file. Beam-beam interactions are modeled to both of these levels of approximation
in UAT. For even greater accuracy, especially in situations where the beam-beam
interaction excites synchrobetatron oscillations, it would be appropriate to include
longitudinal forces, but this level of approximation is not supported at this time.

In the purely-transverse, fully-relativistic, field approximation, the electric and
magnetic fields are related exactly as are the fields in a plane electromagnetic wave.
(Weisszacker-Williams approximation.) For a 2D Gaussian transverse charge dis-
tribution the fields can be expressed as an analytic function of the (complexified)
transverse position z = z+1iy; the function is variant W (z) of the so-called complex
error function. In UAL (as in most other simulations) this function is evaluated by
various nonpolynomial numerical algorithms for evaluation of the complex error
function.[21].

Particle dynamics can be handled polymorphically in UAT.. What this means is
that (optionally) the particle coordinates being evolved can be treated as truncated
power series (TPS). It might be thought automatic to treat an analytic function
like the complex error function by a TPS. As it happens this is is diametrically
incorrect. The inappropriateness manifests itself mathematically, physically, and
computationally. Mathematically, though analytic in some regions, W (z) is not
analytic at the z = x + iy = 0 origin, which is precisely where a TPS has to be a
differentiable function of x and y individually. Physically, the beam-beam fields fall
off (proportional to 1/r) at large radial radius, while a TPS, truncated to any finite
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order, blows up at large r. Computationally the complex plane has to be segmented
into more than one patch, with a separate evaluation algorithm applying in each
patch. The computer program evaluating w(z) starts by selecting the correct patch
and proceeds by applying the algorithm appropriate for this patch. This is very
satisfactory for purely numerical evaluation, but limits the validity of concatenation
to such a restricted patch as to be useless for multiturn simulation.

Though beam-beam deflections can be represented differentiably (as required
by TPS) in local patches, for example near the origin, the nonanalytic nature of the
electric field excludes the possibility of a patch of size even as great as the smaller
of the strong beam’s transverse r.m.s. sizes.

Because of this mismatch, for head-on beam-beam collisions, the beam-beam
deflection cannot be handled polymorphically. This means that the beam-beam
interaction map cannot be concatenated with a lattice TPS map. To exploit a (pos-
sibly nonlinear) map representing the lattice sector preceeding an IP, it is necessary
to derive each particle’s coordinates at the IP from the map, then to calculate and
apply the beam-beam deflection, and finally to treat the result as input coordinates
for the map representing the next sector.

For sufficiently non-head-on, parasitic, beam-beam interactions, the limitation
just described is not operative. Here “sufficiently” means something like “several
sigma”. For such collisions the parasitic collisions can be concatenated into a lattice
map much the way any other lattice element would be.

Because the nonanalytic problem is not fatal for sufficiently remote collision,
it makes sense to introduce two distinct beambeam types, called headonbb and
remotebb. The remotebb type can be concatenated polymorphically just like any
other beam line element. The headonbb type can be subjected to near-linear map
analysis, to obtain small amplitude tune shifts and even amplitude-dependent tune
shifts, but the evaluation patch valid at the origin is already very inaccurate for
transverse displacement amplitudes comparable with the opposing bunch size. Cer-
tainly the description of long term evolution by iterating a single map representing
both lattice and beam-beam interaction is unphysical with a headonbb element in
the ring. But there is nothing to prevent concatenation of any number of remotebb
elements into a single nonlinear map for the sector from one headonbb element to
the next.

9.3. Electric Field Due to Gaussian Charge Distribution

Bassetti and Erskine[22] give formulas for the electric field components at z, y of
a Gaussian charge distribution, total charge per unit length A, in terms of complex
error function w(z), where z = x + iy, The function w(z) is related to the so-called
“error function complement” erfc(z) by

w(z) = e*ZQerfc(—iz). (9.4)
(Introduction of complex numbers into the discussion leads to an unfortunate clash
of meanings for the word “real”. Whether “real” means the real part of a complex
number or a single decimal number, as in computer programming language, has to

be inferred from the context.)
The electric field is given by

2 2
E, A 1/S e . Yw —(3%+2%) LTy Sy Yw Sz )

= Twoy AWy a2 e Sw Oy j W P 9.5

(E) <5}?> (w( . +i=—)—e w( +i )], (9.5)
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where z,, and y,, are horizontal and vertical deviations of a particular particle in
a “weak beam” from the center of an approaching “strong beam”. Here we are
using the conventional “strong/weak” terminology of colliding beams, where the
distribution of the strong beam, i.e. the other beam, or the unperturbed beam,
is treated as constant, at least until it is updated after multiple passes have been
evaluated.

The horizontal and vertical strong beam “sigmas” are s, and s, and, to simplify
the expression a bit, a modified transverse beam size s given by

s =4/2(s2 — 53), (9.6)

has been introduced. So that s is real, the beam is assumed to be wider than it is
tall, s, > sy, and s, /s, exceeds some nominal value, slightly greater than 1, such
as 1.1. Since the “strong beam” aspect ratio depends on the local S-functions, the
strong beam will normally be at least this much out of round even if the emittances
in the two planes are equal.

At crossing points where the strong beam is nearly round a different approach
is required. For an exactly round beam, using S.I. units, the electric field is

E,\ _ Az)1- e /28 /g (9.7)
E,)  2meq r2 y)’ '

where A(z) is the longitudinal charge density. For a Gaussian-distributed, strong
beam bunch with N charges Qs,

A(z) =

N.Qs exp( e ) (9.8)

V2rao, 202

For long bunches, especially if they are relativistic, the longitudinal electric
field can normally be neglected. Also the magnetic deflection is, except for factor
v?/c?, the same as the electric deflection. The total deflection is therefore obtained
by multiplying the electric deflection by 1 4+ v?/c* where the minus sign would be
appropriate for the space charge force on a particle co-moving with the bunch. The
positive sign is appropriate for the counter-traveling bunches assumed for beambeam
elements. The total deflection suffered in passing the other bunch is proportional
to its bunch length, and hence to its total charge. (While including the factor of
nearly two to add electric and magnetic force one must not forget to include an
almost-exactly-canceling factor due to the relative velocity of the counter-moving
bunches being almost 2c.)

The deflection, say horizontal, Af,, suffered by a weak beam particle of charge
@, as it passes a strong beam bunch is given by

Ap, 1 dp 1 dt

PoC  PocC dt Poc dz

The factor 2 in the numerator includes the magnetic force, and the factor dt/dz =
1/(2¢) accounts for the relative velocity of the bunches.

9.4. The Beam-Beam Tune Shift Parameters

To a lowest (linearized) approximation the force on a particle in the weak
beam due to the strong beam is lens-like, but unlike a quadrupole in that the fo-
cus/defocus character is the same in both planes. Repeating “golden rule” formulas
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from Egs. (3.47), the leading effects of such focusing are tune shifts given by

1 1
fw = EBqum fu = EByAq,w (910)

where Ag, and Ag, are inverse focal lengths depending on the bunch charge and
profile of the strong beam. Unlike a normal quadrupole, Ag, and Ag, have the same
sign. Especially in electron colliding beams Ag, and Ag, can be vastly different
but, for maximum luminosity, £, and &, tend to be roughly equal.

The values of ¢ due to a single interaction point rarely exceed 0.05 in electron
colliders or 0.01 in hadron colliders. But colliding beam facilities usually have more
than one interaction point. The tune shifts they cause are strictly additive, and
can add up to a total tune shift as great as 0.2 or more, even though this might
seem to have required crossing destructive resonances.

PROBLEM 9.5. For the round beam distribution of Eq. (9.7), show that the

horizontal, beam-beam tune shift parameter is given by
(B 1 N0

¢ dr pOC/Qw 4=7T‘:~052 -

(9.11)

PROBLEM 9.6. By keeping the next term in the expansion of the round beam
deflection, calculate the octupole-order horizontal deflection.

9.5. Impracticality of Taylor Map Beam-Beam Representation

The “altitude chart”, for w(z) in Abramowitz and Stegun’s[23] FIG. 7.3, shows
regular behavior in the upper right quadrant, but there are poles in the lower right
quadrant. From the figure and the relation

w(z) = w(—=z), (9.12)

one concludes that expression Eq.(9.5) has the correct symmetry for left-right reflec-
tion through the vertical axis, but that it does not give the physically demanded up-
down symmetry for reflection through the horizontal axis. It follows that Eq. (9.5)
is valid in the upper half-plane and invalid in the lower half-plane. Any analytic
approximation to this formula will have similar properties. For purely numerical
tracking this is not a problem since lower half-plane deflections can be inferred by
using the reflection symmetry. But application of symmetry for purpose of evalua-
tion is inconsistent with TPS representation.

Part of experimental, storage ring, parasitic-bunch-crossing lore is that a par-
ticle in one bunch will be lost if its amplitude encroaches on the opposing bunch’s
“space”, meaning the region of non-negligible charge density. This is not quali-
tatively inconsistent with the mathematical observation that non-vanishing charge
density is incompatible with analytic two dimensional field (as follows from Ampére’s
law.) A formalism such as TPS, that relies on differentiability, is therefore, in prin-
ciple, invalid for even remote collisions of Gaussian-shaped beam bunches. But
Gaussian charge distributions fall off dramatically at large amplitudes and physi-
cally realistic bunches truly vanish outside, say, 5 or 6 sigma. This makes it valid
to contemplate incorporating remote, or “parasitic” beam-beam collisions into a
TPS simulation formalism. As mentioned previously, to distinguish such collisions
from head on collisions (for which the element type name headonbb is employed)
parasitic collisions are modeled by the remotebb type.
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The map simulation of remotebb parasitic crossings will inevitably break down
for crossings that are too close. If particles can actually be lost due to parasitic
crossings one cannot expect the simulation to model the loss evolution accurately.
(When contemplating train wrecks one concentrates on avoiding them, not on ac-
curate description of the wreckage.) On the other hand, since failure of analyticity
manifests itself by unphysical forces proportional to a possibly-high power of ampli-
tude, one can be optimistic that numerical simulation can predict with quite good
accuracy the amplitude beyond which particles are lost. The next section describes
formulas to be used, within UAT,, to model the remotebb type polymorphically.

For a headonbb type, one can contemplate using its TPS map to simulate its
effect on weak beam particles of small amplitude, such as “one tenth sigma”. The
so-called “beam-beam tune shift” parameterization of the collision amounts to just
such a pure linearization of the deflecting force. Even some amplitude dependent
effects can perhaps be estimated while restricting the amplitudes to sufficiently
small values. But the code warns against concatenation of headonbb elements in
any simulation that pretends to be a self-consistent model using a distribution of
weak beam particle amplitudes matching the strong beam distribution. For faithful
modeling in this case the code uses pure numerical evaluation of each headonbb
interaction. This is not a serious limitation in practice, but it causes the application
of some nonlinear tools, such as normal form analysis, to be invalid.

There are approximation algorithms available for calculating the fields of Gauss-
ian charge distributions accurately for all possible bunch separations. But, to avoid
complication, it is sensible to accept reduced accuracy in the interest of reducing
the number of evaluation patches. The next section discusses evaluation for par-
asitic collisions and the section after that discusses headon evaluation. Since the
code takes care of choosing a good algorithm in each case, for benchmarking and
checking the code reliability, it should be adequate to spot check only a relatively
small number of cases.

9.6. Padé Approximation For remotebb Type Collisions

The truncated Taylor series formalism is introduced into particle trajectory
description to model nonlinear deflecting elements. The deflections caused by
such elements can be expressed as power series in the transverse coordinates (z
and y). Unfortunately the beam beam deflection cannot be described by a sin-
gle, everywhere-convergent, power series. For example, the field at large distances
falls off as 1/r and such a term diverges at the origin. This problem is somewhat
ameliorated by the use of Padé approximation. As explained in reference[21], the
needed function w(z) can be approximated in the vicinity of a point zg, in terms
of (complex) deviation z — zg, in a Padé form

N co +c1(z — 20) + ca(z — 20)% + c3(2 — 20)3
= ]. +d1(2 — Z(]) +d2(2 — 20)2 +dq(Z — 20)3 +d4(2 — 20)4.

w(z) (9.13)
This expression is relatively quick to calculate, and retains at least as many terms as
are likely to be needed for any practical Taylor series to be generated subsequently.
Because the denominator terminates in a power N higher by one than the numerator
M, the behavior at large radius is appropriate. If needed, expressions with larger
values of M and N are easily obtainable.
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The coefficients ¢; and d; can be calculated by a program such as the following
MAPLE program:

restart: with(numapprox): Digits:=30:M:=6: N:=M+1:
z0:=0.0+I*%0.0:
open("PCoeffs.dat",WRITE) :
fprintf ("PCoeffs.dat", "%d\\n", M):
fprintf ("PCoeffs.dat", "%15.8e\\n", Re(z0)):
fprintf ("PCoeffs.dat", "%15.8e\\n", Im(z0)):
evalf (pade( exp(-z"2)*erfc(-I*z), z=z0, [M,N])):
w := subs(z-z0=d, %):
wnum:=numer (w) : wden:=denom(w) :
sd:=coeff (wden,d,0):
for j from O by 1 to M do
fprintf ("PCoeffs.dat", "%15.8e\\n", Re(coeff (wnum,d,j))/sd):
fprintf ("PCoeffs.dat", "%15.8e\\n", Im(coeff (wnum,d,j))/sd):
end do:
for j from O by 1 to N do
fprintf ("PCoeffs.dat", "%15.8e\\n", Re(coeff (wden,d,j))/sd):
fprintf ("PCoeffs.dat", "%15.8e\\n", Im(coeff (wden,d,j))/sd):
end do:
fclose("PCoeffs.dat");

This program outputs M, z0, and the coefficients to file "PCoeffs.dat” in a
format (one number per line) convenient for reading into the C++ program that
calculates electric fields. (For example “bmbm.cpp”, listed at the end of this report.)
For example, with (M, N) = (6,7) and zg = 0,

c0 = 1.00000000e+00 0.00000000e-01
cl = 0.00000000e-01 -1.25647718e+00
c2 =-8.25059157e-01 0.00000000e-01
c3 = 0.00000000e-01 3.19300157e-01
c4 = 7.63191604e-02 0.00000000e-01
cb = 0.00000000e-01 -1.04697937e-02
c6 =-6.44878650e-04 0.00000000e-01

d0 = 1.00000000e+00 0.00000000e-01
dl = 0.00000000e-01 -2.38485634e+00
d2 =-2.51608137e+00 0.00000000e-01
d3 = 0.00000000e-01 1.52579039e+00
d4 = 5.75922692e-01 0.00000000e-01
db = 0.00000000e-01 -1.35740709e-01
d6 =-1.85678083e-02 0.00000000e-01

d7 = 0.00000000e-01 1.14243694e-03
An example with (M, N) = (3,4) and zy = 3 is,
cO = 1.23409804e-04 2.01157317e-01

cl = 2.33554192e-01 1.60868941e-01
c2 = 1.25324805e-01 -4.04528997e-02
c3 = 8.84183536e-03 -1.80649734e-02

d0 = 1.00000000e+00 0.00000000e-01
dl = 1.19099484e+00 -1.16400275e+00

d2 = 8.87402357e-02 -1.07153615e+00

d3 =-1.68262727e-01 -2.69022561e-01

da =-3.19855404e-02 -1.57189728e-02

This expansion is appropriate for calculating w(z) with argument near z = 3. The
program is easily extended to calculate the Padé coefficients with center points
located on a regular grid.

Even with Padé approximation, problems remain. An expansion like that of
Eq. (9.13) is valid only in a restricted patch. An expansion centered on the origin
gives a respectable approximation to w in the entire upper half-plane. CBN 80-13
gives algorithms appropriate for enough patches to cover the entire x,y space with
high accuracy. But this multi-patch treatment can be incorporated into the TPS
formalism only by applying the map, particle-by-particle, to obtain the numerical
coordinate values of every particle at every headonbb location.
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When used to calculate the electric field, because of its z — —z symmetry,
the Padé expansion centered on the origin fits the electric field (which immediately
provides the magnetic field as well) reasonably well in the upper half-plane. Pre-
liminary investigations have shown that some remote crossing cases can be modeled
adequately with just the Padé expansion centered on the strong beam. This is a
sensible approach to take for preliminary investigations. As shown in CBN 80-13
the origin-centered Padé expansion with M = 6, N = 7 (called PADE1 in CBN 80-13)
gives a respectable approximation over a the entire upper half plane and a narrow
band just below the real axis. This can be referred to as a “default” representation.
Tt is implemented with hardwired coefficients in subroutine wpade3 (listed below)
and with externally supplied coefficients in wpade4.

For higher accuracy each parasitic collision could have its own Padé approxima-
tion. Since the two occurrences of w in Eq.(9.5) have different arguments, it would
be necessary to use two Padé formulas for a single bunch crossing. The MAPLE pro-
gram listed above gives Padé coefficients at such a point. Coefficients are needed
for the two argument values corresponding to the separation of the bunch centers.
The same procedure can handle the case of bunch separation more vertical than
horizontal and the case of beams higher than they are wide (s, > s,.)

To avoid the need for programming the coefficient determination into the C++
code, UAL requires them to be calculated off-line, or at least in a separate module.
The coefficients are then be passed to the simulation as parameters of the remotebb
element. Other required parameters are (sz,Sy,S:), (Azo1, Azgs, and the strong
beam strength (equivalent to ).

Consider a parasitic bunch crossing in which the particle being tracked lies in
a “weak beam” that is displaced approximately horizontally by (positive) distance
Az from the center of the “strong beam”. This separation might also have non-zero
vertical deviation. Also, since the horizontal deviation depends, weakly to be sure,
on the parasitic interaction, it is, in principle, necessary to determine Az iteratively.

Two error function determinations are required. Always taking the strong beam
center as origin, one requires Padé expansions centered on the two points

Tro1r = T”, Tog — — —. (914)

If the beams have vertical separation it is necessary to alter the Padé center points
accordingly. The case s, > s, also requires special treatment not exhibited here.

Re-expressing Eq.(9.5) in terms of coordinates z and y relative to the weak
beam center yields

E, 1S wo Ly, (et TSy Y Sa
(9.15)

For typical, many sigma, bunch separations at parasitic crossing, and for weak beam
betatron amplitudes out to all but unphysically large amplitudes, the two w terms
will be close enough to the Padé expansion points that the Padé approximations
give accurate deflections. This should not be surprising since the strong beam is
simply a multipole-rich electromagnet from the point of view of the weak beam.
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9.7. Padé Approximation For headonbb Collisions

As explained earlier, the procedure of the previous section can be applied only
for small particle amplitudes. In this limit both expansions in Eq. (9.15) are cen-
tered on the origin. As mentioned above PADE1 (which has been ported to wpade3
and wpade4 below) gives a decent approximation in the entire upper half region. But
for negative vertical displacements y more negative, say, than —s, (which is a very
probable amplitude) the calculated electric field rapidly becomes incorrect. Even
for amplitudes of smaller amplitude than this, any apparent amplitude-dependent
tune shifts would be suspect and would require careful verification.

For trajectory following in the presence of headonbb elements it is still possible
to use maps, but every trajectory has to be converted to numbers at every crossing.
The most compact map representation possible would concatenate all elements,
including parasitic crossings, in every arc into entire-arc maps. At every head-on
crossing the next-arc map would be applied to each particle’s (numerical) post-
interaction coordinates to obtain its (numerical) pre-interaction coordinates at the
next crossing point.
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