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Abstra
t. UAL (Uni�ed A

elerator Libraries)[4℄ is an a
-
elerator simulation environment whose purpose is to homog-enize diverse simulation 
odes. This do
ument is availableat http://www.ual.bnl.gov, where it 
an be expe
ted to beupdated o

asionally. Its initial purpose has been to serve asinstru
tions for the 2005 USPAS (U.S. Parti
le A

eleratorS
hool) 
ourse held in Itha
a. As su
h, some of the material,su
h as �lenames, �lename extensions, tutorials, and XMLtools, are spe
ialized unne
essarily to what happened to bein use for this 
ourse. The do
ument is intended to servealso as a UAL Physi
s User's Guide for the UAL environ-ment. Some of the other do
uments and user guides referredto are available at the same web site. The MAD8 manual isespe
ially important sin
e, to the extent possible, geometry,terminology and de�nitions of UAL are adopted from thatsour
e. Some 
orre
tion algorithms, su
h as orbit smoothingand lo
al de
oupling are do
umented in the TEAPOT manual.This text 
omplements the UAL User Guide,[5℄ whi
h,though now largely outdated, des
ribes mu
h of the motiva-tion, organization and evolution of UAL. The main ways inwhi
h the User Guide is outdated are that the user interfa
ehas been migrated from PERL to C++ and a graphi
al userinterfa
e is now supported. Updating of the User Guide, nowin progress, will 
onsist primarily of the 
onversion of line-by-line PERL s
ript explanations to line-by-line explanationsof essentially equivalent C++ 
ode. The physi
s underlyingthe 
ode will be largely un
hanged.
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CHAPTER 1Introdu
tion1.1. Code Installation From the CDROM'sThis text is meant to resemble a physi
s text more nearly than it resemblesa 
ookbook. But this se
tion is an ex
eption; it gives rudimentary instru
tionson initializing the UAL 
omputer environment. The instru
tions are written asif for a student in the USPAS s
hool held at Cornell University, in Itha
a, NewYork, in 2005, but they should be appli
able to anyone else looking for an intensiveintrodu
tion to UAL.This do
umentation assumes that the username is ualusr, with home dire
tory/home/ualusr. In these instru
tions this dire
tory is referred to as �. LINUX isthe only operating system used in the 
ourse. (For the USPAS s
hool, RedHatEnterprise linux is used.) Everything needed over and above 
ode in
luded in the(
omplete) RedHat release is 
ontained on two CDROM's, whi
h are labeled USPASand TOY-LATTICES. The 
ode they 
ontain installs into subdire
tories �/USPASand �/TOY-LATTICES. Installation instru
tions are given on the CDROM labels.They 
an be installed in either order. The USPAS 
ode uses the TOY-LATTICES
ode only as a sour
e of example latti
e �les. Though the ADXF latti
e format wasintrodu
ed initially in UAL, in prin
iple it exists in a more-general-than-UAL world.The TOY-LATTICES 
odes pro
ess latti
e �les in that world. But these instru
tionsassume that both CDROM's are being installed at the same time.The instru
tions in
lude 
opying a �le 
alled 
shr
-tentative to �/.
shr
.But this must be done 
autiously. The purpose for this �le is to establish requiredenvironment variables and sear
h paths. To avoid unexpe
ted 
on
i
ts it is re
-ommended that the ualusr a

ount be dedi
ated entirely to UAL work. The userwishing to personalize the .
shr
 �le is responsible for prote
ting and merging its
ontents appropriately before blindly following the CDROM label's instru
tion toover-write this �le.A partial dire
tory stru
ture (with dire
tory labels giving hints 
on
erning
ontent) follows:� USPAS{ 
shr
-tentative, to be 
opied to �/.
shr
{ rootr
, to be 
opied to �/.rootr
{ ual1, the main UAL 
ode.� gui� 
odes� env� ext� tools� examples 1



2 1. INTRODUCTION� do
/adxf, lo
ation of lo
al 
opu of adxf.xsd s
hema{ examples, simulations, loosely 
oupled with 
hapters� transverse, for transverse simulations� longitudinal� nonlinear� de
oheren
e{ setup-linux, initialization �le{ tools,� Instru
tions.ps, extra
ted from http://www.ual.bnl.gov� qt, Troll Te
h's Qt graphi
al user interfa
e� root, CERN, obje
t-oriented, data-pro
essing environment.� SoQt, library integrating Coin and Qt� simage, support for loading and saving images, 
oin3D devel-opment� Coin, 3D graphi
s rendering library� TOY-LATTICES{ oxygen5, inexpensive 
ommer
ial, XML-aware editor, li
ensed for US-PAS s
hool{ gra
e, for xmgra
e graphi
al post-pro
essing{ xslt� MAD8, for latti
e fun
tion 
omparisons� OUTPUT, latti
e fun
tion graphs from MAD8 runs� SCRIPTS, XSLT s
ripts for translating among various �le for-mats.� ADXF� INPUT-adxf, primary lo
ation of latti
e �les� OUTPUT-adxf-num, purely numeri
al, .adxf �les� OUTPUT-spe
ialized, spe
ially tailored �les, see README� OUTPUT-xsl, �les prepared for transformation by XSLT� OUTPUT-sxf, purely numeri
al, .sxf �les� OUTPUT-mad� OUTPUT-tpot� INPUT-sif, ar
hive of original MAD latti
e �les� INPUT-xsl-ar
hive, ar
hive of original .xsl �les� ADXF2.10, s
hema, and do
umentation thereof� tools� java� Xer
es� xml-xalanApart from 
ontaining the toy latti
e �les to be used in the s
hool, the 
ode in�/TOY-LATTICES 
onsists mainly of non-UAL-spe
i�
 utility 
odes useful in trans-lating latti
e �les among various �le formats, and for validating the results, asregards both XML and physi
s. Mu
h of this 
ode is transitory, intended espe-
ially for the USPAS 
ourse, or provided for ba
kward 
ompatibility|for exampleby providing .sxf �les that 
an be used in some old simulations, or .mad or .tpot�les.The primary repository for �les to be used as input to UAL simulations is�/TOY-LATTICES/xslt/ADXF/INPUT-adxf



1.1. CODE INSTALLATION FROM THE CDROM'S 3whi
h 
ontains .adxf �les for all toy-latti
es, with variables and expressions un-evaluated. However, some �les, su
h as ags, support parameter evaluation onlyvia the ags.xsl route. All toy latti
e �les are therefore available with all variablesevaluated to numbers in�/TOY-LATTICES/xslt/ADXF/OUTPUT-adxf-numUAL simulations 
an be started from .adxf �les in either of these dire
tories, withor without modi�
ation. Though these �les have .adxf extensions, they are tobe pro
essed exa
tly as if their extensions were .xml. They are required to beXML-valid against the s
hema,http://www.ual.bnl.gov/adxf/adxf.xsdA lo
al 
opy of the s
hema, needed for when the web is ina

essible, is/USPAS/ual1/do
/adxf/adxf.xsdThe .adxf �les 
an be modi�ed using any editor, but the XML-aware editorprovides many valuable utilities. Espe
ially useful are 
ontext-aware pull-downmenus, that present all s
hema-legal options. Files 
an be tested for XML-well-formedness and validity. Files 
an also be pretty-printed and stepped throughfor line-by-line feedba
k, for debugging or for browsing purposes. Obviously it issensible to save 
opies of the originals. They 
an also be regenerated using thes
ripts des
ribed next. This route must be taken if 
omparison output from MAD8for a modi�ed latti
e is desired.For ba
kward 
ompatability all toy latti
e �les are also available in .sxf formin the dire
tory�/TOY-LATTICES/xslt/ADXF/OUTPUT-sxfThese �les 
an be used as input to various (old and now unsupported) PERL-
ontrolled bat
h-mode s
ripts. Sin
e this interfa
e is in the pro
ess of being repla
edthere is little support available in 
ase of malfun
tioning of these s
ripts.The s
ripts in the SCRIPTS dire
tory perform various latti
e des
ription trans-formations, su
h as populating all the latti
e �le dire
tories mentioned so far. Someof the s
ripts 
ombine several separate manipulations. If only one of these manipu-lations is required the appropriate line (a shell s
ript statement) should be extra
tedand run by itself. In all 
ases the transformations 
an be stepped through usingthe oxygen XML-aware editor. A few of the s
ripts (whi
h 
all some of the others)are: � pro
ess-qfile: taking a single argument, su
h as ra
etra
k, this s
riptpro
esses the toy latti
e ra
etra
k.adxf, and produ
es equivalent �les indiverse formats, su
h as ra
etra
k.mad, and ra
etra
k.sxf (now dep-re
ated). These are in forms that 
an be (and are) immediately pro
essed.Also produ
ed (for 
onvenien
e in performing XSLT transformations) arera
etra
k.xsl and (in a di�erent dire
tory) ra
etra
k.adxf whi
h is apurely numeri
al version with all variables and expressions evaluated topure numbers.� pro
ess-all-files: runs pro
ess-qfile for all available .adxf �les.� 
he
k-results: for a parti
ular latti
e, su
h as ra
etra
k, 
he
ks forthe presen
e of �les generated by pro
ess-qfile and validates the .adxf�le against its XML-S
hema.All these tools are available for any latti
e �le written in .adxf form. TheOXYGEN, XML-aware editor makes the generation of su
h a �le straightforward, bypresenting, at every step, only legal options for the developer to 
hoose among. The



4 1. INTRODUCTIONonly major task in importing a new a

elerator into this environment is the initialgeneration of its .adxf form. The XML-aware editor is helpful, but the task isabout as tedious as generating a latti
e des
ription �le for any a

elerator analysissoftware. 1.2. Organization of the Text and CourseThis text has been written primarily to provide referen
e material in support ofa 
ourse on 
omputer simulation of a

elerators. Sin
e the 
hoi
e of subje
t matteris rather 
onventional for the �eld, the material would be more or less appropriatefor any a

elerator modeling software. Many of the problems are this general, butwe think of this text as being a kind of UAL Physi
s User's Guide. Almost all ofthe simulations assume the UAL environment is being used. Furthermore, many ofthe �gures a

ompanying the theoreti
al material in the text is produ
ed by theUAL GUI.The UAL environment is intended to be useful for both o�-line models and forthe models used in online 
ontrol system appli
ations. Only the o�-line appli
ationsare do
umented in this text.Nearly everthing of importan
e in a

elerator physi
s 
an be subje
ted to studyby simulation. From the time that a tentative latti
e for a new a

elerator hasbeen written down, then re�ned and the a

elerator built and 
ommissioned, untilthe a

elerator is eventually de-
ommissioned, simulation 
an 
ontribute to theunderstanding and improvement of the a

elerator's performan
e. A long, yet stillin
omplete, list of important ingredients of a simulation follows:� initial latti
e des
ription� Monte Carlo parti
le bun
h and �eld error assignment� 
al
ulation of latti
e fun
tions, both ideal and real� 
orre
tion 
apabilities, orbit smoothing, de
oupling, et
.� simultaneous presen
e of multiple e�e
ts� determination of bun
h evolution, emittan
e dilution, parti
le loss, halogeneration, inje
tion and extra
tion eÆ
ien
y.� 
ollimation design� spa
e 
harge, beam-wall, and beam-beam e�e
ts� design and performan
e modeling of feedba
k and 
ontrolSome of the essential requirement of the physi
s underlying a simulation are:� 
orre
t basi
 physi
s (e.g. symple
ti
ity and Maxwell equations)� sensible in
lusion of (only) essential physi
s of suÆ
ient generality� freedom from bugs, blunders, and 
on
eptual errorsThough almost too obvious to write down, the third of these requirements is hardto a
hieve, and a
hieving it depends strongly on the �rst two, between whi
h thereis a kind of 
omplementarity. The striving for unreasonably faithful des
riptiontends to in
rease 
omplexity whi
h makes the 
ode more error-prone. This justi�esthe expenditure of mu
h e�ort in 
hoosing what idealizations are to be adopted.To be most e�e
tive (like all theory) simulation is best used in 
onjun
tionwith experimental observations on a real a

elerator. If the model underlying asimulation is too idealized, that fa
t should be
ome rapidly apparent during a
tualma
hine studies.



1.2. ORGANIZATION OF THE TEXT AND COURSE 5For avoiding bugs the quality of the 
ode ar
hite
ture and the 
areful appli
a-tion of tests are probably the most important determinants of the 
ode reliability.In many quarters it is thought that obje
t-oriented 
ode, with its highly dis
iplinedinterfa
es, is favorable in this respe
t. UAL is based (almost) entirely on C++whi
h is obje
t-oriented. Amongst other features, this fa
ilitates extensibility andmaintainabily. These issues are dis
ussed in detail in other UAL do
uments. Forexample, further dis
ussion of the merits of C++, and why it is being super
ededin UAL is dis
ussed in the User Guide.Another likely sour
e of error is the in
orre
t interpretation of 
orre
t 
ode.This may be 
aused by in
orre
t interpretation of physi
s or by 
omputationalissues. In this text mu
h emphasis will be pla
ed on the physi
s, but, in spiteof its importan
e, the 
ontribution of software ar
hite
ture to 
ode reliability islittle dis
ussed. On the other hand the ben
hmarking of simulation results againstindependently derived and trusted results might almost be 
alled the theme of thepresent text.It is not enough for a simulation just to have 
orre
t physi
s and sensiblemodels. It is also ne
essary for it to be suÆ
iently user friendly that it a
tuallygets used. The user interfa
e has to display its results in an a

essible fashion, toprovide the rapid feedba
k needed to support rapid 
hanging of 
onditions. An alltoo 
ommon experien
e with many (all?) existing a

elerators is that there is oneor more detailed but hard to use o�ine models and a 
rude, but easy to use, onlinemodel. From experien
e one knows whi
h of these two models will a
tually be usedin the 
ontrol room. This s
enario be mainly due to the diÆ
ulty of providing gooduser interfa
es. Of 
ourse there are also other reequirements for a simulation, su
has performing peripheral 
al
ulations and providing post-pro
essing tools.So what is the relation of this text to simulations? It might seem appropriate toprovide derivations for all formulas used in the 
ode. Though 
onsiderable te
hni
almaterial of this sort is in
luded, only a relatively small fra
tion of the formulas inthe UAL 
ode are derived here. Far more important is the task, mentioned already,of result 
orroboration. It is important for material supporting su
h tests to beavailable. Mu
h of this text is therefore devoted to developing idealized modelsand to deriving analyti
 formulas des
ribing them.An all too prevalent pra
ti
e in a

elerator investigations is to a

ept un
rit-i
ally the results of this or that 
omputer program. Based on the likely validassumption that the program's author knows more than the user, the results of theprogram are a

epted as being reliable. Apart from the possibility of bugs, thisapproa
h is likely to mask the presen
e of built-in assumptions that are valid insome 
ir
umstan
es but not in others. It is very rare for a user to have line-by-linefamiliarity with the 
ode he or she is relying on, but to redu
e the likelihood oferror it is essential to have a fundamental understanding of what has gone into the
ode.Summarizing what has been said, to the extent that this text is an \A

eleratorPhysi
s Users Guide", it is intended to provide:� an overview of the subje
t of a

elerator physi
s, in support of the en-lightened usage of simulation 
ode, espe
ially UAL� exploration of simplifying idealizations� emphasis on keying simulation to a
tual ma
hine studies



6 1. INTRODUCTION� detailed te
hni
al information emphasizing methods appropriate for sim-ulation� test 
ases that 
an be used to test simulation results against theoreti
alresults and therefore provide 
on�den
e in results obtained in situationstoo 
ompli
ated for analyti
 treatment� pedagogi
al material for a 
ourse on the subje
t� pra
ti
e assignments to help a user gain experien
e with the methods andthe 
ode1.3. Assignments: Tutorials, Problems, SimulationsThere are assignments sprinkled more or less uniformly through the text. Foreasy visability all these assignments are printed in itali
 type and separated fromthe main text by horizontal lines. The assignments are of three di�erent types,referred to as tutorials, problems, and simulations.Tutorials. Tutorials are intended more to guide the student through pra
ti
alitiesof the UAL 
ode than to explore a

elerator physi
s. They are not intended tobe diÆ
ult. If a tutorial assignment is diÆ
ult it may be be
ause obje
t-orientedsoftware ar
hite
ture is unfamiliar or be
ause of the obs
urity or absen
e of do
u-mentation. In any 
ase the diÆ
ulty probably re
e
ts more on the software thanon the student. Tutorials o

ur mainly in the early 
hapters. They 
an only beperformed while sitting in front of a 
omputer s
reen.Problems. As mentioned in the previous se
tion, the attempt is made in thistext for ea
h topi
 to be addressed by two parallel methods|one analyti
, one bysimulation. The problems relate to the analyti
 members of these pairs. Mu
hlike the problems in any book dis
ussing theoreti
al methods these problems areintended to exer
ise the student's understanding of the material. In many 
asesthe problems extend the treatment in the text. Whether a problem is hard oreasy depends (obviously) on the student's level of familiarity with the parti
ulartopi
. When the purpose of a problem is to derive a result for 
omparison withsimulation the answer is usually given in the statement of the problem. This mayallow the result to be used even without the problem having been worked. In otherwords, it is not ne
essary to slavishly work through all the problems|they are,after all, intended primarily as being 
omplementary to the simulations. That said,it bears repeating, that one of the most important initial uses of any simulationis to 
orroborate its results against known results, usually obtained analyti
ally.Mainly the problems are to be worked out with pen
il and paper.Simulations. The ultimate purpose for UAL is to simulate the behavior of reala

elerators and storage rings. As in all s
ien
e, in 
ontrolling and observing ana

elerator, there is tension between what is expe
ted and what is observed. Byin
reasingly realisti
 simulation of what is expe
ted, and re
on
iliation with what isobserved, the performan
e of an a

elerator 
an be improved. The UAL simulationsattempt to model a

elerator performan
e in 
onditions that are as nearly realisti
as possible, 
onsistent with avoiding undue 
omplexity. The various simulationsapply to an a

elerator latti
e supplied by the user. When the latti
e is one of theso-
alled \toy" latti
es the results are intended to be relatively easy to interpretand to 
ompare with theory. When the latti
e �le des
ribes a real a

elerator theresults will be more realisti
 but less easily 
he
kable.



1.3. ASSIGNMENTS: TUTORIALS, PROBLEMS, SIMULATIONS 7Do
umentation of the dynami
 simulations is s
attered through this text (andin other online material). Here it will only be stated that they are laun
hed byinstru
tions like$ 
d ~/USPAS/examples/longitudinal/linux$ ./runA
tually this does not start a run; rather it e
hoes a usage message su
h as,$ usage: run ringName latti
eFile apdfFileMany latti
e �les des
ribe only one beamline, but the \ringName" argument ispresent in 
ase the �le \latti
eFile" des
ribes more than one beamline. The �nal ar-gument refers to a \propagator des
ription �le" 
alled, for example, tibetan.apdf.1Reminded by this hint, one types$ 
d ~/USPAS/examples/longitudinal/linux$ ./run ring ~/TOY-LATTICES/xslt/ADXF/INPUT-adxf/eq_tune_fodo.adxf ../data/tibetan.apdf(This assumes the dire
tory stru
ture is su
h that the �les are where they arestated to be. The dire
tories shown are the preferred dire
tories for the USPASs
hool. The �les 
an be referen
ed by absolute or relative addresses.) This 
om-mand brings up a GUI that permits beam 
onditions and other parameters to be
hanged from default values. Other features of the simulation 
an be tailored inthe GUI and ouput in the form of plots or �les 
an be requested. First the GUI-available parameters are tailored as desired. Then 
li
king on setup followed by
li
king on run starts the run. Beam plots are updated at regular (adjustable)intervals. If desired, the run 
an be paused. While viewing a plot, hard 
opy 
anbe produ
ed and, optionally, its data saved for post-pro
essing. Parameters nota

essible via the GUI are also 
hangeable, but only by re-
oding the main 
ontrol�le /USPAS/examples/longitudinal/sr
/run.

. After editing, this �le has tobe re
ompiled using$ 
d ~/USPAS/examples/longitudinal/sr
$ makebefore restarting the simulator as above. Similarly, to start the transverse simu-lator, $ 
d ~/USPAS/examples/transverse/linux$ ./run ringName latti
eFile apdfFileOther UAL simulations, going by the names nonlinear and de
oheren
e havesimilar organization and usage. A systemati
 listing of simulator properties is
ontained in Table 1.1.By their very nature all simulations are somewhat open-ended and the instru
-tions may not be very spe
i�
. Generally the simulation will involve 
hanging oneor more latti
e or beam parameters. In some 
ases the GUI a

epts data entry to
hange parameter values. For more extensive 
hanges it is ne
essary to edit theinput �le as des
ribed above. The student is invited, no required, to go beyondthe expli
it instru
tions, espe
ially by formulating questions that the software ap-pli
ation should be expe
ted to be able to address. Espe
ially en
ouraged, thoughvery ambitious for a short 
ourse, would be to generate an input �le 
orrespondingto some existing or planned a

elerator, and to simulate its behavior. (Manualtranslation of an existing MAD latti
e des
ription to ADXF is straightforward but1In the 
ase of the longitudinal simulation, the RF 
avity is under the 
ontrol of the GUI,so treatment of the RF 
avity is not des
ribed in the .apdf �le.



8 1. INTRODUCTIONTable 1.1. Some Properties of the Simulations.simulation 
hapter variables algorithms fun
tions.name number emphasized displayedtransverse 2,3 x; y matrix, ki
k �, Dphase spa
e4 FFT QSVD spatial, temporaleigenve
toreslongitudinal 6 s separatrixphase spa
ede
oheren
e 7 x; y; s matrix, ki
k < x >;< y >;< s >mapnonlinear 8 x; y; s matrix, ki
k Q mapmap dynami
 aperturetedious.) In short, the simulations are the main 
ontent of the UAL/USPAS 
ourse.Obviously they require a 
omputer, but in most 
ases they also require a lively un-derstanding of the material, su
h as may be obtained by reading the text and doingthe problems.1.4. The UAL Element-Algorithm-Probe Simulation FrameworkUAL (whi
h stands for \Uni�ed A

elerator Libraries") is an a

elerator simu-lation environment. It di�ers from some other environments by its rigorous separa-tion of physi
al elements (magnets, 
avities, et
.) from the formulas or algorithmsdes
ribing beam evolution through the elements. The quantities being evolved(parti
le positions, bun
hes, maps, Twiss fun
tions, et
.) are referred to as probes.These are the 
ornerstones of the so-
alled element-algorithm-probe framework ofUAL.The parameters of the physi
al elements making up an a

elerator latti
e are
ontained in a so-
alled ADXF �le (whi
h stands for \A

elerator Des
ription eX-
hange Format".) This format is 
apable of des
ribing latti
es that range from thesimplest possible design latti
e to the most 
ompli
ated, fully-instantiated, opera-tional latti
e. It is important for all tools to fun
tion 
onsistently and e�e
tivelyover this full range of 
ompli
ation.For an a
tual simulation, after the probe quantities to be evolved have beenspe
i�ed, it is ne
essary to asso
iate a spe
i�
 evolution algorithm with ea
h latti
eelement. These linkages are des
ribed by an APDF �le (whi
h stands for \A

eler-ator Propagator Des
ription Format"). This �le is usually quite brief, sin
e thereare only a few algorithms and default algorithms are usually appropriate for mostelements.The early tutorials 
on
entrate on gaining familiarity with ADXF. Use of APDFis 
onsiderably more te
hni
al and more spe
ialized. The general idea 
an be in-ferred from the following sample, 
alled tra
ker.apdf:<apdf><propagator id="teapot" a

elerator="blue"><
reate>



1.5. ADXF 9<link algorithm="TEAPOT::DriftTra
ker" types="Default"/><link algorithm="TEAPOT::DriftTra
ker" types="Marker|Drift"/><link algorithm="TEAPOT::DipoleTra
ker" types="Sbend" /><link algorithm="TEAPOT::MltTra
ker"types="Quadrupole|Sextupole|Multipole|[VH℄ki
ker|Ki
ker"/><link algorithm="TIBETAN::RfCavityTra
ker" types="RfCavity"/><link algorithm="AIM::Monitor" types="Monitor|[VH℄monitor"/></
reate></propagator></apdf>With the linkages shown, magnets and drifts are handled by TEAPOT, r.f. 
avitiesby TIBETAN, and monitors are treated as AIM:Monitor's at whi
h parti
le positionsare re
orded ea
h turn (for later post-pro
essing). (AIM stands for \a

eleratorinstrumentation module".) Users familiar with other a

elerator simulation 
odesmay 
onsider it a nuisan
e that beam positions are available only at monitors. ButUAL attempts to be realisti
 in the sense of making available, and making use of,only data that would be realisti
ally avaiable in a real a

elerator.The purpose of separating elements from algorithms in this way is to supportthe \mixing and mat
hing" of physi
al methods (matrix, map, Runge-Kutta, et
.)with physi
al elements (bends, quads, RF 
avities, et
.) As well as fa
ilitatingthe ben
h-marking and 
omparison of methods, this stru
ture permits a simulationto link the most appropriate evolution method with ea
h element. More detailedexamples of .apdf �les, along with more detailed explanations, are given in Chap-ter 7. 1.5. ADXFMost users are presumably familiar with MAD latti
e des
riptions. This formof des
ription is often referred to as SIF whi
h stands for \Standard Input For-mat". The ADXF format, while in
orporating all SIF features, super
edes SIF inthree main ways. The most essential of these ways is that ADXF extends SIF andis, itself, extensible. These extensions in
lude the ability to fully-instantiate thelatti
e by giving every element its own identity and its own deviations, parameters,et
. The se
ond essential innovation ADXF brings is that it is based on XML. Tomake the format, as well as any extensions, self-des
riptive, the XML-S
hema dis-
ipline is employed. Furthermore, the importation, into the a

elerator world, ofstandard, up-to-date, 
omputer world formalism, makes available tools developedin the vastly-better-developed external world.Following an innovation in E. Forrest's PTC 
ode, a third, more spe
ialized,feature of ADXF is the distin
tion between between \uninstalled" (\on the ben
h"in Forest's terminology) and \installed" elements. Naturally an a

elerator 
on-tains only installed elements, ea
h potentially having its own positioning and �elddeviations. As well as being faithfull to reality, this abstra
tion permits the simula-taneous des
ription of more than one ring, in
luding the ability to des
ribe elementsthat are shared by two or more rings, or that are multiply-traversed (possibly with
hanged 
onditions) within a single ring. There are workarounds to provide thisfeature within SIF. For example, to represent shared elements, a single element 
anbe treated arti�
ially as two distin
t elements. But this 
ompli
ates the in
lusionof �eld or positioning deviations. This 
an be done 
onsistently, but is error-prone.



10 1. INTRODUCTIONLike .mad �les, .adxf �les support parameters and expressions and 
an bepretty mu
h internally self-explanatory. This is espe
ially true for the toy latti
esto be used initially.A 
onsiderably more te
hni
al overview of ADXF is available at the UAL web-site http:www.ual.bnl.gov under ADXF 2.0. De�nitions, examples, s
hema, andrelationships of ADXF to other formats are given there.In order to serve for both design of idealized latti
es and representation offully-instantiated operational latti
es ADXF supports spe
i�
ation of both designparameter values and deviations. This issue is too te
hni
al for dis
ussion at thispoint, but it 
an be roughly understood by 
onsidering ordinary elements su
h assbend, quadrupole, and marker. The ADXF fragment<elements><marker name="mk1"/><sbend name="bend" l="lq" angle="deltheta"/><quadrupole name="quadhv" l="lq" k1="kq1"/>...</elements>essentially just re-expresses MAD input element des
riptions as XML. To des
ribedeviations (from a design element) ADXF uses syntax<elements><sbend name="d0mp08" l="3.58896" angle="-0.0151186"/><element name="bi8-dh0" design="d0mp08"/><mfield b="0 0 0.005476 0.033503"a="0.0 -0.010166 0.024366"/></element></elements>The <mfield> tag also allows a method attribute with the default value beingmethod="set", in whi
h 
ase the a and b entries are absolute values of the param-eters. Other possibilities are method="add" and method="multiply". In the 
aseof multiply an entry b="1 1.01" would result in b0 ! b0 and b1 ! 1:01 b1.1.6. \Toy" Latti
esIt is regrettably true that a

elerator latti
es are 
ompli
ated. In fa
t the needfor a sophisti
ated simulation environment like UAL is at least partly due to this
omplexity. Even professionals, with de
ades of experien
e, 
an be 
onfused as towhi
h 
omponents are 
ausing whi
h behavior. A student in a one week 
ourse 
ans
ar
ely, therefore, be expe
ted to generate the latti
e des
riptions that UAL needsto work with. For this reason, to get started, the \toy latti
es" shown in Table 1.2and FIG 1.1 are to be used as starting points. These latti
es are suÆ
iently detailedto exhibit most of the behaviors important in a

elerators. Furthermore, thoughreferred to as \toys", the latti
es are parameterized in su
h a way that they 
an begeneralized to des
ribe a

elerators, storage rings and 
olliding beams of arbitrary
ir
umferen
e, energy, parti
le type, tunes, and so on.As they stand, not in
luding ags.adxf, whi
h des
ribes the BNL alternatinggradient syn
hrotron, the toy latti
es are thin element latti
es, meaning that thequadrupole and sextupole lengths are negligible 
ompared to the 
ell length. (Toenable 
omparisons with programs, su
h as MAD, that do not smoothly in
orporate
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isochronous ags

rf

general_fodo_rf

2q1
2q2

general_fodo

2q
−2q

eq_tune_fodo

racetrack collider

ip

Figure 1.1. "Toy latti
es" to be used as starting points for a
-
elerator simulations. Note: \ags" is not a \toy".the zero length limit for thin elements, the element lengths in these �les are 
hosento be not quite zero, but small enough to have negligible e�e
t on the opti
s)Sin
e the element lengths are expressed as parameters, later on the elements 
anbe turned into thi
k elements, and the ring retuned.The early 
hapters of these notes largely 
ontain introdu
tory exer
ises intendedto provide a gentle introdu
tion to the UAL a

elerator simulation environment.The �rst two tutorials relate to two simple \toy" latti
es 
alled eq tune fodo.adxfand general fodo.adxf. These latti
es are designed for getting started on thea

elerator modeling 
ourse.These �les 
ould have been generated from s
rat
h but some were in fa
t,derived from .xsl �les whi
h is a \pre-adxf" form. XSL is an XML pro
essing tool.XML stands for \eXtensible Markup Language", whi
h is ideal for modern latti
e



12 1. INTRODUCTIONTable 1.2. \Toy latti
es" to be used as starting points of simula-tions. \P/N/FI" stand for \parameterized/numeri
al/fully-instantiated". INPUT OUTPUT�lename feature .mad .xsl .adxf .mad .sxfeq tune fodo equal tunes P P N N Ngeneral fodo unequal tunes P P N N Ngeneral fodo rf a

eleration P P N N Nra
etra
k long straights P P N N N
ollider low beta IP P P N N Niso
hronous mom. ind. period P P N N Nags fully realisti
 FI-P FI-P FI-N FI-N FI-Ndes
ription. The term \pre-adxf" implies that named parameters are allowed andthey 
an be expressed in terms of mathemati
al expressions and fun
tions. Theseexpressions are \parsed" into numeri
al expressions using an XML tool known asXSLT. (At this time the UAL parser is also able to parse algebrai
 expressions so theneed for the XSLT expression parser has already been largely eliminated. Howeverthe XSLT transformation tools provide powerful help in translating from .adxfformat to the formats of other a

elerator programs.)Based on XML, the ADXF proto
ol (or something like it) is beginning to, buthas not yet, super
eeded SIF (whi
h stands for \Standard Input Format"). Overtime SIF has evolved into the MAD (Methodi
al A

elerator Des
ription) format.For the UAL simulation 
ourse it is the .adxf �les that are the starting pointsfor the various dynami
 simulations. The .sxf format (motivated a few yearsago by the US-LHC 
ollaboration) was an early pres
ription for ex
hanging fully-instantiated latti
e des
riptions among diverse simulation environments. This for-mat has been super
eded by the .adxf format, whi
h is extensible, with extensionsdis
iplined by XML s
hema. This makes the format \self-des
ribing".The eq tune fodo.adxf �le is espe
ially introdu
tory in 
hara
ter and is in-tended to be super
eded by the slightly more general general fodo.adxf afterpreliminary study. These latti
es are parameterized in su
h a way that they 
andes
ribe rings of arbitrary radius and arbitrary tunes. The parameters of the input.xsl �les are intended to be adjusted in performing the tutorials. Later, whileperforming dynami
al simulations using the graphi
al user interfa
e, the few mostimportant, but not all, parameters will be intera
tively 
hangeable without re
om-pilation.When these or other latti
es are pro
essed by UAL, various output displays and�les are generated. Example output 
orresponding to the iso
hronous toy latti
eis shown in FIG 1.2. When the same latti
e is pro
essed using MAD the results areshown in FIG 1.3 and FIG 1.4 are obtained.
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Figure 1.2. UAL-generated Twiss fun
tions for the iso
hronous latti
e.



14 1. INTRODUCTIONThe toy latti
e �les are useful for gaining familiarity with the environment.Introdu
tory tasks mainly amount to 
he
king and 
orrelating a few results in thisoutput by hand 
al
ulation (using any 
omputational tool you wish, su
h as handor online 
al
ulator) using formulas given in these notes.One thing that makes a

elerator physi
s hard is that the presen
e of smalle�e
ts of one sort or another almost always 
auses minor disagreements amongquantities 
al
ulated in di�erent ways. Examples will be given shortly. Only withexperien
e does one obtain good judgment about what to insist upon, and what tolet pass. One purpose of this 
ourse is to learn how to use the UAL environmentto provide some of this experien
e. It is to be a \laboratory 
ourse" where labora-tory is being used in the sense of 
omputational laboratory. After understandingthe meanings of quantities, they will be estimated and the estimations 
omparedto a

urately 
omputed values. Even when quantities 
annot be 
al
ulated withabsolute a

ura
y, analyti
 formulas 
an often be used to 
al
ulate the 
hanges ofthese quantities when a latti
e element strength is 
hanged by a small amount.Commonly in an a

elerator 
ontrol room the installed latti
e only agrees \moreor less" with the design. (As a

elerators have be
ome larger and larger this be-
omes more and more invevitable. Not only are there more elements, for whi
hthe parameters are only 
ontrolled approximately, but the same fra
tional erroris more signi�
ant in a big ring than in a small ring.) After 
on�rming that theinstalled latti
e resembles the design, it is ne
essary to perform various �ne tun-ing operations to 
orre
t for minor unknown errors. Furthermore the algorithms,based as they are on an idealized model, are typi
ally not \orthogonal" (meaningthat errors of one sort, su
h as 
oupling, degrade algorithms intended to 
orre
tother e�e
ts, su
h as 
losed-orbit deviation.) This for
es methods to be iterated,either su

essfully, in the 
ase of 
onvergen
e, if the errors are small enough andthe methods powerful enough, or unsu

essfully.One appli
ation of the UAL 
ode is to simulate these latti
e tuning and 
orre
-tion pro
edures and then to determine a

urate latti
e properties. Some of theseare just re
al
ulations of quantities previously 
al
ulated. Most of the 
al
ulationsare too 
ompli
ated to be 
he
ked by hand. The asso
iated assignments in the tu-torials are to spot-
he
k the results against the input �le spe
i�
ations, referring tothe UAL manual to \get the drift" of what 
an be 
al
ulated, what 
an be modeled,what 
an be adjusted, and how to do it.Output �les for both of the initial pra
ti
e latti
es are available (along withother data) from the CDROM. Students are to work through the instru
tions asso-
iated with these latti
es. There are various other, more realisti
, more detailed,but still \toy latti
es", that are available for similar study; for example a 
ollidingbeam latti
e, and a proton a

elerator (AGS) are available in .xsl form. Somelongitudinal studies are based on RHIC, the Brookhaven Relativisti
 Ion Collider.That latti
e is available in .sxf form.
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e.



1.7. GRAPHICAL USER INTERFACE 17Tutorial 1.1. Use UAL to obtain the dispersion 
urve for the iso
hronouslatti
e, and 
ompare the result with FIG 1.4.Tutorial 1.2. Pra
ti
e, using the mouse and 
aret, to zoom one of the GUIgraphs. Note that there is no \box zoom". Rather, ea
h axis is to be zoomedindividually. Also learn how to read a

urate numeri
aal values for one of theplotted latti
e fun
tions.After 
ompleting these initial assignments students are en
ouraged to preparean input �le des
ription for a parti
ular a

elerator or type of a

elerator of interest.Starting with this �le it will be possible to 
omplete the later stages of the 
oursein whi
h various physi
al e�e
ts are investigated.1.7. Graphi
al User Interfa
eThe main graphi
al user interfa
e whi
h 
ontrols the UAL simulator is shownin FIG 1.5. More detailed windows are shown in FIG 4.7, FIG 4.8, FIG 7.7 andFIG 7.8. This interfa
e is based on QT[1℄ and ROOT[2℄[3℄.The graphi
al interfa
e for the debugger for the XSLT-transformer 
ontainedin the OXYGEN, XML-aware editor is shown split between FIG 1.6 and FIG 1.7.
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Figure 1.5. UAL \PlayerUI" GUI window.



1.7.GRAPHICALUSERINTERFACE
19Figure 1.6. Left half of OXYGEN Debugger window.
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Figure 1.7. Right half of OXYGEN Debugger window.



CHAPTER 2Linearized Transverse Motion2.1. Equations of Small Amplitude Transverse MotionConsider a beam of parti
les being guided along a possibly-
urved path, withlongitudinal position spe
i�ed by ar
 length s. To prevent the eventual loss ofparti
les no matter how slightly divergent, it is ne
essary to have fo
using elements.For high energy 
harged parti
les this means quadrupoles. The di�erential equationdes
ribing su
h fo
using, for example in the verti
al plane, isd2yds2 = K(s)y; (2.1)where K(s) is the \verti
al fo
using strength". Its dependen
e on s permits thedes
ription of systems in whi
h the fo
using strength varies along the orbit. Inparti
ular K(s) = 0 des
ribes \drift spa
es" in whi
h 
ase Eq. (2.1) is triviallysolved, and yields the obvious result that parti
les in free spa
e travel in straightlines.It is 
onventional to designate dy=ds by y0. There are (at least) three 
andidatesfor des
ribing parti
le slopes; angle �y, slope y0, or momentium py (whi
h is s
aledto the total momentum P0). All of these are exhibited in FIG 2.1, and one seesthat y0 � dyds = tan �y = py
os �y : (2.2)This multiple ambiguity in what 
onstitutes the 
oordinate 
onjugate to y is some-thing of a nuisan
e at large amplitudes but, fortunately, all three de�nitions ap-proa
h equality in the small-angle limit that 
hara
terizes Gaussian or \paraxial"opti
s. One knows from Hamiltonian me
hani
s that py is the safest 
hoi
e but,while limiting ourselves to Gaussian opti
s, we will refer loosely to y0 as \verti
almomentum" so that we 
an refer to the (y; y0)-plane as \verti
al phase spa
e".
P0

P0 p yθy

θy
dy

ds

Figure 2.1. Spatial displa
ements and momentum ve
tors show-ing relations among transverse angle, momentum, and slope.21



22 2. LINEARIZED TRANSVERSE MOTIONStarting from any point s0 along the beamline, one de�nes two spe
ial orbits, a\
osine-like" orbit C(s; s0) with unit initial amplitude and zero slope, and a \sine-like" orbit S(s; s0) with zero initial amplitude and unit slope.C(s0; s0) = 1; C 0(s0; s0) = 0; (2.3)S(s0; s0) = 0; S0(s0; s0) = 1:Sin
e unity slope is manifestly not a small angle, these de�nitions only make senseafter the exa
t equations of motion have been linearized as in Eq. (2.1). Be
auseEq. (2.1) is linear and se
ond order, any solution y(s) and its �rst derivative y0(s)
an be expressed as that linear superposition of these two solutions that mat
hesinitial 
onditions y(s0) and y0(s0):y(s) = C(s; s0)y(s0) + S(s; s0)y0(s0); (2.4)y0(s) = C 0(s; s0)y(s0) + S0(s; s0)y0(s0):This 
an be expressed in matrix form, with y = (y; y0)T being a \ve
tor in phasespa
e":y(s) � �y(s)y0(s)� = �C(s; s0) S(s; s0)C 0(s; s0) S0(s; s0)�y(s0) =M(s0; s)y(s0): (2.5)This serves to de�ne M(s0; s), the \verti
al transfer matrix from s0 to s". Sin
eany solution of Eq. (2.1) 
an be expressed in this way, an entire beamline 
anbe 
hara
terized by M(s0; s). This matrix 
an be \
omposed" by multiplying (or\
on
atenating") the matri
es for the su

essive beamline elements making up theline. 2.2. Pseudoharmoni
 Traje
tory Des
riptionAn \ansatz" for solving Eq. (2.1), based on the known, \harmoni
", dependen
eproportional to 
os( �  0) when K(s) is 
onstant, isy(s) = ap�(s) 
os( �  0): (2.6)Here  (an intermediate \independent" variable) and �(s) depend on s but a is a
onstant amplitude. Di�erentiation of Eq. (2.6) yieldsy0(s) = �ap�(s) 0 sin( �  0) + a�02p� 
os( �  0): (2.7)Substituting into Eq. (2.1), we 
an demand that the 
oeÆ
ients of sin and 
osterms vanish independently, sin
e that is the only way of maintaining equality forall values of  0. This leads to the equations�  00 + �0 0 = 0; 2� �00 � �02 � 4�2 02 + 4�2K(s) = 0: (2.8)From the �rst equation it follows that �  0 is 
onstant. To obtain the 
onventionaldes
ription we pi
k this 
onstant to be 1 and obtain 0 = 1� ; or  (s) =  (s0) + Z ss0 ds0�(s0) : (2.9)Sin
e  is the argument of a sinusoidal fun
tion, and the argument of a harmoni
wave is 2�s=wavelength, this permits us to interpret 2��(s) as a \lo
al wavelength"
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Figure 2.2. An ellipti
al beam in verti
al phase spa
e, showingthe geometri
 
on�guration of a beam ellipse mat
hed to the lo
alTwiss parameters �, � and 
. Ex
ept for a fa
tor of order 1,depending on the detailed beam distribution, the area of the ellipseis the emittan
e ". The skew orientation depends primarily onTwiss parameter �. E is the \beam envelope".or, equivalently, 1=�(s) is the \lo
al wave number". Substituting into the se
ondof Eqs. (2.8), we obtain �00 = 2� K(s) + 21 + �02=4� : (2.10)This se
ond order, nonlinear di�erential equation is usually 
onsidered to be thefundamental de�ning relationship for the evolution of the latti
e �-fun
tion. Be-
ause K(s) depends on s, solving the equation may be quite diÆ
ult in general. Ina problem below a \�rst integral" of Eq. (2.10) is obtained;y2� + �(y0 � �02� y)2 = a2: (2.11)Even without �(s0) yet having been determined, this equation makes it natural,at �xed position s0, where (�(s0); �(s0)) = (�0; �0), to plot the ellipse shown inFIG 2.2, for (�; �) = (�0; �0). As s in
reases away from s0, individual points evolveindependently, but points sharing this ellipse at s0 will share the same (�; �) =(�1; �1) ellipse at s = s1.2.3. Relations Among the \Twiss" Latti
e Fun
tionsSin
e properties of the so-
alled \Twiss latti
e fun
tions", �(s), �(s) and 
(s),are spelled out in all a

elerator books, only the briefest of outlines will be givenhere. With �(s) already de�ned, the de�ning relation for �(s) and 
(s) are� = �12 d�ds � ��02 ; 
 = 1 + �2� : (2.12)In this text, while analysing toy latti
es, sin
e nothing but thin elements and driftsare used, it is suÆ
ient to work out the s dependen
e of the Twiss fun
tions forjust drifts and thin lenses, whi
h is to say, quadrupoles. Other than requiring input



24 2. LINEARIZED TRANSVERSE MOTIONTable 2.1. Latti
e fun
tion evolution formulas. Sign of q is gov-erned by horizontal (q > 0! horizontal defo
us) and is the samefor all entries. Both �� and � are assumed to be positive.Verti
al Horizontal Dispersion�y �x ~D � ~DxDRIFT � = �0 � 2�0+s+ 
0+s2 � = �0 � 2�0+s+ 
0+s2 ~D = ~D0 + ~D00+slength �(s) = �0 � 
0s �(s) = �0 � 
0s ~D0(s) = ~D00s 
(s) = 
0 
(s) = 
0thin �+ = �� �+ = �� ~D+ = ~D�QUAD �+ = �� + �0q �+ = �� � �0q ~D0+ = ~D0� + ~D0qq 
+ = 
� + 2��q + �0q2 
+ = 
� � 2��q + �0q2thin no 
hange �+ = �� ~D+ = ~D�BEND �+ = �� + �0��=� ~D0+ = ~D0� +���� 
+ = 
� + 2����=�+ �0��2=�2and output positions to be the same, the de�ning equation of a thin lens of fo
allength f � �1=q is �y0 = qy: (2.13)The lens strength q and fo
using fun
tion K(s) are related byq = Z K(s)ds; (2.14)where the range of integration spans the lens lo
ation.The Twiss fun
tion dependen
ies for drifts and thin lenses are given by formulasin the se
ond and third 
olumns of Table 2.1. All entries are to be worked out inproblems below. For drifts, propagation is from 0 to s. When applied to a drift,for a potentially dis
ontinuous quantity su
h as �, the value �0+ stands for �(0+),the value just after the thin element at s = 0. This de�nes the start of the drift.In general �� and �+ are the values just before and just after a thin element. Forquadrupoles, the verti
al and horizontal 
olumns are related by the the well-knownresult (also proved in Eq (8.6)) that the fo
al lengths of quadrupoles are equal inmagnitude but opposite in sign for horizontal and verti
al planes.The 
onvention used in the table is that positive q 
orresponds to the quad beingfo
using in the horizontal plane. Sin
e there is no universally a

epted 
onvention,it is ne
essary to be 
he
king the signs of quadrupole strengths 
arefully whendi�erent formalisms are 
ompared.For 
onvenien
e the fourth 
olumn of the table also gives the variation of dis-persion1 ~D(s). Those entries, whi
h depend of bending magnets, will be dis
ussedlater.What makes drifts simple is that, sin
e K = 0, the �rst term on the right handside of Eq. (2.10) vanishes. What makes thin lenses simple is that, sin
e K = 1(at the lens lo
ation) the se
ond term on the right hand side of Eq. (2.10) 
an be1Tildes on ~D(s) and ~Æ, here and later, will be explained below. They are introdu
ed fornotational 
onsisten
y with the treatment of longitudinal dynami
s in later 
hapters. Ex
ept fora fa
tor �0, Æ and ~Æ are identi
al. At the level of faithfulness justi�ed for the toy latti
es understudy one should assume fully relativisti
 motion for whi
h �0 = 1. This justi�es simply ignoringthe tildes.
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ted there. (Individual parti
le traje
tories have to be 
ontinuous, even inpassing through thin elements. As a result �(s) has to be a 
ontinuous fun
tion ofs, even at a lens lo
ation. This means that �0 has to be �nite there.) At a lenslo
ation, be
ause �00 = 1, it follows from Eq. (2.12) that �(s) is dis
ontinuous atthe lens position. In other words, the fun
tion �(s) has a kink there.This se
tion has now in
luded all the hints ne
essary to derive all entries in
olumns two and three of Table 2.1. Problems to this e�e
t are given next.Problem 2.1. With a view toward eliminating the argument  �  o fromEqs. (2.6) and (2.7), solve the se
ond of these equations for ap�(s) sin( �  0),expressed in terms of y and y0. Then square and sum the two equations. In thisway prove the 
onstan
y of the \�rst integral" introdu
ed in Eq. (2.11).Problem 2.2. In a drift region K = 0, whi
h simpli�es Eq. (2.10) markedly.Solve this di�erential equation to show that the variation of �(s) has to be quadrati
in s. This has derived the top row entry in ea
h of the �rst two 
olumns of Table 2.1.Problem 2.3. Continuing from the previous problem, use the relations 
on-tained in Eqs. (2.12) to derive the dependen
ies of �(s) and 
(s) in drift regions.In other words derive the se
ond and third rows of Table 2.1 for the variation ofTwiss fun
tions in drift se
tions.Problem 2.4. For thin elements it was argued above that the last term ofEq. (2.10) 
an be dropped. Use the resulting equation, along with Eqs. (2.12) and(2.14), to derive the �+ � �� dis
ontinuity relations given in Table 2.1.Problem 2.5. Continuing from the previous problem, use the relations 
on-tained in Eqs. (2.12) to derive the dis
ontinuity equations for �(s) and 
(s) at thinlens lo
ations. In other words derive the �rst and third rows of Table 2.1 for thevariation of Twiss fun
tions at thin lens lo
ations..In drifts and quads the graph of ~D(s) is the same as that of a horizontal par-ti
le traje
tory. When passing through a thin dipole that 
auses inward de
e
tionthrough angle ��, ~D su�ers an outward kink ��. This means that (ex
ept in re-verse bends, whi
h are rarely used) a dipole 
auses ~D(s) to be \repelled" from thehorizontal axis. For this reason ~D(s) is positive everywhere in ordinary latti
es.Both �x and �y are ne
essarily everywhere positive be
ause they are \repelled" fromthe axis in drift spa
es (with strength inversely dependent on �). (A 
ounter exam-ple, in whi
h negative dispersion is intentionally present is the iso
hronous.adxflatti
e.) 2.4. Establishing Absolute Values of the Twiss Fun
tionsEquation 2.10 �xes only variation of �(s). As with any se
ond order, ordinarydi�erential equation, it is ne
essary to use initial 
onditions or boundary 
onditionsto �x the two undetermined parameters. Whi
h of these 
onditions is to be useddepends on the way the Twiss fun
tions are to be interpreted. There are two mainlines of development, depending on whether an open \transfer line" or a 
losed\
ir
ular ring" is under dis
ussion.� The ellipse shown in FIG 2.2 
an be regarded as the aspe
t ratio of abeam of parti
les in one dimensional phase spa
e. (There would be asimilar plot for the other transverse plane.) In this 
ase the parameters
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0) are properties of the beam. They 
an be established or variedwith no referen
e to any latti
e; (for example, by 
hanging voltages on theele
trodes of the sour
e or \gun" from whi
h the parti
les are generated.)This triplet of values serves as initial 
onditions establishing absolute val-ues of the Twiss fun
tions for the transfer line into whi
h this beam isinje
ted. In this 
ase the Twiss fun
tions 
an be regarded as propertiesof the beam.� For a (more or less) 
ir
ular ring, it is natural to establish absolute valuesfor the Twiss fun
tions by using boundary 
onditions. Assuming a 
losedorbit is known, and that the 
oordinates being used are measured rela-tive to that orbit, the fo
using fun
tion K(s) is ne
essarily periodi
, withperiod C0, whi
h is the orbit 
ir
umferen
e. Requiring the boundary 
on-ditions �(C0) = �0 and �(C0) = �0 �xes the absolute values of the Twissfun
tions. In this 
ase the Twiss fun
tions 
an be regarded as propertiesof the latti
e.When a beam is inje
ted into a 
ir
ular ring there is a 
lash between these twosets of Twiss fun
tions. Ideally the two sets would be identi
al, in whi
h 
ase thebeam is said to be \mat
hed". In this 
ase it is unne
essary to distinguish betweenthe two de�nitions, and the Twiss fun
tions are de�ned unambiguously for one fullturn around the ma
hine and, for that matter, for all subsequent turns.Naturally the beam are never be exa
tly mat
hed to the latti
e. If the latti
ewere truly linear then the bun
h 
hara
teristi
s would survive inde�nitely. Butthe latti
e is never truly linear and, after a suÆ
iently long time, a pro
ess 
alled�lamentation, will 
ause the beam to adapt itself to the latti
e. This pro
ess, whi
halso goes by various names su
h as \emittan
e dilution" and \de
oheren
e" is thesubje
t of Chapter 7.2.5. Transfer Matri
es for Simple Elements2.5.1. Drift spa
e. The most important transfer matrix is Ml, whi
h de-s
ribes propagation through a drift spa
e of length `. Sin
e the orbits are given byy(s) = y0 + y00s; y0(s) = y00, we haveMl = �1 `0 1� : (2.15)2.5.2. Thin lens. The next most important transfer matrix des
ribes a \thinlens" where the de�nition of \thin" is that the thi
kness �s is suÆ
iently smallthat 
oordinate y(s��s=2), just before the lens, and y(s+�s=2), just after, 
anbe taken to be equal. A typi
al fo
using pro�le is shown in FIG 2.3. The lens
auses a \kink" �y0 = y0(s+�s=2)� y0(s��s=2) in the orbit whi
h, as shown inthe �gure, is taken as o

urring at the 
enter of the lens. The kink 
an be obtainedby integrating Eq. (2.1) from O�, just before the lens to O+, just after it:�y0 = Z O+O� dds�dyds �ds = y Z O+O� K(s)ds � y K�s: (2.16)This relation de�nes the produ
t K�s. Now, a fo
using strength that 
hangesdis
ontinuously from 0 to K is not a
tually realisti
. But the produ
t K�s, knownas a \�eld integral", 
an be regarded as an abbreviation for R O+O� K(s)ds where O�and O+ are well outside the �eld region. If K is taken to be equal to KO (the value
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Ο O− +Figure 2.3. Realisti
 thin lens fo
using pro�les are more or less
onstant with value K over a 
entral region and be
ome negligibleoutside points O� and O+. E�e
tive length �s is determined bymat
hing K�s to the \�eld integral".
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O- O+Figure 2.4. Fo
using a
tion of a thin lens for whi
h the fo
usingstrength-length produ
t is K�s and �elds outside the range O� <s < O+ 
an be negle
ted. The \fo
al length" is f = �(K�s)�1 ��q�1.at the 
enter of the element) then �s is typi
ally equal to (or, be
ause of fringe�elds, slightly greater than) the physi
al length of the element. The \fo
al length"f of the lens, de�ned in FIG 2.4, and the \lens strength" q = �1=f , are then givenby q = � 1f = �y0y = K�s: (2.17)Building in the approximation that y is 
ontant through the lens, the transfermatrix is then given by Mq = �1 0q 1� : (2.18)As drawn, K and q are positive, f is negative, and the lens is \defo
using".2.5.3. Thi
k lens. The 
ondition for the thin lens formula just given to bevalid (�s << jf j) is usually well satis�ed for a

elerator beamlines. Even if non-vanishing, if K(s) is 
onstant (as it usually is, by design anyway) it is easy tointegrate Eq. (2.1). This yields matrix elements of M that are no worse than sinesand 
osines (or hyperboli
 sines and 
osines, depending on the sign ofK). Formulasfor ideal thi
k quadrupoles are given in most a

elerator books and, other than ina problem below, won't be dis
ussed here. When the linear latti
e assumption is
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eptably a

urate, these matri
es 
an be used in UAL, for examplein the FastTeapot, to minimize 
omputation time through linear se
tions.For low energy, few element, a

elerators, expli
it thi
k element matri
es usedto be 
onsidered \
anoni
al". But, for high energy a

elerators, the thin lens ap-proximation is usually adequate. In any 
ase, making use of now readily available
omputer power, one 
an always split elements longitudinally to better validate theassumption that the elements are \thin". Quite apart from improving a

ura
y, itis handy to split elements in two in order to enable latti
e fun
tion evaluations atlens 
enters. (The latti
e fun
tions typi
ally go through maxima or minima nearthese points and aperture limits are usually established at those points.) Even inthe most extreme 
ases of interse
tion region quads, splitting by another fa
tor of,say, four, is more than adequate, espe
ially sin
e the residual ina

ura
y is typi
allyless than the errors due to the negle
t of other fa
tors like fringe �elds. For thesereasons thi
k element formulas are de-emphasized here.The emphasis on thin elements in UAL resembles the restri
tion to �nite ele-ments in the �nite element method of me
hani
al engineering. In both 
ases theexpli
it need for numeri
al treatment redu
es the usefulness of idealized, thi
k ele-ment, analyti
al approximations. In the 
ase of parti
le dynami
s the requirementof symple
ti
ity makes this dis
retization obligatory, sin
e there is no known sym-ple
ti
 treatment of distributed nonlinearity. Histori
ally this led to the use ofso-
alled \ki
k 
odes" for in
orporating nonlinearity. The �rst general-purpose
ode taking this route was TEAPOT[6℄. Over time this has evolved into the vastlymore general and more in
lusive UAL 
ode. As well as in
orporating TEAPOT, theUAL environment has 
ome to in
orporate the homogeneous in
lusion of heteroge-neous 
odes while preserving the symple
ti
 
apability. By using trun
ated Taylorseries (TPS) maps, even thi
k elements 
an be represented analyti
ally, thoughsymple
ti
ity 
an only be assured up to a given polynomial order.2.5.4. Bending Magnet. Bending magnets (also known as uniform �eldmagnets or, based on a \multipole expansion" to be des
ribed in Chapter 8, as\dipoles") are obviously needed to bend the parti
les into 
losed 
urves. The mainparameters de�ning a bending magnet are the bend angle �� and the ar
 length l0of the referen
e orbit as it passes through the magnet. Sin
e there are signi�
antend e�e
ts it is ne
essary to also spe
ify entran
e and exit angles. The simplestspe
ial 
ase has both entran
e and exit normal to the pole fa
e, in whi
h 
ase themagnet is referred to as an sbend, whi
h stands for \se
tor bend". In this textbending magnets without further detailing will be assumed to be sbends. Anotherspe
ial bending magnet, haing parallel exit and entran
e pole fa
es, is referred to asan rbend, whi
h stands for \re
tangular bend". (In the 
ase of an rbend, insteadof design orbit ar
 length, the \magnet length" is usually taken to be the designorbit 
hord length, whi
h is the same as distan
e from pole to pole.) For a generalbending magnet the entran
e and exit pole fa
e angles E1 and E2 also need to begiven. A rather 
areful treatment of orbits in an sbend is given in se
tion 8.6.4;the present se
tion 
ontains only a simpli�ed dis
ussion.Parti
les travelled in perfe
t 
ir
les in the original parti
le a

elerator, the
y
lotron. Starting from one arbitrary point P, the 
entral, referen
e parti
le travelsin one su
h 
ir
le, of radius �. A parti
le starting from point P with zero momentumo�set, but with small angular deviation x00 from the referen
e momentum, travelsin a 
ir
le of the same radius and, as a result, returns to the same point P after one



2.5. TRANSFER MATRICES FOR SIMPLE ELEMENTS 29revolution. (This is the basis for the 360Æ spe
trometer.) With x being the radial
oordinate, one sees that there is a \geometri
 fo
using e�e
t" tending to \restore"x toward its equilibrium value x = 0. The radial motion is des
ribed approximatelyby the equationsx = x00� sin s� ; dxds = x00 
os s� ; d2xds2 = �x00� sin s� = � 1�2 x: (2.19)This means that, for radial motion, Eq. (2.1) needs to be repla
ed byd2xds2 = �Kq(s) +Kb(s)�x; where Kb = � 1�2 : (2.20)Here Kq repla
es K and represents the fo
using of a so-
alled 
ombined fun
tionmagnet, and Kb represents the geometri
 fo
using. In a uniform �eld magnet theKq(s) term vanishes. Note that the Kb x term appears only in the x equation;unlike quad fo
using, there is geometri
 fo
using only in one of the two transverseplanes. With the newly-in
luded Kb term, the 
al
ulation of transfer matri
es andTwiss evolution in a bending magnet is just like the 
orresponding 
al
ulation ina quadrupole. For in
lusion in Table 2.1, the relation l0=� = �� has been used.As with thi
k quadrupoles, for greater a

ura
y, the se
tor bend 
an be sli
ed intoslimmer se
tors.Problem 2.6. For an ideal, horizontally-fo
using, thi
k quadupole, the fo
usingstrength is Kx(s) = �K, with K positive, and traje
tory equations (2.1) be
omed2xds2 = �Kx; and d2yds2 = Ky: (2.21)Show that the transfer matri
es through su
h a quadrupole of length L are given byMx =  
os pKL 1pK sin pKL�pK sin pKL 
os pKL ! ; (2.22)My =  
osh pKL 1pK sinh pKLpK sinh pKL 
osh pKL ! : (2.23)Problem 2.7. In Eq. (2.5), the transfer matrix M(s0; s) was de�ned, withmatrix elements C, S, C 0, and S0. Find these elements for a drift se
tion and showthat the Twiss fun
tion evolution through the drift 
an be expressed as0���
1A = 0� C2 �2CS S2�CC 0 CS0 + SC 0 �SS0C 02 �2C 0S0 S02 1A0��0�0
01A : (2.24)Problem 2.8. Show that Eq. (2.24) is also valid for propagation through a thinlens.Problem 2.9. Show that Eq. (2.24) remains valid when applied to a drift fol-lowed by a thin lens or, for that matter, to any sequen
e of thin elements and drifts.Even a thi
k lens transfer matrix 
an be 
omposed by 
on
atenating drifts and thinlenses. It follows that Eq. (2.24) 
an be applied to an arbitrary linear transfer line.[This problem is noti
eably more diÆ
ult than the others.℄



30 2. LINEARIZED TRANSVERSE MOTION2.6. O�-Momentum Behavior2.6.1. Fra
tional Momentum and \Fra
tional" Energy. There is a mildin
onsisten
y in these notes, and in the a

elerator �eld at large, 
on
erning thede�nition of the fra
tional longitudinal momentum/energy variable Æ. As withmany other quantities, there are both ele
tron/hadron 
onventions and Ameri-
an/European 
onventions. Until quite re
ently the 
onventional meaning for Æ, atleast in the ele
tron world, was \fra
tional momentum deviation". This de�nitionis espe
ially appropriate for transverse dynami
s be
ause magneti
 de
e
tions areinversely proportional to p. To \geometri
ize" latti
e theory it is 
onventional to\fa
tor out" dependen
e on the total momentum p0 from the transverse transversemomentum 
omponents. We therefore de�ne~Æ = �pp0 ; (2.25)where �p = p�p0. The purpose of the overhead tilde is to distinguish this de�nitionfrom the following alternate de�nition. For longitudinal dynami
s, the fundamentale�e
t of the 
avity is an energy 
hange �E = E � E0 (rather than a momentum
hange). The fra
tional e�e
t 
an be spe
i�ed byÆ = �Ep0
 : (2.26)For reasons of symple
ti
ity the normalizing fa
tor here has to be the same asthe normalizing fa
tor for transverse momenta. This, and the fa
tor 
 inserted forunits 
onvenien
e, a

ount for the 
hoi
e of denominator p0
 in Eq. (2.26). So it isalmost, but not quite, valid to des
ribe Æ as \fra
tional 
hange of energy".These two de�nitions are related byÆ = �Ep0
 = �pp0 dEd(p
) = �0~Æ: (2.27)Sin
e these de�nitions di�er only by the fa
tor �0, whi
h approa
hes 1 in the rela-tivisti
 limit, the distin
tion is unimportant for fully relativisti
 a

elerators. Forele
trons this in
ludes essentially all a

elerators, but for pra
ti
al hadron a

eler-ators Æ and ~Æ may di�er appre
iably.For an introdu
tory dis
ussion of transverse latti
e opti
s (su
h as the analysisof toy latti
es in the early 
hapters of these notes) use of Æ de�ned by Eq. (2.26)introdu
es seemingly ad ho
 fa
tors of �0 into all magneti
 de
e
tion formulas.There are two ways to over
ome this in
onvenien
e. One way is to de
lare that allformulas apply only to fully relativisti
 motion, where �0 = 1. Another way is touse the variable ~Æ de�ned by Eq. (2.25). In the early 
hapters of these notes both ofthese approa
hes will be taken. Not only will fra
tional momentum be expressed as~Æ (to make the formulas te
hni
ally 
orre
t) but also the formulas will be assumedto apply to fully-relativisti
 motion for whi
h the relation Æ = ~Æ is valid in any 
ase.When advan
ing to a

urate des
ription of longitudinal motion in hadron a
-
elerators it will be important and ne
essary to 
onsider these issues more 
arefully.2.6.2. Dispersion. During a

eleration the radial 
oordinate x and the o�-momentum 
oordinate ~Æ are \
oupled" by the dynami
s. But at �xed energy themomentum p = p0(1 + ~Æ), for any parti
ular parti
le, and therefore also ~Æ, 
anbe regarded as a 
onstant parameter of that parti
le. It is traditional, therefore,



2.6. OFF-MOMENTUM BEHAVIOR 31for given ~Æ, to �nd the the 
losed orbit x~Æ(~Æ), and, from it, to de�ne \dispersionfun
tion"2 ~D(s) by x~Æ(~Æ) = ~D(s) ~Æ; (2.28)This equation is exa
t and does not assume that ~Æ is small, even though the righthand side looks like the �rst term in a Taylor expansion.The dispersion fun
tion is used to separate a general horizontal displa
ementx into two parts: x = x~Æ + x� � ~D(s) ~Æ + x� : (2.29)Sin
e ~Æ is a 
onstant parameter, the entire Courant-Snyder formalism applies to thex� evolution, provided the Twiss fun
tions are worked out for the o�-momentumorbit. They should therefore be symbolized as ~�; ~�; ~
. Nothing in this formalismhas required ~Æ to be small. But most latti
es, in fa
t, have limited momentumaperture whi
h restri
ts ~Æ to quite small values.As it has been de�ned, ~D(s)~Æ is simply a parti
le traje
tory and so also is ~D(s).In the linearized formalism, a 
onstant fa
tor, su
h as the fa
tor ~�(s), a�e
ts onlythe amplitude, not the shape of the traje
tory. All orbits in �eld free regions aresimply straight lines. This a

ounts for the dispersion entries for drift elementsin Table 2.1;All that remains is to evaluate the kinks o

uring in the dispersion fun
tion atthe lo
ations of thin elements. A parti
le of momentum p = p0(1 + ~Æ), when in auniform magneti
 �eld, travels in a 
ir
le of radius �0(1+~Æ). In traveling a distan
e�s su
h a parti
le su�ers an outward angular de
e
tion (relative to referen
e)�x0 = �s� 1�0 � 1�� � �s 1�0 ~Æ: (2.30)The equation of the o�-momentum orbit is obtained by adding this 
ontribution toEq. (2.20); d2 ~D(s)ds2 + ��Kq(s) + 1�20� ~D(s) = 1�0 ; (2.31)where a 
ommon fa
tor ~Æ has been divided out.This equation 
an be used to derive all entries in the \Dispersion" 
olumn ofTable 2.1. The interpretation of the ~D kink o

urring at a bend magnet is notquite as 
lean as the kink at the 
enter of a thin lens. There is no really 
onsistentway to let the bending magnet length go to zero while preserving its bend angle.3As in FIG 2.4 one 
an approximate ~D by straight lines, with a kink at the 
enterof the bend. But letting the magnet length approa
h zero while holding the bend2The o�-momentum 
losed orbit deviation is traditionally expressed as D(s)Æ, where D(s)is known as the \dispersion fun
tion". To be 
onsistent, when using ~Æ, we have introdu
ed amodi�ed dispersion fun
tion ~D su
h that the o�-momentum orbit deviation is ~D(s)~Æ � D(s)Æ.This is the sour
e of the tildes appearing on ~D in Table 2.1. As mentioned already, at the level ofa

ura
y justi�ed for the toy latti
es under study, the tildes on ~Æ and ~D should probably simplybe ignored. The mnemoni
 variable names in the toy latti
e des
riptions suppress the tildes.(Also the ele
tron-world notation eta, rather than D, is used for dispersion in the toy latti
edes
riptions.)3The so-
alled drift/ki
k split symple
ti
 integration algorithm (dis
ussed in Chapter 8) in-volves the longitudinal splitting of bends into arbitrarily short intervals. But in that 
ase the bendper interval also approa
hes zero. Nevertheless, the bend/ki
k split, in whi
h the orbit is formedfrom 
ir
ular ar
s, avoids this sensitivity and is therefore a safer approa
h.



32 2. LINEARIZED TRANSVERSE MOTIONangle �xed would entail also �0 ! 0. Clearly the result in Table 2.1 for the ~D kinkat a bend assumes ~D << �0. This is amply valid in high energy a

elerators. Butsmall a

elerators require greater 
are. That is, ~D has to be obtained by a
tuallysolving Eq. (2.31).Problem 2.10. Eq. (2.31) is suÆ
iently general to des
ribe both quadrupolesand bending magnets and, for that matter, also 
ombined fun
tion magnets. As-suming ~D << �0 in the 
ase of bends, use Eq. (2.31) to derive all entries in the\Dispersion" 
olumn of Table 2.1.For o�-momentum, horizontal parti
le propagation from an arbitrary startingpoint s0 to another point s it is useful to de�ne a two-argument dispersion fun
tion~D(s; s0) With this fun
tion Eq. (2.5) generalizes to0�x(s)x0(s)~Æ 1A = 0�C(s; s0) S(s; s0) ~D(s; s0)C 0(s; s0) S0(s; s0) ~D0(s; s0)0 0 1 1A0�x(s0)x0(s0)~Æ 1A : (2.32)



CHAPTER 3Thin Element \Toy" Latti
es3.1. Introdu
tionIn preparation for investigating toy latti
es with UAL, this 
hapter begins byderiving analyti
 formulas for the simplest possible a

elerator latti
e, one madeup entirely of equal tune FODO se
tions. The analyti
 formulas are used to givestarting values for a �rst-
ut design that will later be made more realisti
 and tunedup by UAL. As already mentioned, a 
hara
teristi
 feature of a

elerator latti
esis that it is fairly diÆ
ult to obtain an absolute design but that it is fairly easyto make small 
hanges around an existing design. Also, on
e a 
oarse but stabledesign has been a
hieved, it is straightforward to adjust many of the parametersto good a

ura
y. In the 
ontrol room this is only pra
ti
al if instrumentation isavailable for measuring the quantity in question to good a

ura
y. In a 
omputersimulation the quantity 
an be 
al
ulated to arbitrary a

ura
y.On
e the parameters of a latti
e to be studied have been established, moredetailed, more visual studies are to be performed using a graphi
al user interfa
e(GUI). This interfa
e enables the user to adjust those parameters that are espe
iallyimportant for the physi
al study being performed. Before getting to that stage, thegross a

elerator outline has to be established.3.2. An Equal Tune FODO Latti
eWe start with the eq tune fodo.adxf input �le. When UAL is run, startingfrom this �le (or possibly from the �le eq tune fodo.sxf derived from it) theneeded parameters are 
al
ulated using formulas given in this se
tion and the resultsare e
hoed for 
omparison. These formulas are 
oded into the eq tune fodo.adxfinput �le using variable names similar to the names used here. A listing of the �leis in Table 3.1. Depending on the status of the ADXF parser, a di�erent syntax forelement's and/or se
tor's may be required. Either these 
hanges 
an be made orthe eq tune fodo.sxf variant used instead.Our immediate purpose then, for a simple a

elerator latti
e, is to give pre-s
riptions by whi
h the parameters of a �rst-
ut design 
an be obtained. Laterthe properties 
an be 
ompared with the more a

urate values that UAL 
al
u-lates. This is intended to serve the pedagogi
al purpose of showing the determiningrelationships.There are various reasons analyti
 formulas 
an be ina

urate. Some of theseare: thi
k element e�e
ts, presen
e of errors, 
hromati
 e�e
ts, and dipole fo
using.For various reasons then, one should not be surprised by disagreements in \abso-lute" quantities at, say, the few per
ent level. The a

ura
y of \relative" quantities,for example the 
hange in some latti
e parameter when some element strength is
hanged, 
an be almost arbitrarily a

urate.33



34 3. THIN ELEMENT \TOY" LATTICESTable 3.1. The eq tune fodo.adxf latti
e �le.<?xml version="1.0" en
oding="UTF-8"?><adxf xmlns:xsi="http://www.w3.org/2001/XMLS
hema-instan
e"xsi:noNamespa
eS
hemaLo
ation="file:/home/ualusr/USPAS/ual1/do
/adxf/adxf.xsd"><
onstants><!-- nhalf*
elltuni must be integer; number of "full
ell"s in "latti
e" must be nhalf/2 --><
onstant name="pi" value="3.14159265359"/><
onstant name="twopi" value="2*pi"/><
onstant name="
" value="299792458.0"/><
onstant name="nhalf" value="20"/><
onstant name="s
ale" value="1/20"/><!-- tamper with s
ale at your own risk. with s
ale=1.0/20, the half 
ell length with10 
ells is 1 meter, 
ir
umferen
e 20 m.To s
ale up the number of 
ells, 
hange nhalf,leaving s
ale fixed. This assumes- momentum~(nhalf)^2- 
onstant phase advan
e per 
ell and 
onstant magneti
 field- bend per dipole = 2*pi/nhalf ~ ld/momentum ~ lhalf/momentum- therefore, lhalf ~ nhalf --><
onstant name="dipfra
" value="0.9994"/><
onstant name="quadfra
" value="0.0002"/><
onstant name="sextfra
" value="0.0001"/><
onstant name="nufra
" value="0.25"/><
onstant name="
elltuni" value="0.20"/><
onstant name="lhalf" value="s
ale*nhalf"/><
onstant name="ld" value="dipfra
*lhalf"/><
onstant name="lq" value="quadfra
*lhalf"/><
onstant name="ls" value="sextfra
*lhalf"/><!-- ! derived parameters --><
onstant name="deltheta" value="twopi/nhalf"/><
onstant name="nu" value="0.5*
elltuni*nhalf + nufra
"/><
onstant name="
ellmu" value="twopi*nu*2/nhalf"/><
onstant name="sby2" value="sin(0.5*
ellmu)"/><
onstant name="qp" value="sby2"/><
onstant name="q" value="sby2/lhalf"/><
onstant name="kq" value="q/lq"/><
onstant name="q1" value="q"/><
onstant name="q2" value="-q"/><
onstant name="kq1" value="kq"/><
onstant name="kq2" value="-kq"/><
onstant name="q1p" value="q*lhalf"/><
onstant name="q2p" value="-q*lhalf"/><!-- latti
e parameters --><
onstant name="rat" value="(1.0+qp)/(1 -qp)"/><
onstant name="ratinv" value="1.0/rat"/><
onstant name="betax1" value="sqrt(rat)/q"/><
onstant name="betay1" value="sqrt(ratinv)/q"/><
onstant name="betax2" value="sqrt(ratinv)/q"/><
onstant name="betay2" value="sqrt(rat)/q"/><
onstant name="eta1" value="(1.0+qp/2) * deltheta/q/q/lhalf"/><
onstant name="eta2" value="(1.0 -qp/2) * deltheta/q/q/lhalf "/><
onstant name="s1" value="q1/eta1"/><
onstant name="s2" value="q2/eta2"/><
onstant name="ks1" value="q1/eta1/ls"/><
onstant name="ks2" value="q2/eta2/ls"/></
onstants><!-- define magneti
 elements --><elements><marker name="mk1"/><marker name="mbegin"/><marker name="mend"/><sbend name="bend" l="lq" angle="deltheta"/><quadrupole name="quadhf" l="lq" k1="kq1"/><quadrupole name="quadvf" l="lq" k1="kq2"/><sextupole name="sext1" l="ls" k2="ks1"/><sextupole name="sext2" l="ls" k2="ks2"/></elements><se
tors><se
tor name="full
ell"line="mk1 quadhf sext1 bend sext2 quadvf quadvf sext2 bend sext1 quadhf mk1"/><se
tor name="latti
e"line="mbegin full
ell full
ell full
ell full
ell full
ellfull
ell full
ell full
ell full
ell full
ell mdnd"/></se
tors></adxf>}
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11 2Figure 3.1. An idealized, thin lens, FODO latti
e, showing di-mensioning and element strength parameters.Table 3.2. Parameters of a pure, equal tune, FODO latti
e.nhalf is an even integer and nhalf*
elltuni also has to be an in-teger. The �nal entry doesn't really belong in this table; it is listedonly to 
all attention to the in
onsisten
y between its symbols etaand D.Quantity variable name symbol expressions
ale s
alenumber of half
ells nhalf nhalf
ell (ar
) length lhalf ldipole length ld ld lhalf*dipfra
quadrupole length lq lq lhalf*quadfra
sextupole length ls ls lhalf*sextfra
dipole bend angle deltheta �� 2�=n
ell tune (int. tune part only) 
elltuni 2�int=nfra
tional ring tune nufra
 �fra
integer ring tune �int 
elltuni*nhalf/2ring tune nu � = �int + �fra

ell phase advan
e 
ellmu 4��=nhalfquad strength q qquad gradient kq q=lqdispersion eta DA partial glossary of translations from symbols in these notes to symbols in the.adxf 
omputer �les is given in Table 3.2.The fra
tions of lhalf taken up by dipole, quadrupole, and sextupole, as shownin the table. Note that the entire ar
 is �lled with magneti
 elements|there areno drifts. Of 
ourse this is impra
ti
al, but this is just a pra
ti
e latti
e. Tomake realisti
ally long quadrupoles and to introdu
e the inevitable drifts needed forva
uum pumps, 
anges, bellows, et
. length 
an be taken from the dipoles (whi
hare opti
ally almost \inert") provided that their bend �elds are in
reased to holdthe bend angle �� 
onstant. When some input parameters are 
hanged (preferablyusing an XML-aware editor) all other parameters are 
al
ulated self-
onsistently.



36 3. THIN ELEMENT \TOY" LATTICESBut the s
aling of some parameters, espe
ially in \highly-tuned" latti
es su
h as the
olliding beam latti
e, large parameter 
hanges are likely to make the latti
e \gounstable". As well as being de�ned here and in FIG 3.1, many symbols are furtherde�ned in 
omments in the input �le. Lengths are s
aled by the fa
tor s
ale (whi
hdoes not otherwise o

ur expli
itly in the analyti
 formulas given in these notes.)In parti
ular lhalf is evaluated as s
ale*nhalf. This \builds in" the relationbetween 
ir
umferen
e and tunes in \typi
al" a

elerators, having \typi
al" phaseadvan
e per 
ell. Sin
e this is almost 
ertainly 
onfusing, don't worry about it anddon't tamper with s
ale, at least initially. With s
ale=1.0/20, the half
ell lengthwith 10 
ells nhalf=20 is 1 meter, and the 
ir
umferen
e is 20mTo a surprising extent a

elerator latti
es 
an be des
ribed purely in geometri
terms, without referen
e to the parti
le type or momentum of the parti
les beinga

elerated. Still, for some of the modeling instru
tions, \dynami
al" informationis required. At that time parti
le type and parti
le momentum/energy will have tobe assigned.To a \zero'th" approximation, the generally 
ir
ular nature of an a

elerator
an be ignored in 
al
ulating the opti
s. In this approximation the quadrupoles
an be regarded as stret
hed out in a straight line and, for pedagogi
al simpli
itywe start with this approa
h. This negle
ts a small fo
using e�e
t of dipoles. Forlarge rings with many bending magnets this is a small e�e
t, but for small rings thedipole fo
using e�e
t is appre
iable. As it happens a ring with just ten 
ells and
ir
umferen
e of 20m is small in the sense that dipole fo
using 
annot be negle
ted.To give a latti
e with simpler properties, while still just analysing a single 
ell, nhalf
an be in
reased, for example by a fa
tor of ten. For this reason the variable nhalfhas been set to 200 in the default version of latti
e eq tune fodo.adxf,For the formulas given here to be as a

urate as possible, the quadrupolesand sextupoles should be very short (
ompared to the half-
ell length) sin
e theseelements are treated as thin; ie. quadfra
 << 1, sextfra
 << 1. This restri
tionapplies to initial investigation only. Later the elements 
an be made realisti
allythi
k and, if desired, be segmented for greater a

ura
y. The UAL environmentmakes available various evolution \engines". When using the original TEAPOTthin element 
ode, to preserve symple
ti
ity, elements that are, in fa
t, thi
k aremodeled by segmenting them arti�
ially into thin elements. Originally even idealbending magnets had to be treated this way for good a

ura
y. But by now UALanalyti
, thi
k element formulas are available in UAL for treating ideal bendingmagnets dire
tly as thi
k elements. If �eld nonuniformity needs to be modeled,in 
ombined fun
tion magnets for example, the old thin element segmentation isemployed.Notationally subs
ript 1 identi�es the start of the �rst half-
ell (or equally theend of the se
ond half-
ell, whi
h is the start of the next 
ell) and 2 identi�esthe mid-
ell lo
ation (at the quad 
enter.) The 
ell layout, dimensions and elementstrength parameters are indi
ated in FIG 3.1. The di�eren
e in e�e
t of a sextupolebetween horizontal and verti
al is more 
ompli
ated than just swit
hing the sign,but we defer 
onsideration of this.In a later se
tion a more general FODO des
ription, permitting unequal quadstrengths jq1j 6= jq2j and unequal tunes will be des
ribed, and many more symbolswill be introdu
ed. The UAL �lenames for that dis
ussion are \general fodo.adxf"



3.2. AN EQUAL TUNE FODO LATTICE 37and \general fodo.adxf". The reader will be expe
ted to �gure out the transla-tions of symbols in that �le without bene�t of a glossary either be
ause they aremnemoni
 or be
ause they are the same (or almost the same) as symbols de�nedhere.3.2.1. Longitudinal Variation of the Latti
e Fun
tions. In the drift re-gions between quadrupoles the �-fun
tions are quadrati
 fun
tions of the longitu-dinal 
oordinate s, with the origin of s taken to be at lo
ation 1. At the quad
enter the slope �0 = d�=ds � �2� vanishes (by symmetry when the latti
e ismade of repeated identi
al 
ells) but there are slope dis
ontinuities related to thequad strengths by ��0(x) = �2q�(x)1 ; ��0(y) = 2q�(y)1 ; (3.1)so the other Twiss parameters at the quadrupole exit are given by�(x)1+ = q�(x)1 ; �(y)1+ = �q�(y)1 ; (3.2)
(x)1+ = 1 + q2(�(x)1 )2�(x)1 ; 
(y)1+ = 1 + q2(�(y)1 )2�(y)1 ; (3.3)In the region from 1 to 2 the �-fun
tions are given by�(x)(s) = �(x)1 � 2�(x)1+s+ 
(x)1+ s2; �(y)(s) = �(y)1 � 2�(y)1+s+ 
(y)1+ s2: (3.4)By substituting s = l, it 
an be 
he
ked that �(x)(l) agrees with �(x)2 as determinedby Eq. (3.16). The �-fun
tions in the region from 2 to 1 
an be obtained bysymmetry.The horizontal dispersion fun
tion ~Dx � ~D through the 
ell 
an be determinedsimilarly. (With no verti
al de
e
tions there is no verti
al dispersion.) The slopeof the dispersion fun
tion vanishes at the quadrupole 
enter, but there is a slopedis
ontinuity at 1, due to the quadrupole, so that~D01+ = �q ~D1: (3.5)There is a slope dis
ontinuity �� at l=2 due to the bend (whi
h is being treatedas if 
on
entrated at the 
enter of the half 
ell). Using the fa
t that in drifts andbends the dispersion fun
tion propagates like a parti
le displa
ement, ~D2 
an beobtained from ~D1 and then ~D1 
an be obtained from ~D2;~D2 = ~D1 � q ~D1l +�� l2 ; ~D1 = ~D2 + q ~D2l+�� l2 : (3.6)Solving yields ~D1 = (1 + ql=2)��q2l ; ~D2 = (1� ql=2)��q2l ; (3.7)with the useful 
onsequen
e that an average, or \typi
al" value of the dispersionfun
tion is ~Dtyp = ~D1 + ~D22 = ��q2l : (3.8)



38 3. THIN ELEMENT \TOY" LATTICES3.2.2. Establishing Quadrupole Strengths. Transfer matri
es for a quadrupoleof strength q are M (x) = � 1 0�q 1� ; M (y) = �1 0q 1� : (3.9)Note that an expli
it negative sign appears with q where it enters the horizontaltransfer matrix; this means that positive q 
orresponds to fo
using in the x-plane(horizontal). The 
ell layout was shown previously. With quad lo
ations labeled1 and 2, the quadrupole strengths have been set equal and opposite, q1 = q andq2 = �q < 0. With the 
hoi
e q > 0, lo
ation 1 is a horizontally fo
using point.A bend through angle �� is assumed to o

ur at the 
enter of ea
h half 
ell, andsextupoles of strength S1 and S2 are lo
ated immediately adja
ent to the quads.In the y plane there are no dipole de
e
tions and the quadrupole sign reversals areindi
ated. The x transfer matrix 2 1 isM (x)21 = �1 0q 1��1 l0 1�� 1 0�q 1� = �1� ql l�q2l 1 + ql� : (3.10)As usual the matrix furthest to the right 
orresponds to the element furthest tothe left; the notation 2  1 and the order of subs
ripts on M21 are intended torepresent this. There is a similar matrix for 1 2, obtained by reversing the signof q. For the full 
ell 1 1,M (x)11 = �1 + ql l�q2l 1� ql��1� ql l�q2l 1 + ql� = � 1� 2q2l2 2l(1 + ql)�2q2l(1� ql) 1� 2q2l2� :(3.11)For a periodi
 latti
e made by repeating these 
ells, this matrix 
an be written in\Twiss" form, with � vanishing by symmetry, whi
h is 
onsistent with the 11 and22 elements being equal;M (x)11 =  
os�(x)1 �(x) sin�(x)1� sin�(x)1 =�(x) 
os�(x)1 ! ; (3.12)The subs
ript 1 �1 indi
ates that it applies to one 
ell. Equating 
oeÆ
ients andin
luding y motion by swit
hing the sign of q leads toC1 = 
os�(x)1 = 
os�(y)1 = 1� 2q2l2: (3.13)This leads to a simple relation among q, l, and �(x)1 = �(y)1 = �1;sin �12 = ql: (3.14)The \tune advan
e per 
ell" is �1 = �12� . If an entire ring is formed from n half-
ells,the tune of the ring is � = �int + �fra
 = n2 �1 (3.15)The �-fun
tions are obtained by equating o�-diagonal elements in Eqs. (3.11) and(3.12). �(x)1 =s1 + ql1� ql 1q ; �(x)2 =s1� ql1 + ql 1q ; (3.16)�(y)1 =s1� ql1 + ql 1q ; �(y)2 =s1 + ql1� ql 1q :



3.2. AN EQUAL TUNE FODO LATTICE 39Note the identities �(x)1�(x)2 = 1 + ql1� ql ; �(y)1�(y)2 = 1� ql1 + ql : (3.17)Also a geometri
 mean or \typi
al" �-fun
tion value is�typ =q�(x)1 �(x)2 =q�(y)1 �(y)2 = 1q : (3.18)The �-fun
tions 
al
ulated by UAL are plotted in FIG 3.2, for nhalf=20. To simplifythe 
al
ulations (by redu
ing the importan
e of dipole fo
using) a larger valuenhalf=200 is suggested for the following exer
ises.Tutorial 3.1. To pra
ti
e 
orrelating 
omputer variable names with mathe-mati
al symbols, �ll in the remaining entries in 
olumn 2 of the Tutorial Worksheet.Tutorial 3.2. After running UAL with the eq tune fodo input �le, �ll in theblanks of 
olumns 4 and 5 of the Worksheet. Certain entries, su
h as lengths, neednot be entered, as they are obviously the same in all 
olumns. Latti
e fun
tions,su
h as �x, are to be obtained both using the numeri
al readout at the mouse positionin the GUI appli
ation (to be entered in 
olumn 4) and from the �le the GUI 
an beinstru
ted to generate (
olumn 5). Ex
ept for a

ura
y the entries in these 
olumnsare supposed to be redundant.Tutorial 3.3. The purpose for this exer
ise is to pra
ti
e editing and pro-
essing input �les but the result will also be useful in making the next simulationagree more a

urately with the theoreti
al formulas (by redu
ing the importan
e ofdipole fo
using,) Using the oxygen editor, edit the input eq tune fodo.adxf �leto 
hange nhalf to 200. It is ne
essary to in
lude the 
orresponding number offull
ell elements in the latti
e line. This 
hange will have redu
ed the bend perdipole magnet by a fa
tor of 10. Pro
ess the �le using the instru
tion�/TOY-LATTICES/xslt/SCRIPTS/pro
ess-qfile eq tune fodoSimulation 3.1. Change nufra
 by an amount small enough that the latti
eremains stable but large enough that the tabular entries in the \modi�ed values"
olumn di�er from entries in the \sample value" 
olumn by a numeri
ally signi�
antamount. Save these data for a problem in the next se
tion (or plan to regeneratethem later.)
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Figure 3.2. Latti
e fun
tions for the eq tune fodo latti
e. nhalf=20.



3.2. AN EQUAL TUNE FODO LATTICE 41Table 3.3. TUTORIAL WORKSHEET I. Copy as needed.variable name symbol sample value UAL plot UAL �le modi�ed val UAL values
ale 0.05nhalf 20ls 0.0001lq 0.0002lhalf 1.0ld 0.9994
elltuni 0.2nufra
 0.25deltheta 0.314159q2 q2 -0.70710q1 0.70710s2 S2 -1.7409s1 S1 0.83144nu
ellmu 1.41371betax1 3.3400betax2 0.70984betay1 0.70984betay2 0.70984eta1 0.9867eta2 0.5030



42 3. THIN ELEMENT \TOY" LATTICES3.2.3. Chromati
ity Compensation. Nothing has been said so far aboutthe sextupoles present in the latti
e. Their purpose is to 
orre
t 
hromati
ity, whi
hquanti�es the dependen
e of tune on momentum. Chromati
ities for the two planesare de�ned by Q0x = dQxd~Æ ; Q0y = dQyd~Æ : (3.19)The symbols �x and �y are also often used for 
hromati
ities. The fundamental
ause of 
hromati
ity is the inverse dependen
e of quad strength on momentum.An o�-momentum parti
le passing through a quad of strength q 
an treated, to alowest approximation, as being on-momentum, but with a fo
using perturbation ofstrength �~Æq. But there is also a shift of the o�-momentum orbit whi
h, if there isa sextupole superimposed on the quad, also provides a fo
using perturbation. The�eld dependen
e of a sextupole magnet is derived in Chapter 8. For now all thatis required is that a sextupole os strength S 
auses horizontal de
e
tion equal toSx2=2.In order to 
ontribute no 
hromati
ity, the 
ombination of a sextupole ofstrength S1 superimposed on a quadrupole of strength q must be arranged to sup-press the term proportional to ~Æx in the de
e
tionq(1� ~Æ)x + 12S1(x+ ~D1~Æ)2; (3.20)and a similar relation 
an be written at lo
ation 2. Assuming that \nominal"sextupole strengths should 
orrespond to zero 
hromati
ity, this leads to the valuesS1 = q~D1 ; S2 = �q~D2 : (3.21)Note that the sextupole strengths are unequal even though the linear opti
s is thesame in both planes. The sextupole lo
ated at a verti
al fo
using quad has to bestronger be
ause the horizontal dispersion is less there. The 
hromati
 
ompensa-tion power is proportional to the quadrupole �eld at a displa
ement value ~D~Æ, afa
tor whi
h is smaller at verti
ally fo
using quads.3.3. A Universal, Unequal Phase Advan
e FODO Latti
e3.3.1. The Twiss Parameters in Terms of the Quadrupole Strengths.Formulas in this 
hapter relate to the �le general fodo.xsl. Variation from whathas gone before in
ludes allowing the horizontal and verti
al tunes to be di�er-ent, 
ompensating for dipole fo
using, and de�ning parameters needed to analyselongitudinal motion.In pra
ti
e the 
apability to have greatly di�erent horizontal and verti
al tunesis often not needed. Though the fra
tional tunes are almost always separated infun
tioning a

elerators, the integer tunes are often 
lose. In this 
ase the separa-tion in fra
tional tunes 
an usually be a
hieved as a perturbation away from thesymmetri
 tune situation. (This operation 
an be performed using the tunethininstru
tion of UAL.) Nevertheless, for greater 
exibility, it is 
onvenient to havea 
losed form, unequal tune, basis latti
e. Transfer matri
es for a quadrupole ofstrength q were given in Eq. (3.9). We now introdu
e unequal quad strengths q1and q2, labeled 1 and 2, without yet spe
ifying whi
h is fo
using in whi
h plane.Re
all that positive q 
orresponds to fo
using in the x-plane (horizontal). One ofq1 and q2 will be positive, the other negative. A bend through angle �� is assumed
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ur at the 
enter of ea
h half 
ell, and sextupoles of strength S1 and S2 arelo
ated beside the quads.The x transfer matrix 2 1 isM (x)21 = � 1 0�q2 1��1 l0 1�� 1 0�q1 1� = � 1� q1l l�q1 � q2 + q1q2l 1� q2l� ; (3.22)and a similar matrix for 1  2 is obtained by swit
hing q1 and q2. The full 
ell,1 1, x-transfer matrix isM (x)11 � 1� q2l l�q1 � q2 + q1q2l 1� q1l�� 1� q1l l�q1 � q2 + q1q2l 1� q2l�= � 1� 2q1l � 2q2l + 2q1q2l2 2l(1� q2l)2(�q1 � q2 + q1q2l)(1� q1l) 1� 2q1l � 2q2l+ 2q1q2l2� : (3.23)For a periodi
 latti
e made by repeating these 
ells, this matrix 
an be written in\Twiss" form, with � again vanishing by symmetry;M (x)11 =  
os�(x)1 �(x) sin�(x)1� sin�(x)1 =�(x) 
os�(x)1 ! : (3.24)Equating 
oeÆ
ients and generalizing to in
lude y motion by swit
hing the signsof q1 and q2 leads toC(x) = 
os�(x)1 = 1� 2q1l � 2q2l + 2q1q2l2; sin2 �(x)12 = q1l + q2l � q1q2l2;(3.25)C(y) = 
os�(y)1 = 1 + 2q1l + 2q2l + 2q1q2l2; sin2 �(y)12 = �q1l � q2l � q1q2l2The �-fun
tions are obtained similarly;�(x)1 =ls1� q2l1� q1lr 1q1l+ q2l � q1q2l2 = ls1� q2l1� q1lr 21� C(x) =s1� q2l1� q1l lsin �(x)12 ;�(y)1 =ls1 + q2l1 + q1lr 1�q1l � q2l � q1q2l2 = ls1 + q2l1 + q1lr 21� C(y) =s1 + q2l1 + q1l lsin �(y)12 ;(3.26)�(x)2 =ls1� q1l1� q2lr 1q1l+ q2l � q1q2l2 = ls1� q1l1� q2lr 21� C(x) =s1� q1l1� q2l lsin �(x)12 ;�(y)2 =ls1 + q1l1 + q2lr 1�q1l � q2l � q1q2l2 = ls1 + q1l1 + q2lr 21� C(y) =s1 + q1l1 + q2l lsin �(y)12 :Note the simple identities,q�(x)1 �(x)2 = lsin �(x)12 ; q�(y)1 �(y)2 = lsin �(y)12 : (3.27)and �(x)1�(x)2 = 1� q2l1� q1l ; �(y)1�(y)2 = 1 + q2l1 + q1l : (3.28)



44 3. THIN ELEMENT \TOY" LATTICESOften �(x) and �(y) are approximately equal. If they are exa
tly equal, the formulassimplify 
onsiderably. Taking point 1 to be a horizontally fo
using quadrupolelo
ation we de�ne q1 = �q2 = jqj; (3.29)we obtain 
os�1 = 1� 2jqj2l2; sin �12 = jqjl; (3.30)as well as the relations,�(x)1 =s1 + jqjl1� jqjl 1jqj ; �(y)1 =s1� jqjl1 + jqjl 1jqj ; (3.31)�(x)2 =s1� jqjl1 + jqjl 1jqj = �(y)1 ; �(y)2 =s1 + jqjl1� jqjl 1jqj = �(x)1Note that these formulas agree with Eqs. (3.16), whi
h led to identities (3.17) and(3.18).3.3.2. Longitudinal Variation of the Latti
e Fun
tions. Referring againto Table 2.1, in the drift regions between quadrupoles the �-fun
tions vary quadrat-i
ally with s. At the quad 
enter the slope �0 = d�=ds � �2� vanishes, but thereare slope dis
ontinuities related to the quad strengths by��0(x) = �2q1�(x)1 ; ��0(y) = 2q1�(y)1 ; (3.32)so the Twiss parameters at the quadrupole exit are given by�(x)1+ =q1�(x)1 ; �(y)1+ = �q1�(y)1 ; (3.33)
(x)1+ =1 + q21(�(x)1 )2�(x)1 ; 
(y)1+ = 1 + q21(�(y)1 )2�(y)1 :In the region from 1 to 2 the �-fun
tions vary as�(x)(s) = �(x)1 � 2�(x)1+s+ 
(x)1+ s2; �(y)(s) = �(y)1 � 2�(y)1+s+ 
(y)1+ s2: (3.34)The slope of the horizontal dispersion fun
tion ~D(s) vanishes at the quadrupole
enter, but there is a slope dis
ontinuity at 1, due to the quadrupole, su
h that~D01+ = �q1 ~D1; (3.35)and a slope dis
ontinuity �� at l=2 due to the bend (whi
h is being treated as if
on
entrated at the 
enter of the half 
ell). As a result, the value of ~D2 is~D2 = ~D1 � q1 ~D1l +�� l2 ; ~D1 = ~D2 � q2 ~D2l +�� l2 ; (3.36)where the same argument has given the se
ond equation also. Solving Eq. (3.36)yields ~D1 = (1� q2l=2)l��sin2 �(x)2 ; ~D2 = (1� q1l=2)l��sin2 �(x)2 : (3.37)For the 
ase of equal tunes as in Eq. (3.29) these be
ome~D1 = (1 + jqjl=2)l��jqjl2 ; ~D2 = (1� jqjl=2)l��jqjl2 ; (3.38)
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Figure 3.3. Latti
e fun
tions for the general fodo latti
e, withnhalf=20, 
elltnxi=0.2, 
elltnyi=0.1.with the useful 
onsequen
e that ~D1 + ~D22 = ��lq2 : (3.39)Twiss fun
tion variation for the general fodo latti
e are shown in FIG 3.3.3.3.3. Setting the Tunes. One 
an adjust the strengths q1 and q2 to a
hievedesired values for the phase advan
es �(x) and �(y). De�ning the \average" quantityS2 = 12�sin2 �(x)2 + sin2 �(y)2 �; (3.40)and the \di�eren
e" quantity,�(S2) = sin2 �(y)2 � sin2 �(x)2 ; (3.41)Eqs. (3.25) be
ome q1l + q2l = ��(S2)=2; q1lq2l = �S2: (3.42)These lead to the quadrati
 equation(q1l)2 + 12�(S2)q1l � S2 = 0; (3.43)with the roots being q1l = �qS2 + (�(S2))2=16��(S2)=4: (3.44)The sign 
hoi
e depends upon whi
h of the two quads is horizontally fo
using|forFODDOF q1 > 0; q2 < 0, for DOFFOD q1 < 0; q2 > 0.



46 3. THIN ELEMENT \TOY" LATTICES3.3.4. Chromati
ity Compensation. In order to 
ontribute no 
hromati
-ity, the 
ombination of a sextupole of strength S1 superimposed on a quadrupoleof strength q1 must be arranged to suppress the term proportional to ~Æx in thede
e
tion q1(1� ~Æ)x + 12S1(x+ ~D1~Æ)2: (3.45)Assuming that \nominal" sextupole strengths should 
orrespond to zero 
hromati
-ity, this leads to the values S1 = q1~D1 ; S2 = q2~D2 : (3.46)For equal tunes the same formulas have been derived earlier.3.3.5. Compensation For Dipole Fo
using. The tune shift 
aused bya small quadrupole perturbation. A result that is so important in a

eleratorphysi
s that it deserves to be 
alled \the golden rule" is that a quadrupole pertur-bation of strength �q, at a point in the latti
e where the beta-fun
tions are �x and�(y), 
auses tune shifts given by��x = 14��x�q; ��y = � 14��y�q: (3.47)For positive q the horizontal tune is shifted to higher value. The same quad shiftsthe verti
al tune to lower value.Use of the golden rule to 
ompensate for dipole fo
using. There is afo
using e�e
t due a dipole, say a se
tor bend, that shifts the horizontal tune.Espe
ially in small rings, 
ompensating for this shift improves agreement betweendesired and a
hieved tunes. Assume that the magnet lengths satisfyld + lq + ls = l: (3.48)The e�e
tive fo
using strength of the dipole (it a
ts only in the horizontal plane)is qd = (��)2ld : (3.49)This quadrupole perturbation shifts the tune by an amount��(x) = n4� qd�(x) = n2� (��)2 l=ldsin �(x)2 : (3.50)where �(x) has been approximated using Eq. (3.27) and qd taken from Eq. (3.49).This tune shift is ne
essarily positive. To 
ompensate for this perturbation, whi
hto this point has been negle
ted, we apply 
hanges �q1 and �q2 to q1 and q2,applying the 
ondition that both total tune shifts vanish yields4���(x)1 = 0 =�q1�(x)1 +�q2�(x)2 + qd�(x); (3.51)4���(y)1 = 0 =��q1�(y)1 ��q2�(y)2 :Solving these equations yields�q1 = �qd �(y)2�(x)1 �(y)2 � �(y)1 �(x)2 lsin �(x)2 ; �q2 = ��q1�(y)1�(y)2 : (3.52)



3.3. A UNIVERSAL, UNEQUAL PHASE ADVANCE FODO LATTICE 473.3.6. Orbit Length and Transition Gamma. The general fodo.adxf�le also in
ludes 
al
ulations that are primarily of importan
e for longitudinal dy-nami
s. Des
ription of these 
al
ulations is deferred until se
tion 6.3 in 
hap-ter 6, whi
h deals with longitudinal dynami
s. Sin
e that material does not de-pend on anything not 
overed so far, the reader wishing to fully understand thegeneral fodo.adxf �le 
ould turn to it next.Simulation 3.2. This simulation 
ontinues to use the eq tune fodo latti
e. Itis deferred to this lo
ation be
ause Eq. 3.47 is needed for the analysis. Continuingan earlier simulation, 
hange nufra
 by an amount small enough that the latti
eremains stable but large enough that the tabular entries in the \modi�ed values"
olumn di�er from entries in the \sample value" 
olumn by a numeri
ally signi�
antamount.Simulation 3.3. For the input quantity q and the output quantity �, by per-forming the subtra
tions alluded to in the previous problem, evaluate d�=dq both forentries from the analyti
 
olumn and from the UAL 
olumn. If the values di�ersigni�
antly it may be
ause you have 
hanged parameters by too great an amountfor \linearized" formulas to be valid.





CHAPTER 4Instrumental Analysis of 1D Parti
le and Bun
hMotionNOTE: This 
hapter introdu
es the distin
tion between idealized single parti
lemotion and the motion of the 
entroid of a bun
h of parti
les (whi
h is the onlything that is measurable in pra
ti
e). The methods developed are intended primar-ily to be applied to bun
h 
entroid motion. In spite of this, only the transversesimulator, whi
h tra
ks one, or a few, parti
les individually, will be used for simu-lations des
ribed in this 
hapter. This 
an be regarded as testing the data-pro
essingalgorithms in simple 
ases before applying them later in more realisti
, more 
om-pli
ated, 
ases. In Chapter 7, the de
oheren
e simulator will be applied to thedynami
s of bun
h 
entroid motion.4.1. Introdu
tionThe latti
e that will mainly be used for simulations in this 
hapter is 
alled
ollider mon (in either .adxf or .sxf) form. The investigations have nothingwhatsoever to do with 
olliding beams. The only reason for using this latti
e is thatit has regions of very small and very large �-fun
tion values. This makes it more
hallenging to extra
t the �-fun
tions using beam-based methods. The mon in thename indi
ates that multiple BPM's have been distributed around the ring. Theseare the only lo
ations at whi
h parti
le positions are 
onsidered (by the simulation)to be known. But, to make the latti
e �le handier for tutorial purposes, BPM'shave also been pla
ed at points whi
h would be physi
ally ina

essible, for exampleat the interse
tion points, where elementary parti
le dete
tors would o

upy thespa
e.The Twiss fun
tions 
an be 
al
ulated for the 
ollider mon latti
e, using meth-ods des
ribed in Chapter 3.3. The results are shown in FIG 4.1. One of the tasksof this 
hapter will be to use BPM's to measure these fun
tions. This will be anexample of the so-
alled \model independent analysis", in whi
h properties of thelatti
e are obtained without relying on the design model of the latti
e. Of 
oursethe beam based measurements will only be simulated here.This 
hapter dis
usses the instrumentation needed to measure beam propertiesin an a

elerator, and the methods employed to pro
ess this data. It might bethought that there would be no need for su
h experimental apparatus in a simula-tion 
ontext that is entirely theoreti
al. But the essen
e of simulation is to repli
atea
tual 
onditions and to a
quire information about the beam using methods thatare pra
ti
al in a 
ontrol room. Instrumentation issues determine what is availableand what is useful. 49



50 4. INSTRUMENTAL ANALYSIS OF 1D PARTICLE AND BUNCH MOTION
s, m

0 100 200 300 400 500
0

20

40

60

80

100

120

140

160

180

200
Twiss, [m]

Horizontal

Vertical

s, m
0 100 200 300 400 500

0

0.5

1

1.5

2
Horizontal

Vertical

Dispersion, [m]

Figure 4.1. Latti
e fun
tions for the 
ollider mon latti
e, ob-tained using the matrix method of Chapter 2.Ideal a

elerators have only linear, error free elements and highly 
ollimated,monoenergeti
, low 
urrent beams, that 
an be measured with noise-free instrumen-tation. The behavior of su
h ideal ma
hines 
an be investigated by studying singleparti
les. None of these idealizations is fully appli
able to real a

elerators andmost of the deviant features are quite diÆ
ult to handle by purely analyti
 
al
ula-tions. The existen
e of these non-ideal features is perhaps the greatest justi�
ationfor investigation by simulation.The presen
e of ele
troni
 noise limits the a

ura
y of beam dete
tor mea-surements. The main tool available for de-sensitization from noise is the use ofFourier-like methods. These permit the 
oherent superposition of the e�e
ts ofmultiple measurements for whi
h the e�e
ts of noise tend to average toward zero.Analysis of su
h methods is the subje
t of this 
hapter.Sin
e the sour
es of ele
troni
 noise are rarely well understood, the noise levelin a simulation has to be represented by one or more empiri
al 
oeÆ
ients. Evenso, for single parti
le motion, one 
an, in prin
iple, make the noise negligible byextending the measurement over long enough times.Unfortunately, many beam dete
tors respond only to 
entroid motion of thebeam bun
hes being studied. For low emittan
e beams this 
entroid motion isquite a

urately the same as single parti
le motion. In parti
ular the Courant-Snyder invariant of the bun
h 
entroid is, in fa
t, nearly invariant. But bun
hes of�nite size in nonlinear �elds su�er from e�e
ts variously known as �lamentation,de
oheren
e, and Landau damping, that 
ause the 
entroid to exhibit damping-like
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Figure 4.2. Time domain and frequen
y domain signals from apoint referen
e parti
le.behavior. The fundamental physi
s underlying these e�e
ts is relatively well knownand hen
e is easily and reliably in
orporated into simulation. Filamentation andde
oheren
e is analysed in Chapter 7.The presen
e of 
entroid \damping" means that the single-parti
le-like motionof a bun
h survives for only a limited number of turns. Averaging over times large
ompared to this is 
ounter-produ
tive as it in
reases noise without enhan
ing thesignal. This makes it important to attempt to maximize the information extra
tionfrom a limited number of terms. A method known as \Prin
iple Component Analy-sis" (PCA), while e�e
tively subsuming Fourier methods, takes this approa
h. Thismethod, whi
h UAL uses to analyse one-dimensional motion, is des
ribed in laterse
tions of this 
hapter.Be
ause the PCA method makes no use of Hamiltonian features, i.e. symple
-ti
ity, it is somewhat immune to the presen
e of 
entroid damping. But to makeprogress in the analyti
 treatment of 
oupled motion, i.e. two or three dimensional,symple
ti
 features seem to be required. Analysis of 
oupled motion within UAL isthe subje
t of a later 
hapter.4.2. Spe
tral Analysis of BPM Signals4.2.1. Spe
trum of Referen
e Parti
le. Let s stand for the ar
 length
oordinate in a 
ir
ular a

elerator of 
ir
umferen
e C0. A parti
le of 
harge e,traveling at speed v0, on the 
entral orbit passes a �xed point (
all it s = 0) atregular intervals of time of length T0 = C0=v0. The line 
harge density, per unitlength, 
orresponding to a single passage of the parti
le at t = 0, is�(t) = eÆ(s) = ejds=dtjÆ(t) = ev0 Æ(t): (4.1)Here � is that quantity whi
h, when multiplied by a spatial interval ds, yields the
harge 
ontained in range ds. Adding all the passages yields�(t) = ev0 1Xl=�1 Æ(t� lT0): (4.2)This is a \
omb" of equally-spa
ed, equal-strength lines in the time domain. Afast, digitized, beam 
urrent monitor (BCM) would re
ord the pulse heights ofthe sequen
e of pulses shown on the left part of FIG 4.2. This is referred to aslongitudinal \turn-by-turn" data.



52 4. INSTRUMENTAL ANALYSIS OF 1D PARTICLE AND BUNCH MOTIONThe same information 
an be represented analyti
ally, as a sum of terms havingsinusoidal time variation, using the easily derived Fourier series relationship1Xl=�1 Æ(t� lT0) = 1T0 1Xn=�1 
os 2�ntT0 : (4.3)De�ning a \fundamental" os
illation 
os!0t where !0 = 2�=T0, the 
urrent signal
an be regarded as the superposition of \harmoni
s" of the fundamental,�(t) = ev0T0 1Xn=�1 
osn!0t: (4.4)As a 
he
k, 
al
ulation of the 
harge in the 
omplete 
ir
umferen
e (using the n=0,DC term) 
orre
tly yields �C0 = e.The Fourier series Eq. (4.4) 
an be repla
ed by an integral over a frequen
yvariable !, that is, as a Fourier integral, by representing the 
oeÆ
ients by Æ-fun
tions;�(t) = eC0 Z 1�1 d! 1Xn=�1 Æ(! � n!0) 
os!t = Z 1�1 d!�(!) 
os!t; (4.5)where the frequen
y domain spe
tral fun
tion �(!) is given by�(!) = eC0 1Xn=�1 Æ(! � n!0): (4.6)This shows that the signal is also a \
omb" of equally spa
ed equal strength in thefrequen
y domain. Pi
torially the situation is shown in FIG 4.2. Pro
essing theBCM signal with a spe
trum analyser would exhibit this spe
trum. Typi
ally abandwidth less than !0 would be exhibited and only one line would be visible.4.2.2. Spe
trum of Gaussian Bun
h. The line density of a bun
h 
ontain-ing unit 
harge, having Gaussian pro�le with r.m.s. length �s is� = 1p2��s exp(�v20t22�2s ) = Z 1�1 d!�(!) 
os!t; where �(!) = exp(��2s!22v20 ):(4.7)A

ounting for all beam revolutions, the time domain formula for the line 
hargeof a bun
h 
ontaining N 
harges e is� = Nep2��s 1Xl=�1 exp(�v20(t� lT0)22�2s ): (4.8)This 
an be regarded as the 
onvolution of distributions (4.2) and (4.7). A

ordingto a theorem of Fourier analysis, 
onvolution in the time domain 
orresponds tomultipli
ation, in the frequen
y domain, of the two transforms. As a result�(!) = NeC0v0 exp(��2s!22v20 ) 1Xn=�1 Æ(! � n!0): (4.9)Pi
torially the situation is shown in FIG 4.3.
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Figure 4.3. Time domain and frequen
y domain signals from anon-axis Gaussian-distributed, bun
h of length �s.
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ωFigure 4.4. Spe
trum of BCM signal due to a single parti
le ex-e
uting longitudinal os
illations.4.2.3. Spe
trum of a Longitudinally Os
illating Parti
le. Consider aparti
le that is os
illating longitudinally (relative to the referen
e parti
le). Theparti
le's arrival time at the BPM is modulated away from its nominal value by asinuisoidal fa
tor os
illating at the syn
hrotron os
illation frequen
y !s, and withlongitudinal amplitude v0Ts. Adjusting the time origin so that the initial os
illationphase is zero, substitution into Eq. (4.2) yields� = ev0 1Xl=�1 Æ(t� lT0 � Ts 
os!st): (4.10)This \phase modulated" expression 
an be expressed as a sum of harmoni
s of thefundamental, along with \syn
hrotron sidebands" that are displa
ed away by smallinteger multiples of the syn
hrotron frequen
y. The 
oeÆ
ients in this expansion areproportional to Bessel fun
tions Jm(n!0Ts), where m = 0;�1;�2::: are labels forthe sidebands, and n = 0;�1;�2::: are labels for the harmoni
s of the fundamental.Typi
ally the \modulation depth" Ts=T0 is a very small number, so the argumentsof the Bessel fun
tions are very small 
ompared to 1, at least for small n (i.e. lowharmoni
s.) In this 
ase, the leading term, with 
oeÆ
ient J0(n!0Ts) is dominant,whi
h makes the sidebands insigni�
ant. At large values of n the sidebands be
omerelatively more important. The situation is illustrated in Fig. 3.
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1.50.5−0.5Figure 4.5. Cartoon showing spe
trum extra
ted from singleplane BPM. Due to 
oupling both horizontal and verti
al tunelines are visible. There is aliasing to all integer tune ranges as wellas re
e
tion above and below integers.4.2.4. Spe
trum of a Transversely Os
illating Parti
le. For a parti
leundergoing pure horizontal transverse os
illations, the transverse amplitude x� =p�x�x 
os(�x!0t) register as x-dependent 
urrents ��;�� = ev0 (1�Ap�x�x 
os(�x!0t)2R 1Xl=�1 Æ(t� lT0); (4.11)in 
urrent monitors symmeti
ally left and right of the beamline. A beam positionmonitor (BPM) 
onsists of su
h a pair of pi
kups, whi
h produ
es a signal propor-tional to x as the di�eren
e of the two signals in Eq. (4.11). In Eq. (4.11), withR being the beam pipe radius, the BPM sensitivity A is a dimensionless numberof order 1. Performing the subtra
tion, and substituting from Eq. (4.11), yields a\transverse signal";�+ � �� = ev0 AT0Rp�x�x 
os(�x!0t) 1Xn=�1 
os(n!0t)= ev0 A2T0Rp�x�x 1Xn=�1 � 
os �(n+ �x)!0t�+ 
os((n� �x)!0t��: (4.12)One sees that the betatron spe
trum 
onsists of identi
al sidebands, symmetri
allyabove and below all revolution harmoni
s. In the presen
e of 
oupling both hori-zontal and verti
al lines are visible in the same plot, for example as in FIG 4.5. Inthe presen
e of nonlinearity even more spe
tral lines are observed.The horizontal and verti
al tune spe
ta for the 
ollider mon latti
e are shownin FIG 4.6. Sin
e this latti
e is ideal, and therefore has no x; y 
oupling, no \wrongplane" lines are visible. There are however hints of lines of unknown origin, forexample at �x = 0:34. Lines like this will be dis
ussed in Chapter 8. Note, however,with the verti
al s
ale being logarithmi
, the amplitudes of thes lines are extremelysmall. 4.3. Dis
rete Time, DFT AnalysisThe dis
rete Fourier transform (DFT)1 is a numeri
al tool that 
an be usedto determine the 
oeÆ
ients in 
ontinuous time expansions like Eq.(4.12). This1A 
ommon terminology refers to all dis
rete Fourier methods as FFT (fast Fourier transform)methods. This is not quite appropriate as the FFT is just one eÆ
ient algorithm for evaluatingDFT's
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Figure 4.6. Horizontal and verti
al tune spe
tra for the
ollider mon latti
e.pro
edure entails sampling and digitizing the signal to be analysed at dis
rete timeintervals. For beam dete
tors in 
ir
ular rings it is natural to 
hoose the revolutiontime T0 as the digitization time. Espe
ially for transverse os
illations, sin
e thereare many os
illation periods per revolution period, this represents gross under-sampling. This 
auses \aliasing" in whi
h os
illation at one frequen
y is dete
tedat another frequen
y. For the relatively simple spe
tra under dis
ussion this aliasingdoes not destroy the usefulness of the spe
tra and the aliasing is little worse thana nuisan
e. This will not be further dis
ussed here.The \natural" domain of the DFT is 
omplex numbers. Wanting to analysereal fun
tions, it is e
onomi
al to transform two real fun
tions at the same time.Normally one has more (usually many more) than one BPM to analyse, and it isquite satisfa
tory to pro
ess them in pairs. The fundamental DFT formula startsfrom two sets, ea
h 
ontaining an even number N of real samples, x(n) and y(n),of the two fun
tions to be transformed, formed into a single 
omplex sequen
ez(n) = x(n) + iy(n), n = 0; 1; : : : ; N � 1. It does no harm to think of this as a
omplexi�ed read out of horizontal and verti
al positions at the same lo
ation onturn number n, but the DFT pro
ess keeps the x and y sequen
es separate, so thesequen
es 
ould just as well have 
ome from di�erent BPM's. The \transform"
onsists of N 
omplex numbers Z(n), n = 0; 1; ; : : : ; N � 1 given byZ(k) = 1N N�1Xn=0 z(n) exp�� i2�knN �: (4.13)The output range 
an be regarded as a fra
tional tune range from 0 to 1, binnedinto tune intervals of width 1=N . (The integer part of the tune is suppressed by



56 4. INSTRUMENTAL ANALYSIS OF 1D PARTICLE AND BUNCH MOTIONthe aliasing mentioned earlier.) The N values of Z(k), k = 1; 2; : : : ; N , 
an beinterpreted as the binned spe
tral 
ontent of the fun
tion represented by samplesz(n). The inverse transform, the IDFT, is given byz(n) = N�1Xk=0 Z(k) exp� i2�knN �: (4.14)Essentially the same program 
an be used for either DFT or IDFT be
ause, with� indi
ating 
omplex 
onjugation,x = N(DFTfX�g)�: (4.15)In this form the Fourier transforms of x and y are \mixed together". To separatethem: suppose that X(k) and Y (k) (both 
omplex) are the transforms of x and y,(both real). That isz(n)$ Z(k); x(n)$ X(k); y(n)$ Y (k): (4.16)These show thatX(k) = 12�Z�(N � k) + Z(n)�; Y (k) = i2�Z�(N � k)� Z(n)�: (4.17)There is redundan
y in these relations. It 
an be shown that the Z(n) values aresymmetri
 about n = (N � 1)=2, whi
h is to say about fra
tional tune 0.5. Thisfurther restri
tion of the output tune range, already visible in FIG 4.5, is anotheraliasing e�e
t. Be
ause of this symmetry there is no point in exhibiting spe
trumoutside the tune range 0 < � < 0:5 as there is no extra information outside thisrange.Problem 4.1. For this and the following problem you are to use any 
omputerlanguage you have a

ess to that is 
apable of handling matri
es; for example MAT-LAB, MAPLE, or a spread sheet. For pedagogi
al purposes a programmable hand
al
ulator is ideal, even though it may be too slow at pro
essing large matri
es inprodu
tion usage. In the statement of the problem (and similar problems elsewherein the text), example 
ode valid on an HP 
al
ulator will be used to spell out thetask. Even for someone unfamiliar with this 
al
ulator should �nd the 
ode simpleenough to serve as pseudo
ode or to be 
onvin
ed that 
oding from s
rat
h is not aformidable task.Consider a 4� 4 on
e-around transfer matrix M given by0.231876 -0.029239 -0.031317 0.00000032.36138 0.231876 -0.822722 0.0000000.000000 0.000000 1.000000 0.0000000.822722 0.031317 -0.012908 1.000000Key it into the 
al
ulator, or whatever program you are using, as a variable M.For a starting displa
ement X0 su
h as x0 = 1; x00 = 0; y0 = 1; y00 = 0, i.e. inthe 
al
ulator [1 0 1 0℄, iterate the matrix multipli
ation Xi+1 = MXi NTR=16times to generate simulated data at a single \BPM" as sample data to by subje
tedto FFT analysis analysis in the next problem. (NTR 
an be any integer power of 2.)For example, on an HP 
al
ulator, the following 
ode de�nes a program named $XY(following the 
onvention that program names start with $ signs). Starting withthe initial 
ondition ve
tor on the sta
k, this 
ode generates x+ iy for N turns andstores the sequen
e of 
omplex numbers in variable TRK. The a
tual 
ode appearsbetween the << and the >> signs.



4.4. PCA, PRINCIPLE COMPONENT ANALYSIS 57$XY: << DUP DUP 1 GET SWAP 3 GET R->C1 N 1 - START SWAP M SWAP *DUP DUP 1 GET SWAP 3 GET R->CNEXTSWAP DROP N ->ARRY 'TRK' STO >>For 
omparison with a \
anned" FFT routine, it is 
onvenient to have, say, a purex(n) sequen
e, whi
h 
an be obtained from similar 
ode;$X: << DUP 1 GET 1 N 1 -START SWAP M SWAP * DUP 1 GET NEXTSWAP DROP N ->ARRY 'TRK' STO >>Use the FFT provided by the software you are using to 
al
ulate the DFT of thesequen
e TRK. Then, as a 
he
k, 
on�rm that IFFT restores the original sequen
e.Problem 4.2. Using Eq. (4.13), �nd the DFT of the turn-by-turn data generatedin the previous problem. Then 
al
ulate the IDFT and 
on�rm that the result agreeswith the original data set. On the HP 
al
ulator the matrix of 
oeÆ
ients neededin Eq. (4.13) 
an be 
al
ulated and stored in matrix EJK using$EJK: << N N << -> j k<< (0.0,1.0) NEG 2 * PI * j * k * N / EXP N / >>>>LCXM 'EJK' STO >>and a program to produ
e the FFT of the array on the sta
k is$DFT: << EJK SWAP * >>Finally, for the IDFT$IDFT: << CONJ EJK SWAP * CONJ N * >>For a value su
h as N=16 
he
k that the transform evaluated using $DFT agrees withthe FFT 
al
ulated in the previous problem. Compare the time taken by the FFTprogram provided by the software you are using.4.4. PCA, Prin
iple Component Analysis4.4.1. Introdu
tion and Motivation. As stated by Jolli�e[9℄, \The 
entralidea of prin
ipal 
omponent analysis (PCA) is to redu
e the dimensionality of a largenumber of interrelated variables, while retaining as mu
h as possible of the variationpresent in the data set". The method 
an have the heavily statisti
al emphasis ofdrawing maximal inferen
e from minimal data sets, or a more purely des
riptive,algebrai
 emphasis on the e
onomi
al representation of multiple observations bya minimal number of parameters. The diagnosis of an a

elerator based on BPMsignals is made diÆ
ult both by the inherent 
omplexity of the data and by the noiseit 
ontains. With the former being judged the more fundamental 
ompli
ation, UALstresses the algebrai
 aspe
t of PCA rather than the statisti
al. Though the �elderrors that degrade a

elerator performan
e were random at the time the a

eleratorwas being 
onstru
ted, they do not 
ontribute sto
hasti
ally to the sorts of datasets to be investigated, as they are mainly assumed to have been \frozen in" whenthe a

elerator was built.One way of viewing the spe
tral analysis of a multiturn BPM signal des
ribedin previous se
tions is that a large number of measurements z(n) (one for ea
h ofN turns) has been distilled into a small number of spe
tral amplitudes. If the tune



58 4. INSTRUMENTAL ANALYSIS OF 1D PARTICLE AND BUNCH MOTIONhappens to be an integral multiple of 1=N , the entire data set is 
hara
terized by twonumbers, the amplitudes of sine-like and 
osine-like os
illations. All other spe
tralamplitudes are zero, or are at least very small relative to the dominant lines. Evenfor arbitrary tunes only a few bins have appre
iable amplitudes. Taking Eq. (4.13)as example, this distillation has been a

omplished by generating numbers that arelinear superpositions of data values z(n) with (theoreti
ally derived) 
oeÆ
ientsexp(�i2�kn=N). Sin
e there were grounds for expe
ting di�erent BPM's to exhibitthe same tune lines their data sets 
ould be subje
ted to identi
al analyses.If the individual BPM signals were not expe
ted to show essentially sinusoidalvariation the Fourier transform pro
edure would not be expe
ted to work so well.Some extraneous e�e
ts merely exhibit the power of Fourier transforms. For exam-ple noise tends to average to zero. BPM misalignment, whi
h 
auses even the ref-eren
e parti
le to give transverse signals, gives spe
tral response at zero frequen
y,whi
h is easily distinguished from the true transverse lines.But other e�e
ts may not be so benign. One 
an inquire whether a linear su-perposition using 
oeÆ
ients other than the sinusoidal Fourier 
oeÆ
ients might befound that a
hieves 
omparable distillation even when the signals are theoreti
allyless predi
table. The answer is \yes", the method is 
alled \Prin
iple ComponentAnalysis" (PCA) and the distilled parameters are 
alled \Prin
iple Components"(PC). (By this de�nition, the Fourier transform values 
ould be |but typi
ally arenot|legitimately referred to as prin
iple 
omponents.)Before spelling out this pro
edure it is appropriate to identify essential fea-tures of the data. The turn-by-turn data from a single BPM, say the j'th, 
an beexpressed by a ve
tor x j = 0BB�x j1x j2: : :x jN1CCA : (4.18)A matrix 
an be formed from the measurements from M BPM's, ea
h arrayed asin Eq. (4.18); X = �x 1 x 2 : : : xM� = 0BBBBBBBB�x
11 x 21 : : : x M1x 12 x 22 : : : x M2x 13 x 23 : : : x M3x 14 x 24 : : : x M4x 15 x 25 : : : x M5: : :x 1N x 2N : : : x MN

1CCCCCCCCA (4.19)(The upper indi
es have been shifted slightly to the right to make it natural, inmatrix operations, to regard the upper index as the se
ond index. Also the matrixhas been been given the 
osmeti
 appearan
e of being higher than it is wide, sin
ethat is a requirement of the SVD method to be introdu
ed in the next se
tion; i.e.N � M , more turns than BPM's.) All entries in this matrix are 
ommensurate,meaning they have the same units|in this 
ase length. This fa
ilitates matrix ma-nipulations sin
e the 
oeÆ
ients of transformation matri
es 
an be dimensionless.Though all elements are 
ommensurate, it is essential to realize that the 
hara
ter-isti
s of 
olumns and the 
hara
teristi
s of rows are di�erent. In performing matrix



4.4. PCA, PRINCIPLE COMPONENT ANALYSIS 59operations on the matrix X it is important to use only methods that respe
t thisdi�eren
e between rows and 
olumns.Within the matrixX the row index 
an be referred to as \temporal", sin
e timein
reases from top to bottom of the matrix. The elements of any one 
olumn mapout a \temporal pattern". In purely 
onservative, or Hamiltonian, motion there willbe no systemati
 tenden
y for the elements to be
ome small with in
reasing rowindex. But, for lossy or de
ohering systems, the elements will tend to get smallertoward the bottom.The 
olumn index of X, whi
h distinguishes di�erent lo
ations in the ring, 
anbe referred to as a \spatial" index. In prin
iple, in PCA, the di�erent 
olumns 
ouldrefer to quite dissimilar properties of the system under study. In our 
ase the dy-nami
s at di�erent BPM lo
ations is expe
ted to have quite similar 
hara
teristi
s.But the transverse s
ale 
an 
hange dis
ontinuously and errati
ally in progressingfrom one BPM to the next. Su
h variation 
an be displayed as a spatial \pattern"or \shape". One may have some theoreti
al expe
tation of this variation, but in aso-
alled \model independent analysis" (MIA) this spatial pattern is regarded as apriori unknowable, and a major purpose of the analysis is to extra
t the transverses
aling fa
tors (i.e. p�-fun
tions) from the data.There are too many optional features in the properties of data matri
es likeX for all options to be dis
ussed here. For example the various 
olumns 
ould bemultiple measurements from the same BPM. This is the 
ase to be assumed for thetime being. Or ea
h 
olumn 
ould be derived from a di�erent BPM, a 
ase that willbe adopted later, for purposes of �-fun
tion determination. There 
ould be moreturns than BPM's, N >M (the only 
ase to be 
onsidered here) or vi
e versa.An important algebrai
 parameter that helps to distinguish these 
ases math-emati
ally is the rank R, whi
h 
hara
terizes the extent to whi
h the 
olumns ofX are algebrai
ally independent. If all 
olumns of X have 
ome from the samedete
tor, all with proportional initial 
onditions, all under ideal 
onditions, then all
olumns would be proportional and R would be 1. Slightly more general would bethe same situation but with random starting 
onditions, in whi
h 
ase there wouldbe sine-like and 
osine-like 
olumns (a
tually superpositions thereof) and R = 2.In any 
ase R 
annot ex
eed the smaller ofM and N . Sin
e we require N > Mit follows that R �M . Beyond this point, determining the value of R be
omes a bitsquishy. The 
ondition for R to be less than M is that one or more determinantsformed from elements of X vanish. Unfortunately, no experimentally measuredquantity 
an vanish exa
tly (be
ause there is always noise at some level). Butthe whole point of PCA is to identify linear dependen
ies among the 
olumns ofX|su
h dependen
ies 
an be used to redu
e the number of parameters needed todes
ribe the data. If exa
t, ea
h su
h (independent) relationship 
orresponds to aredu
tion of R.In spite of this la
k of rigor, the following approximate approa
h often su

eeds.For R =M the number of PC's is M . Ea
h PC quanti�es the 
ontribution to thedata of one mode. If the PC is big then the 
orresponding mode is important.In pra
ti
e, with \good" data, only a few of the PC's are big and the rest are\small" (without noise or other peripheral e�e
ts the small PC's would presumablyvanish). Setting the small PC's exa
tly to zero 
auses the rank R to be exa
tlyequal to the number of retained PC's. Only the non-zero PC's that survive deserveto be 
alled \prin
ipal 
omponents". Su
h a phenomenologi
al pro
edure is of
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ourse only approximate and its validity has to be investigated further on a 
ase-by-
ase basis. In the simplest nontrivial, but still ideal, 
ase there will be two PC's
orresponding to sine-like and 
osine-like motions, and R = 2.4.4.2. Rotation to Prin
iple Axes. The matrix X 
ontains a large numberMN of data points, probably all that will be needed to 
hara
terize the latti
e, atleast in the 
ase where ea
h 
olumn represents a di�erent BPM. Even so, one 
anregard this data as just one sampling of MN random variables, or of M samplingsof an N -
omponent random ve
tor. In prin
iple the SVD pro
edure works evenif these variables are mutually independent, but any useful inferen
e to be drawnre
e
ts their internal relationships.Consider multiple samplings of a parti
ular 
olumn x j , and, for ea
h sample,interpret the entries as 
oordinates of a point to be plotted in an N -dimensional dotplot. To simplify dis
ussion take N = 3 and assume that allM 
olumns 
orrespondto the same BPM. The points will be s
attered in a roughly ellipsoidal region. Ageneral treatment would permit the ve
tors x j to get 
ontributions from noise,from momentum dependen
e, from misalignment, et
. Be
ause of e�e
ts like thisthe ellipsoid would not ne
essarily be 
entered on the origin but, deferring thispossibility for simpli
ity, let us assume that the theoreti
al averages of all entriesare zero. The di�erent data sets re
e
t evolution of the same system but withrandom start times. As su
h the M data points in any one data set under studywill be imbedded indistinguishably within this plot.It is natural to identify prin
iple axes of this ellipsoid and to perform a rota-tion to 
oordinates in whi
h the ellipsoid is ere
t relative to all axes. Being ere
timplies the absen
e of 
orrelation between any pair of 
omponents. Restri
ting thistransformation to be a rotation exploits the 
ommensurate nature of the elementsand prevents the distortion that would result when di�erent multipli
ative fa
torsare applied to 
omponents along di�erent axes.It 
ould happen that the ellipsoid just dis
ussed is very long and skinny. Itwould be natural then to 
hoose the axis along whi
h the ellipsoid is long as the�rst 
oordinate axis. The 
omponent along this axis would indeed be a prin
iple
omponent sin
e the motion would be essentially one dimensional, with this 
om-ponent des
ribing the state of motion. Normally the data will be more than onedimensional. The next simplest 
ase would have the data approximately restri
tedto an ellipti
al region lying in some skew plane. The �rst prin
iple 
omponentwould then be 
hosen along the major axis, the se
ond along the minor axis. Allthis dis
ussion generalizes to the N -dimensional region needed to des
ribe all N
omponents of x j . In general there will be N prin
iple 
omponents, ordered fromlargest to smallest. If a few of these 
omponents are \large" and the rest \small",one will have redu
ed the dimensionality of the data set (in some approximatesense) from N to the number of \large" PC's.4.4.3. The SVD Method of Determining Prin
iple Components. Thenumeri
al, algebrai
 \singular value de
omposition" (SVD) method is des
ribed byPress et al.[10℄ Though an
ient (Beltrami, 1873, Jordan, 1874) the SVD methodwas re
ently introdu
ed into a

elerator physi
s by Irwin, Wang et al[8℄. UnlikeDFT, let us require all 
omponents and all 
oeÆ
ients to be real.
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 algorithm, that permits an arbitrary, not ne
essarilysquare, N �M matrix X to be expressed in the formX = USVT = �1u1vT1 + �2u2vT2 + : : : : (4.20)Here S is an N �M matrix whi
h, though not square, has non-vanishing elementsonly along the main diagonal, their values being �1 > �2 > � � � > �M :. Matrix U,U = �u1 u2 : : : uN� ; uTi uj = Æij ; (4.21)is an N � N orthonormal matrix whose 
olumns are ve
tors ui that satisfy theorthonormality relations shown. Similarly,VT = 0BB�vT1vT2: : :vTM1CCA ; vTi vj = Æij ; (4.22)is an M �M orthonormal matrix.Be
ause the ve
tors ui and vj are normalized, the magnitudes of the 
oeÆ-
ients �i in Eq. (4.20) a

urately re
e
t the importan
e of the individual terms.Being ordered with largest �i �rst, the terms in Eq. (4.20) are ordered from mostimportant to least important.By spelling out Eq. (4.20) in more detail;X = �10�v1;10�u1;1u1;2: : :1A v1;20�u1;1u1;2: : :1A : : :1A+�20�v2;10�u2;1u2;2: : :1A v2;20�u2;1u2;2: : :1A : : :1A+: : : ;(4.23)one sees that ui des
ribes the temporal pattern (de�ned earlier) of the i'th modeand vi des
ribes the spatial pattern of the same mode. Sin
e the SVD fa
torizationis unique, and 
an be performed me
hani
ally using readily available software tools,one sees that 
onsiderable information 
an be extra
ted automati
ally from datamatrix X.To obtain the spatial patterns vi one 
an introdu
e a matrix, referred to as the\sample 
ovarian
e matrix", and de�ned byC��ij = 1N XTX��ij = 1N Xk x ik x jk : (4.24)The summation is over turn number k and division by N 
onverts the elements toaverage values;Cij = 0BB�< x 1x 1 > < x 1x 2 > : : : < x 1xM >< x 2x 1 > < x 2x 2 > : : : < x 2xM >: : :< xMx 1 > < xMx 2 > : : : < xMxM >1CCA : (4.25)Using Eq. (4.20) and the orthonormality of U and V, one derivesCV = 1N XTXV = 1N VSUT USVT V = 1N VS2: (4.26)This equation shows that the 
olumns of V (whi
h have previously been 
alledspatial patterns) are eigenve
tors of C. Be
ause it is symmetri
, the eigenvalues
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tors are known to be orthogonal. Alsofrom Eq. (4.26) one infers that the eigenequations for individual eigenve
tors areCvi = �ivi;= vi�2i =N: (4.27)From ea
h eigenvalue � of C this determines a diagonal element � = p�N of S.The matrix C, to the extent it is statisti
ally well determined by the data,enables geometri
 determination of the prin
iple 
omponents. Sin
e the ve
tors viform an orthonormal set they de�ne a 
hara
teristi
 referen
e frame. For an arbi-trary data ve
tor x, its prin
iple 
omponents zi 
an be obtained as the 
omponentsof x along these axes. In ve
tor algebra these 
omponents would be determined as\dot produ
ts" vi � x. In matrix notation,zi = vTi x; or z = VTx; (4.28)where, in the se
ond form, the ve
tors have been arrayed within matri
es. Finally,
onsider the family of N -dimensional ellipsoids de�ned by the equationxTC�1x = 
onstant: (4.29)Using Eq. (4.28), and the orthonormality of V, this equation 
an be expressed as
onstant = zTVTC�1Vz: (4.30)By manipulating Eq. (4.26), this equation 
an be transformed to
onstant = zT S�2N z = 1N NXi=1 z2i�2i ; (4.31)whi
h is the equation of the 
hara
teristi
 ellipsoid in the 
oordinates in whi
h it isere
t. This derivation has been formal. The detailed geometri
 interpretation of theequation depends on the treatment of the previously-mentioned errati
 behavior ofsmall �i values. Dropping su
h indeterminate terms from Eq. (4.31), the formulais useful primarily in the 
ase that it redu
es to a relatively short sum of squaredterms. In this frame the distribution of points 
an be represented, at least 
rudely,as a one dimensional distribution of points binned into ellipsoidal shells, with theshell size parameterized by allowing the 
onstant appearing on the left hand sideof the equation to vary.4.4.4. Extra
ting Betatron Phases and Beta Fun
tions. Mu
h of thisse
tion follows Wang et al.[7℄. From here on it will be assumed that theM 
olumnsin data matrix X 
onsist of turn-by-turn data from separate BPM's. The mainnew physi
s the PCA approa
h is intended to address is the non-invarian
e of theCourant-Snyder invariant evaluated from a bun
h 
entroid when it is treated asthe position of a single parti
le. Su
h variation invalidates equations like (4.12) inwhi
h the CS invariant � was assumed to be 
onstant. In pra
ti
e the de
oheren
ee�e
t that 
auses � to vary is usually fairly weak and the fra
tional variation of �during any one turn is tiny.Based on the slowness of this variation, for extra
ting betatron parametersfrom the turn-by-turn data matrix X, Wang et al.[7℄ suggest the following sensibleapproximation. During any one turn � is taken to be exa
tly 
onstant. This meansthe spatial pattern introdu
ed earlier will be exa
tly the same as for single parti
lemotion. But, to support de
oheren
e or other non-Hamiltonian behavior, the emit-tan
e is permitted to have arbitrary (though slowly varying) temporal dependen
e.Notationally, the bun
h CS-invariant is simply given a temporal index i so that �i,



4.4. PCA, PRINCIPLE COMPONENT ANALYSIS 63even though its value varies with i, is 
onstant during any single turn. The 
entroidmotion 
an therefore be expressed asx mi =p�i�m 
os(�i +  m); (4.32)where �m is the beta-fun
tion and  m the phase at the m-th BPM and �i is thetime-evolving phase at some referen
e lo
ation in the ring (to be referred to as\origin").As stated already, the measured 
omponents of X will have other extrane-ous 
ontributions (due, for example, to noise and dispersion) but we will trustthe PCA approa
h to suppress their e�e
ts. By substituting from Eq. (4.32) intopreviously derived formulas we 
an derive theoreti
al expressions for the variouseigenvalues, eigenve
tors, and patterns that have been introdu
ed, in terms of thenewly-introdu
ed parameters �i, �m, �m, and  i.For a given data set, taken at arbitrary time, the starting phase at the origin isarbitrary. The starting phase 
an be inferred from the elements in the top two rowsof X along with Eq. (4.32). Wang et al.[7℄ give an expli
it formula (double-valuedand not reprodu
ed here) for this phase, as well as the following formulas for thetwo non-vanishing eigenvalues;�� = < � >4 MXm=1 �m(1 + 
os 2 m)= < � >4 � MXm=1 �m �s(Xm �m 
os 2 m)2 + (Xm �m sin 2 m)2�: (4.33)where and initial phase �0 has been set to zero, by judi
ious 
hoi
e of starting turnindex.2 Wang et al. also give theoreti
al formulas for the spatial shapes,v+ = < � > �m2p�+ 
os m; m = 1; : : : ;M;v� = < � > �m2p�� sin m; m = 1; : : : ;M; (4.34)as well as for the temporal shapes,u+ = 2�iN < � > 
os�i; i = 1; : : : ; N;u� = � 2�iN < � > sin�i: i = 1; : : : ; N: (4.35)Finally these formulas 
an be used at ea
h BPM to extra
t, from the SVD expan-sion, the betatron phase,  = tan�1 �p�� v�p�+ v+� (4.36)and the �-fun
tion, � = 2< � > (�+v2+ + ��v2�): (4.37)2The quantity < � > in Eq. (4.33) is multiturn average of the possibly-time-varying emittan
e.If the 
entroid motion is damped, and the measurement extended to times long 
ompared to thedamping time, then this average varies inversely with the number of samples. Obviously there isno point in extending data 
olle
tion into this region.



64 4. INSTRUMENTAL ANALYSIS OF 1D PARTICLE AND BUNCH MOTION4.4.5. The PCA Feature of the transverse bSimulator. The followingseries of �gures were obtained using the SVD feature of the transverse simulator.FIG 4.7 shows the SVD opening window. Only the leading PC's are shown. Allthose not shown are tiny. As expe
ted, there are only two large PC's. The third,not quite tiny PC is the subje
t of one of the assignments.The spatial and temporal eigenve
tors are shown in FIG 4.8. Their interpre-tations will be dis
ussed further in Chapter 7. The spatial eigenve
tor is 
loselyrelated to the �-fun
tion variation. In this 
ase the interpretation is 
ompli
atedby the fa
t that the �-fun
tion is ne
essarily positive while the eigenve
tor 
ompo-nents 
an have either sign. The signs are resolved using Eqs. (4.36) and (4.37). The�-fun
tions and phase advan
es derived from this data are shown in FIG 4.9. The�-fun
tion extra
tion uses Eq. (4.37). Treating the emittan
e < � > as unknown,this leaves an overall s
ale fa
tor undetermined, but the variation of �x around thering is determined. This \model-independent" determination 
an be seen to agreewill with the model-based determination. The phase advan
e determinations usingEq. (4.36) also agree well with matrix-based determinations.Simulation 4.1. Vary the noise level in the .apdf �le and investigate thedegradation in a

ura
y of the PCA-determined Twiss fun
tions. The noise level(relative to signal level) whi
h 
auses a typi
al degradation of, say, 10% in a

ura
yshould be determined.Problem 4.3. Suggest a possible sour
e for the third, not quite negligible PCindi
ated in FIG 4.7. Derive a quantitative fomula for the magnitude of this PC.Simulation 4.2. Compare the PC's obtained when the energy o�set Æ of theparti
le is varied. Pay espe
ial attention to the third 
omponent and plot its valueagainst Æ.Simulation 4.3. Augment the SVD simulation feature so that it also extra
tsthe dispersion at the lo
ations of monitor elements in the latti
e.Simulation 4.4. Radiation damping in an ele
tron a

elator 
auses the x; y; sCourant-Snyder invariants of ea
h parti
le to be multiplied ea
h turn by fa
torsax; ay; as, ea
h less than 1 by an amount that is typi
ally of order one part in10,000. 
t! as 
t.The presen
e of small deviations like these 
an be modeled in the simulatorin mu
h the same way that noise is simulated. The main di�eren
es are that thedamping de
rements are ne
essary negative and they are not sto
hasti
. Rather thede
rements are proportional to the parti
le amplitude. For example x! x(1� ax).Augment the transverse simulator to model the presen
e of damping. Measurethe damping rate and relate it a

urately to the damping 
oeÆ
ient as you havebuile into the 
ode.
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Figure 4.7. Opening window for the UAL PCA simulator. Theleading prin
ipal 
omponents (PC)'s are shown.

Figure 4.8. Spatial and temporal SVD eigenve
tors derived fromthe PCA simulation of the 
ollider mon latti
e are exhibited.



664.INSTRUMENTALANALYSISOF1DPARTICLEANDBUNCHMOTIONFigure 4.9. Twiss fun
tion and phase advan
es derived for the 
ollider mon latti
e using the PCA simulator.Bold dots superimposed on 
urves indi
ate agreement between model-independent and model-based determinations.



4.4. PCA, PRINCIPLE COMPONENT ANALYSIS 67Problem 4.4. In problem 4.1 a programmable 
al
ulator program $X operatedon the 4 
omponents of an initial 
ondition ve
tor to produ
e a multiturn sequen
eTRK by repeated multipli
ation by a matrix (here 
alled MM so that M 
an stand forthe number of BPM's). This 
ode 
an be re-used here. The routine$RI: << RAND RAND RAND RAND 4 ->ARRY $X TRK >>repeats this 
al
ulation for a random starting position. $RI is used within the pro-gram$DATA: << 1 M START $RI NEXT M ROW-> TRN 'DATA' STO>>After transforming rows and 
olumns with TRN, the result is an N�M (for example16� 8) data matrix, like that de�ned in Eq. (4.20).The elements in ea
h 
olumn are 
onsistent with being the N measurementson a single BPM. The random starting 
oordinates simulate random phase andamplitude starting 
onditions at the same BPM. The 
olumns are saved as a matrixDATA. Using 
ode like this, produ
e su
h a matrix and subje
t it to SVD analysis.Again a programmable 
al
ulator is slow but adequate. You should �nd two largeelements on the diagonal of matrix S and the rest very small. Interpret this result.Con�rm that U and V are orthogonal.





CHAPTER 5Analysis of Coupled Motion5.1. Analysis of a 4� 4 Symple
ti
 MatrixGeneral 3D linearized propagation around a ring is represented by a 6 � 6transfer matrix. Mu
h simpler, and often approximately valid, is the representationof one dimensional motion by a 2�2 transfer matrix. In this se
tion an intermediateapproa
h is taken in whi
h the 
oupling between two planes, usually x and y, butsometimes x and s, 
annot be negle
ted. This 
alls for a 4 � 4 matrix treatment.In the last se
tion a 6� 6 formula is also given.No matter how messed up an a

elerator latti
e is, as long as it elements are
onstant in time, there is a small amplitude domain in whi
h transverse motionis a

urately represented by a transfer matrix, whi
h we are taking to be a 4 � 4matrix M. In a 
omputer simulation all 16 elements of this matrix would beknown but, operationally, in the 
ontrol room, none of the elements are known apriori. The task of \model independent analysis" (MIA) is to use measurementsfrom available instruments (in our 
ase only beam position monitors (BPM) areassumed to be available) to infer valid a

elerator properties even though M is
ompletely unknown. Even though unknown, M is guaranteed to be a symple
ti
matrix.This 
hapter des
ribes several MIA methods, using BPM data and FFT anal-ysis, that 
an be used to infer tunes and 
losed orbit deviations. The �rst step isto exploit symple
ti
ity to derive a di�eren
e equation satis�ed by M.The transverse parti
le position is spe
i�ed by a 4-element 
olumn ve
torx = (x; x0; y; y0)T . This ve
tor represents small transverse deviations from theequilibrium orbit. Note that the equilibrium orbit is not the same thing as thedesign orbit. About the only feature guaranteed to be true about the equilibriumorbit is that it stays in the va
uum 
hamber and repeats exa
tly turn after turn.Any bun
h, no matter how poorly inje
ted, by de
oheren
e and �lamentation, even-tually 
enters itself on an equilibrium orbit. The ve
tor x, by de�nition, measuresdeviations from that orbit. Linearized evolution of x from longitudinal 
oordinates0 to s is des
ribed by the matrix equationx(s) =M(s; s0)x(s0): (5.1)The fa
t that M is symple
ti
, 
riti
al to the derivation of the di�eren
e equationbeing sought, 
an be expressed using the matrixS = 0BB�0 �1 0 01 0 0 00 0 0 �10 0 1 0 1CCA (5.2)69



70 5. ANALYSIS OF COUPLED MOTIONForM to be symple
ti
, its inverse must be equal to its \symple
ti
 
onjugate"M,M�1 =M = �SMTS: (5.3)Partitioning the 4�4 matrixM into 2�2 elements, it and its symple
ti
 
onjugateare M = �A BC D� ; M = �A CB D� : (5.4)A 2� 2 matrix A and its symple
ti
 
onjugate are related byA = �a b
 d� = � d �b�
 a � = A�1 det jAj; (5.5)provided the determinant det jAj is non-vanishing.Espe
ially important for analysing the state of (x; y) 
oupling is a parti
ularo�-diagonal 
ombination from Eq. (5.4), E = C+B and its determinant E = det jEj.E � C+B � �e fg h� = �
11 + b22 
12 � b12
21 � b21 
22 + b11� ; det jEj = eh� fg � E : (5.6)For a stable latti
e, eigenvalues �A and �D, of M (with their 
omplex 
onjugatetwins) satisfy the relations�A � �A + 1=�A = exp(i�A) + exp(�i�A) = 2 
os�A (5.7)�D � �D + 1=�D = exp(i�D) + exp(�i�D) = 2 
os�D;where �A � 2��A and �D � 2��D are real angles. The quantities �A and �D,eigenvalues of M+M, satisfy�A +�D = trA+ trD; (5.8)�A�D = trA trD� E :For motion at small amplitude the linearized transfer matrix des
ription gives athoroughly satisfa
tory des
ription of the motion. In the presen
e of 
oupling thetunes �A and �D are only approximately equal to the ideal, (or nominal, or design)tunes �x and �y. But �A and �D are readily measurable, no matter how badly
oupled the latti
e is. For this reason, they 
an be regarded as known, or atleast operationally measurable, quantities. In fa
t the most 
ommon appli
ationof Fourier analysis of parti
le motion (as measured with beam position monitors)is for the operational measurement of these tunes. The formulation of this se
tion
an be used to exploit this pro
edure.As partially seen already, the 
ombinationM+M =M+M�1 = �trA 00 trD�+ �0 EE 0� (5.9)has simpler properties than M. Using the fa
t that M�1 
an be used to propagateba
kwards in time, this relation 
an be used to obtain four third-order, 
oupleddi�eren
e equations that relate the 
oordinates on three su

essive turns (labeled�, 0, +): x+ � trAx0 + x� = hy0 � fy00x0+ � trAx00 + x0� = � gy0 + ey00 (5.10)y+ � trD y0 + y� = ex0 + fx00y0+ � trD y00 + y� = gx0 + hx00:



5.1. ANALYSIS OF A 4� 4 SYMPLECTIC MATRIX 71It is possible to un
ouple these equations. Start by squaring Eq. (5.9), sub-tra
ting 2I, and using Eqs. (5.8);M2+M�2 = �tr2A+ (E � 2)I 00 tr2D+ (E � 2)I�+(trA+trD)�0 EE 0� : (5.11)From Eqs. (5.9) and (5.11), form the 
ombination that eliminates the o�-diagonalblo
ks, M2 +M�2 � (�A +�D)(M+M�1) + (2 + �A�D)I = 0: (5.12)Using this equation to obtain a di�eren
e equation for the phase spa
e 
oordinateson su

essive turns yieldsx++ + x�� � (�A +�D)(x+ + x�) + (2 + �A�D)x0 = 0: (5.13)This is the equation we have been seeking. Before applying it to pra
ti
al problemssu
h as 
losed-orbit �nding and feedba
k 
ontrol, we note the simpler equationsthat hold in 
ase there is no 
ross-plane 
oupling. In that 
ase, Eqs. (5.7) and (5.8)redu
e to �A = trA = 2 
os�x; �D = trD = 2 
os�y; (5.14)the right hand sides of Eqs. (5.10) vanish; and the �rst equation, for example,be
omes x+ � 2 
os�x x0 + x� = 0: (5.15)It is left as an exer
ise to show that this equation and the 
orresponding y-equationare 
onsistent with Eq. (5.13) when there is no 
oupling.Problem 5.1. In the 
ase that there is no 
oupling between x and y motion,show that Eq. (5.13) redu
es to Eq. (5.15) and the 
orresponding y-equation.Problem 5.2. Algorithm for 
onverting an almost symple
ti
 matrix into asymple
ti
 matrix. De�ne S = 0BB�0 �1 0 01 0 0 00 0 0 �10 0 1 0 1CCA : (5.16)The symple
ti
 
onjugate of a matrix M is de�ned byM = �SMTS; (5.17)where MT is the transpose of M. One 
an write a 
al
ulator routine to performthis operation$BAR: << TRN S * S SWAP * NEG >>A matrix Ms is symple
ti
 if and only ifMs =M�1s : (5.18)Suppose that M is \almost" symple
ti
. De�ne a new matrix, 
lose to M byMs =M+ M�MMM2 : (5.19)Negle
ting terms quadrati
 in M�Ms, show that Ms is approximately symple
ti
.Using 4� 4 unit matrix I44, One 
an write a 
al
ulator routine,$SYM: << DUP DUP $BAR * 2 / NEG I44 1.5 * + SWAP * >>



72 5. ANALYSIS OF COUPLED MOTIONthat \symple
ti�es" a transfer matrix.In a simulation program an arti�
ial manipulation like this is risky. Just be-
ause a matrix is symple
ti
 does not mean it is 
orre
t. But sometimes one isquite 
on�dent that a matrix is essentially 
orre
t, and wishes to use it for itera-tion, say millions of times. Even the tiniest of failures of symple
ti
ity will 
ausethis operation to give arti�
ial emittan
e growth over su
h long times. In this 
asearti�
ial symple
ti�
ation may be justi�ed.Problem 5.3. The matrix M0.231876 -0.029239 -0.031317 0.00000032.36138 0.231876 -0.822722 0.0000000.000000 0.000000 1.000000 0.0000000.822722 0.031317 -0.012908 1.000000appeared in an earlier problem. This matrix is very nearly symple
ti
 but, to makeit look less gross in print, its elements are given to only 5 or 6 de
imal points. It
an therefore not be exa
tly symple
ti
. Perform the \symple
ti�
ation" de�ned inthe previous problem one or more times so that the matrix is symple
ti
 to ma
hinepre
ision, typi
ally 12 pla
es or so.Problem 5.4. With the symple
ti�ed matrix M obtained in the previous prob-lem, 
on�rm that Eq (5.12) is satis�ed. It is ne
essary to �rst �nd �A and �D bysolving a 
hara
teristi
 equation.5.2. Finding the Tunes and Closed Orbit, Un
oupled CaseKout
houk[11℄ has des
ribed a 
losed-orbit �nding pro
edure, based on Eq. (5.15),whi
h he as
ribes to Verdier and Risselada.[12℄ That method, whi
h assumes purelyun
oupled motion, will now be des
ribed and then generalized. Mu
h the same de-s
ription applies whether one is dis
ussing operational pro
edures applied in the
ontrol room of an a
tual a

elerator or simulation in a 
omputer. In either 
ase�nding the 
losed orbit is usually performed by starting with a guess and iterativelyimproving it.In the derivations of the pre
eeding se
tion it was impli
itly assumed thattransverse 
oordinates were measured relative to an unknown 
losed orbit. Letus assume that the BPM's are positioned perfe
tly on the design orbit. This israrely pre
isely true, but to get our feet on the ground we have to start somewhere.Then, in prin
iple, the BPM is 
apable of measuring the 
losed orbit deviation atthat point; 
all it x
o. Making the repla
ement x ! x � x
o in Eq. (5.13), aftersimpli�
ation, yieldsx+++x��� (�A+�D)(x++x�)+(2+�A�D)x0 = (2��A)(2��D)x
o: (5.20)Making the same repla
ement x! x� x
o in Eq. (5.15) yieldsx+ � 2 
os�x x0 + x� = 2(1� 
os�x)x
o: (5.21)The parameters �A and �D in Eq. (5.20) are simple fun
tions of operationallymeasurable tunes, as is 
os�x in Eq. (5.21). In the 
ontrol room of an a
tuala

elerator, if 
ir
ulating beam 
an be obtained, �A and �D 
an be measuredby spe
tral analysis of beam position monitor signals. Similarly, in a 
omputersimulation, if multiple turns survive, the tunes 
an be obtained by FFT analysis.Unfortunately the \if's" in the two previous senten
es are sometimes not satis�ed.
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Figure 5.1. Geometri
 
onstru
tion indi
ating how tune and
losed orbit 
an be found from measuring the transverse displa
e-ment for several su

essive turns. Open square symbols are mea-sured. Solid 
ir
le symbols lie on and de�ne the 
orre
t phase spa
e
ir
le. Open 
ir
les lie on a 
andidate, but wrong, phase spa
e
ir
le.For this reason it is desirable to have a robust pro
edure for extra
ting tunes thatmakes minimal operational demands. Following Verdier and Risselada we obtainanother equation like Eq. (5.21) by in
rementing the indi
es by one, (whi
h leavesthe right hand side un
hanged), and then eliminate x
o from the two equations,x3 � 2 
os�x x2 + x1 = x2 � 2 
os�x x1 + x0: (5.22)Solving for �x yields 
os�x = x3 � x2 + x1 � x02(x2 � x1) : (5.23)From this equation, starting with x0, if the parti
le (or beam) 
an survive threefull turns, and the displa
ement measured on ea
h passage through the origin, thetune 
an be obtained. On
e the tune is known, the 
losed orbit is obtained fromEq. (5.21), x
o = x2 � 2 
os�x x1 + x02(1� 
os�x) : (5.24)This pres
ription 
an be foiled by measurement errors, by the presen
e of 
oupling,or by the presen
e in the latti
e of nonlinear elements that violate the 
onditionsused in deriving the di�eren
e equation. There is nothing we 
an do about mea-surement errors ex
ept 
omplain about the instrumentation. Before pro
eeding todis
uss what 
an be done about 
oupling we 
onsider nonlinearity.Be
ause of nonlinearity, Eqs. (5.23) and (5.24) will be not quite satis�ed and the
losed orbit not quite found. This performan
e is typi
al of almost all operationala

elerator pro
edures. The universal attempted �x is to pro
eed by iteration.In this 
ase, having found a tentative value for x
o we laun
h another parti
lefrom that point. Assuming a sensible pres
ription for pi
king the initial slope



74 5. ANALYSIS OF COUPLED MOTIONis available, the ability of nonlinearity to foil this approa
h will rapidly de
reasewith ea
h su

eeding iteration, as the orbit will stay in progressively redu
ed, andhen
e more linear, regions. It 
an 
ertainly happen however, that the �rst iterationfails due to nonlinearity. Either the parti
le is lost 
ompletely, (a possibility thederivation ex
luded) or the errors make the \improved" 
losed orbit worse thanthe tentative starting value. In either 
ase an alternate approa
h must be found.In pra
ti
e the alternate approa
h is usually trial-and-error or \knob-twiddling",whi
h normally su

eeds eventually. From that point rapid 
onvergen
e employingEqs. (5.23) and (5.24) is typi
al.A pro
edure for improving the starting slope would improve the 
onvergen
e.The earlier derivation showed that the slope variables satisfy the same di�eren
eequations as the displa
ements. As a result we obtainx0
o = x02 � 2 
os�x x01 + x002(1� 
os�x) : (5.25)Assuming slope values are available (whi
h is 
ertainly true in a 
omputer simula-tion, but would only be true by using and adja
ent BPM in the laboratory) thisequation 
an be used to improve the tentative 
losed orbit initial 
onditions.5.3. Example of MIA in a Coupled Latti
eWe now wish to generalize this pres
ription in order to make its 
onvergen
e ro-bust even in the presen
e of 
oupling. In pra
ti
e, the presen
e of 
oupling seriously
ompromises the e�e
tiveness of 
losed orbit determinations. Be
ause 
oupling is a\linear e�e
t", its fra
tional importan
e does not redu
e with su

eeding stages ofiteration. For too great 
oupling the iterative approa
h des
ribed above simply doesnot 
onverge. For this reason we 
ontemplate using the more general Eq. (5.20) toobtain simultaneous 
onvergen
e in both planes. As in the un
oupled 
ase, thereare two stages, the �rst to �nd the tune(s), the se
ond to �nd the 
losed orbit.Several alternative approa
hes to �nding the tunes suggest themselves. The�rst two are appli
able only if the 
oupling is weak (whi
h is often the 
ase sin
e itspresen
e is unintentional) and hen
e its e�e
t on the tunes is likely to be negligible(be
ause tune shifts depend quadrati
ally on skew quadrupole strengths.) In this
ase the \design" tunes 
ould be used in a 
omputer simulation, but this is not reallypra
ti
al operationally. Instead the few turn determination of �x using Eq. (5.23)and a 
orresponding determination of �y might be adequate.A more robust approa
h is to obtain equations for �A and �D in a manneranalogous to the derivation of Eq. (5.23). We write the ve
tor equationx4 + x0 � (�A +�D)(x3 + x1) + (2 + �A�D)x2= x5 + x1 � (�A +�D)(x4 + x2) + (2 + �A�D)x3: (5.26)Colle
ting terms yields�x4 � x3 + x2 � x1 �x3 + x2y4 � y3 + y2 � y1 �y3 + y2���A +�D�A�D � = �x5 � x4 + 2x3 � 2x2 + x1 � x0y5 � y4 + 2y3 � 2y2 + y1 � y0 � :(5.27)These equations 
an be solved for �A and �D if data from �ve 
onse
utive fullturns is available.By far the most a

urate determination of �A and �D is appli
able whenmultiple turns 
an be obtained. De�ne the expe
tation value < f > of N samples



5.4. EIGENANALYSIS OF 3D MAPS 75fi by PNi fi=N . Multiplying the x and y 
omponents of (5.13) by x0 and y0respe
tively, taking expe
tation values, and rearranging to express as equations for�A and �D yields�< (x+ + x�)x0 > � < x20 >< (y+ + y�)y0 > � < y20 >���A +�D�A �D � = �< (x++ + x��)x0 > +2 < x20 >< (y++ + y��)y0 > +2 < y20 >� :(5.28)When this equation was applied for 512 turn data at LEP and solved for �A and �D,a

ura
ies of approximately�0:003 were obtained for the tunes �x and �y.[13℄ On
ethe tunes are known, the 
oeÆ
ients in Eq. (5.20) 
an be evaluated, and improvedvalues for all four 
losed orbit 
oordinates 
an be obtained from the equationx
o = x+++x��� (�A+�D)(x++x�) + (2+�A�D) x0(2� �A)(2� �D) : (5.29)In an a

elerator 
ontrol room the quantities �A and �D are usually available tohigh a

ura
y from one of the ubiquitous spe
trum analyser displays. Sin
e theseare global quantities, they 
an be measured anywhere in the latti
e. In this 
aseEq. (5.29) 
an be applied to �nd the 
losed orbit position at every dual-plane BPMwith no further ado.If the BPM's are not dual-plane, they are usually arranged alternately aroundthe latti
e, with verti
al measured at verti
ally-fo
using quads, horizontal at hori-zontal quads. In this 
ase, to use Eq. (5.29), say at the lo
ation of a horizontallyfo
using quad, it is ne
essary to \interpolate" a verti
al measurement from the ad-ja
ent verti
al BPM's. This operation 
annot be said to be \model-independent"sin
e it relies on the latti
e design in the region of the three quads. But, barringserious �eld imperfe
tions over su
h a small region, the interpolation 
an be saidto be \somewhat model-insensitive".5.4. Eigenanalysis of 3D MapsPossibly the most diÆ
ult step in the MIA analysis of 2D 
oupled motion wasthe derivation of expli
it formulas for the eigenvalues of a symple
ti
 4�4 equation.(The quadrati
 equation formed from Eqs. (5.8).) It is possible to perform theanalogous 
al
ulation even in the most general 
ase. For fully-general 3D motionthe linear transfer matrix M, and its symple
ti
 
onjugate M 
an be written inpartitioned form asM = 0�A B EC D FG H J1A ; M = 0�A C GB D HE F J1A : (5.30)Let us assume that interplane 
oupling is suÆ
iently weak that the matri
es A,D, and J , are \not too far from" the un
oupled 2 � 2 \design" transfer matri
es
orresponding to pure x, y, and z motion respe
tively. However, the purpose of thisassumption is not to justify a perturbative expansion, sin
e the formulas will beexa
t. Rather it is to resolve ambiguities in identifying the roots of the equationsby 
onsiderations of 
ontinuity. Be
auseM is ne
essarily symple
ti
, its symple
ti

onjugate, de�ned using blo
k-diagonal matrix S, ea
h of whose diagonal blo
ks is�0 �11 0 �, M = �SMTS; (5.31)



76 5. ANALYSIS OF COUPLED MOTIONis also its inverse M =M�1: (5.32)We de�ne an auxiliary matrix,� =M+M =M+M�1; (5.33)having mu
h simpler properties than X . In parti
ular, if (as it does) M has eigen-value � = ei� with � real, then � has real eigenvalue � = �+ ��1 = 2 
os�. Thisimplies that � has three, real, double eigenvalues, �x, �y, and �z, for a stablelatti
e.Expli
itly � is given by� = 0�trA I T UT trD I VU V trJ I1A ; (5.34)where B + C = T = � h �f�g e � ; T = �e fg h� ; (5.35)E +G = U = � n �l�m k � ; U = � k lm n� ; (5.36)F +H = V = � s �q�r p � ; V = �p qr s� : (5.37)Note espe
ially that the 2 � 2 diagonal blo
ks of � are proportional to identitymatrix I . For simplifying formulas whi
h follow, two relations, valid for 2 � 2matri
es, are useful: A �A = detA � jAj; A+ �A = trAI: (5.38)The 
hara
teristi
 equation is�(�) = det ������ (trA� �)I T U�T (trD � �)I V�U �V (trJ � �)I������ = 0: (5.39)This determinant 
an be worked out by following Gantma
her.[14℄ To simplify thealgebra it is useful to introdu
e a symbols� = (trA� �)I: (5.40)Though this is a 2� 2 matrix it 
ommutes with everything and 
an be treated justlike a s
alar fa
tor. We obtain�(�) = �3 � p1�2 � p2�� p3 (5.41)where p1 = trA+ trD + trJ = �A +�D +�J (5.42)p2 = � trAtrD � trAtrJ � trDtrJ � jU j � jT j � jV j= � (�A�D +�A�J +�D�J) (5.43)p3 = � trDjU j � trJ jT j � trAjV j+ tr( �V �TU) = �A�D�J : (5.44)The expression for p3 has a suspi
ious-looking la
k of symmetry, but it is invariantto reordering of the (x; y; z) 
oordinates; so also is its last term. For a stable latti
e



5.4. EIGENANALYSIS OF 3D MAPS 77the three roots of Eq. (5.41) are all real, and an expli
it formula 
an be written forthem. Following Press et al.[15℄, and de�ningQ = p21 + 3p29 (5.45)R = � 2p31 � 9p1p2 � 27p354 (5.46)� = ar

os(R=pQ3); (5.47)the roots are given by �1 = � 2pQ 
os(�3) + p1=3 (5.48)�2 = � 2pQ 
os(� + 2�3 ) + p1=3 (5.49)�3 = � 2pQ 
os(� + 4�3 ) + p1=3: (5.50)The eigenvalue triplet (�1;�2;�3) is some permutation of the triplets (�x;�y;�z).These 
an also be labeled (�A;�D;�J) assuming the perturbations away fromdesign, un
oupled opti
s, leaves the tunes 
lose to their design values. We willassume relabeling has been performed so that (1; x; A) go together, as do (2; y;D)and (3; z; J).





CHAPTER 6Longitudinal Dynami
s6.1. Syn
hrotron Os
illations6.1.1. Equations of Motion. When passing through an RF 
avity at phaseangle �0(t) the referen
e parti
le a
quires energy �Eref given by�Eref = QV̂ sin�0(t)� uref(t); (6.1)with Q and V̂ both assumed positive. Here QV̂ is the maximum possible energygain in the RF 
avity. For ele
trons or protons Q = jej, for ions Q = Zjej. Possibleenergy loss represented by uref(t) is due, for example, to syn
hrotron radiation orbeam wall intera
tion. This loss is distributed more or less 
ontinuously around thering, but we assume that it 
an be adequately represented by a single loss o

urringat the RF 
avity. It is obviously important for 
orre
t relativisti
 formulas be usedto 
al
ulate energy E gains and the 
orresponding 
hanges in total momentum p0.We will return to these detailed 
al
ulations after des
ribing the essential featuresof syn
hrotron os
illations.Formula (6.1) may represent storage ring operation for whi
h < �E >= 0, inwhi
h 
ase, negle
ting possible small shift due to nonlinearity, �0 adjusts itself su
hthat QV̂ sin�0 = uref : (6.2)Formula (6.1) also applies to a

eleration, in whi
h 
ase the maximum possibleenergy gain per turn is given by�Eref < �Emax = QV̂ � uref(t): (6.3)Sin
e the stable bu
ket area vanishes in this limit, the a

eleration rate has tobe made substantially smaller. To support an a

eleration interval followed by astorage interval, or any other a

eleration s
enario, the time dependen
e of �0(t)has to be programmed a

ordingly. For truly adiabati
 a

eleration the a

elerationhas to be mu
h less than the limit given by Eq. (6.3). Mu
h of the following analysisassumes that a steady energy beam is being des
ribed, but the formulas will applyalso even during a

eleration, at least in the truly adiabati
 
ase.Sin
e we are primarily interested in motion of a general beam parti
le relativeto the referen
e parti
le we wish, to the extent possible, to suppress the variation ofEref(t) from the formulas, or rather to \hide" the dependen
e by making it impli
it.The energy gain �E of a general parti
le, with arrival \time" 
t, relative to thereferen
e parti
le, is�E = QV̂ sin�!rf
 
t+ �0��QV̂ sin�0 ��u; (6.4)where �u represents energy loss over and above that su�ered by the referen
eparti
le. In ele
tron a

elerators the �u term, be
ause of its dependenden
e on79



80 6. LONGITUDINAL DYNAMICSposition in phase spa
e, in
uen
es bun
h distributions. In this 
hapter �u will beset to zero.It is ne
essary for the RF frequen
y !rf to be syn
hronized to the revolutionfrequen
y !rev, but the former 
an di�er by a (typi
ally large) integer fa
tor knownas the \harmoni
 number" h, de�ned byh = !rf!rev (6.5)With �0 near zero, the sign of the �rst term of Eq. (6.4) has been 
hosen su
hthat a parti
le with 
t > 0 (whi
h arrives late) has its energy in
reased by the
avity. Below transition, where revolution time is a�e
ted more by velo
ity thanby 
ir
umferen
e, this is the sign of energy in
rement needed for stability.The parti
le's revolution period Trev � T (0) is related to the revolution fre-quen
y by Trev = 2�=!rev. The single most important latti
e parameter in
uen
inglongitudinal motion is �rf , the so-
alled \slip fa
tor"1 2 de�ned by�rf~Æ � �rf Æ�0 = �t
ir
(~Æ) + �tvel(~Æ)Trev : (6.6)The tildes present in this equation require explanation. The need for introdu
-ing ~Æ = Æ=�0 to des
ribe less-than-fully-relativisti
 motion was explained in se
-tion 2.6.1. Eq (6.6), following tradition, de�nes the slip fa
tor in terms of fra
tionalmomentum, for whi
h our symbol is ~Æ.The energy gain given by Eq. (6.4) is negative below transition, where these
ond term, whi
h is negative for positive Æ, dominates the �rst. The (linearized)
hange �(
t) in arrival time of a parti
le at the RF 
avity is governed by the slipfa
tor; �(
t) = 
Trev(�rf=�0)Æ: (6.7)Eqs. (6.4) and (6.7) are equations of motion relating the dependent variables bygiving the 
hange in �Æ = �E=(p0
) on a given turn due to 
t and vi
e versa.To analyse longitudinal motion it is pra
ti
al to use either a 
ontinuous inde-pendent variable ta (with subs
ript a used to di�erentiate absolute, wall 
lo
k, timefrom relative-to-referen
e-parti
le arrival time t) or to use turn index i. Thoughthe latter 
hoi
e is usually adopted for analysing transverse motion, the use of tais 
ommon for studying longitudinal motion. Be
ause the longitudinal os
illationperiod is always long 
ompared to the revolution period, the longitudinal phaseadvan
e per turn is small 
ompared to 2� and, ex
ept for a s
ale fa
tor, turn in-dex i is a kind of (not very �ne grain) \dis
retized" version of ta. Quantitativelythe transition to 
ontinuous time is based on the relation between 
ontinuous anddis
rete rates, whi
h is d(
t)dta � �(
t)Trev ; (6.8)1As explained in the text, the phase spa
e variable Æ = �E=(p0
), as de�ned in Eq.(2.26), isnow being used. Until now it has been suggested that the distin
tion between Æ and ~Æ was largely
osmeti
. But the very phenomenon of transition 
rossing re
e
ts not quite fully relativisti
motion, where the distin
tion is important.2In the ele
tron world the dispersion fun
tion D(s) is often denoted by �(s) whi
h must notbe 
onfused with �rf . In the \toy" latti
e �les, this a

ounts for the use of eta as the variablename for dispersion. The purpose for the subs
ript \rf" on �rf is to avoid the same ambiguity.



6.1. SYNCHROTRON OSCILLATIONS 81where �(
t) is a 
t deviation o
urring in one turn. The so-
alled \smooth ap-proximation" assumes that the fra
tional variation of this ratio during one term isnegligible.6.1.2. Small Amplitude Motion. As usual with os
illations, it is easiest tostart with small amplitudes. For arrival time 
t the (linearized at 
t = 0) 
hange�Æ is �Æ = �Ep0
 = QV̂ !rf 
os�0p0
2 
t; (6.9)For stability this impulse needs to be \restoring". However, what 
onstitutesrestoration swit
hes sign at transition, be
ause �rf 
hanges sign there. There are two
hoi
es for the angle �0 that lead to the same a

eleration per turn of the referen
eparti
le; their typi
al separation is somewhat less than �. As the beam a

eleratesthrough transition it is ne
essary to swit
h from one of these 
hoi
es to the otherto preserve stability. To do this the RF phase �0 is altered dis
ontinuously.Negle
ting the �u term in Eq. (6.4), and assuming small amplitudes, the 
hangein Æ at the RF 
an be expressed by a di�eren
e formula, using i as turn index;Æi+ � Æi� = QV̂p0
 � sin�!rf
 
t+ �0�� sin�0� � QV̂ !rf 
os�0p0
2 
ti: (6.10)Sin
e the energy is 
onstant everywhere ex
ept at the 
avity, the end points ofthis di�eren
e 
an be taken anywhere in the post and pre-passage turns. Thelongitudinal evolution for two 
onse
utive turns is given by
ti+1 � 
ti = 
Trev(�rf=�0)Æi+; (6.11)
ti � 
ti�1 = 
Trev(�rf=�0)Æi�: (6.12)Subtra
ting these two equations, and applying Eq. (6.10) yields3
ti+1 � 2
ti + 
ti�1 = (Trev!rf)((�rf=�0) 
os�0) QV̂p0
 
ti (6.13)Depending on the relative values of the parameters, the solution of su
h a se
ondorder di�eren
e 
ondition 
an be os
illatory.Problem 6.1. Using standard trigonometri
 identities show that either of thefun
tions (sequen
es, if you prefer)xj = A sin(�0 j)
os(�0 j); j = 0; 1; 2; : : : ; (6.14)satis�es the se
ond order di�eren
e equationxj+1 � 2 
os�0 xj + xj�1 = 0: (6.15)If the numeri
al value of the 
oeÆ
ient of the se
ond term ex
eeds 2 in absolutevalue it is 
lear that the equation represents unstable motion as there is no realangle �0 
onsistent with the equation.3There are two rationales behind maintaining fa
tors grouped in the 
ombination((�rf=�0) 
os�0). If the phase is \jumped" appropriately, then this 
ombination is 
ontinuousin passing through transition, and the grouping (�rf=�0) was justi�ed earlier.



82 6. LONGITUDINAL DYNAMICSUsing the result of the previous problem, in the os
illatory 
ase, the �s 
anbe obtained by inspe
tion of the equation be
ause the 
oeÆ
ient of the 
ti term is�2 
os�s; 
os�s = 1 + (Trev!rf)((�rf=�0) 
os�0) QV̂2p0
 (6.16)In most pra
ti
al 
ases �s is suÆ
iently small to allow the small angle approxima-tion, so that �2s = �(Trev!rf)((�rf=�0) 
os�0)QV̂p0
 (6.17)For stable motion it is required that �s be real, whi
h implies that the 
hoi
e ofangle �0 must be su
h that 
os�0 and (�rf=�0) have opposite signs. To 
ompletethe analogy with transverse formalism, the syn
hrotron \tune" �s is introdu
ed as�s = �s2� : (6.18)The des
ription has been in terms of di�eren
e equations, rather than di�er-ential equations. With the RF 
on
entrated at one point this 
onstitutes a 
orre
tdes
ription. But, be
ause �s is usually small, the angular steps in phase spa
eea
h turn are small, and the usual approximation is to introdu
e a \smoothed"des
ription in whi
h the longitudinal variables exe
ute simple harmoni
 motion.In this spirit, the \syn
hrotron (radian) frequen
y" 
s 
an be obtained from thesyn
hrotron tune;4 
s = �sTrev : (6.19)We 
an employ transfer matrix notation for longitudinal motion but using lon-gitudinal quantities (
t; Æ) rather than (x; x0) as phase spa
e variables. In analysingmotion in longitudinal phase spa
e the following points should be noted:� Unlike x0, Æ is not d(
t)=ds. The 
orre
t relation will be given shortly.� Be
ause of the externally imposed time dependent RF, it is natural to use\absolute" time ta rather than s as independent variable.� If the longitudinal fo
using were uniform around the ring it would lead topure simple harmoni
 os
illation but this is not the 
ase. The RF 
avitya
ts like a \thin lens" for longitudinal motion, retarding front runnersand advan
ing tardy parti
les on
e per turn. In prin
iple, with more thanone 
avity, a longitudinal \�-fun
tion" formalism would be required. Butwe assume that the fo
using is weak in the sense that the e�e
tive \fo
allength" of the RF 
avity is long 
ompared to the ring radius. This isequivalent to assuming that the sy
hrotron os
illation phase advan
e perturn �s satis�es �s << 1.Longitudinal, on
e-around evolution 
an be des
ribed in Twiss-like form by5�
tÆ�n+1 = � 
os�s ~�s sin�s� sin�s=~�s 
os�s ��
tÆ�n (6.20)4There is an unfortunate redundan
y of symbols. The quantities �s, �s, and 
s, di�er onlyby 
onstant fa
tors and are therefore essentially equivalent parameters. The main virtue of 
sis that 
s=(2�) is the frequen
y observed on a 
ontrol room spe
trum analyser that is sensingsyn
hrotron os
illations.5The tilde that appears over ~�s (whi
h is a beta fun
tion, not a relativisti
 fa
tor) in thisse
tion, is 
ompletely unrelated to the distin
tion between Æ and ~Æ. This tilde represents the fa
tthat ~�s is almost, but not quite, the analog of a transverse beta fun
tion.



6.1. SYNCHROTRON OSCILLATIONS 83The analogy between ~�s and an ordinary beta-fun
tion has to be established. Con-sistent with ~�s being treated as 
onstant, the analog of the Twiss alpha fun
tionhas been taken to be zero. To 
onvert to 
ir
ular phase spa
e motion the s
alealong the energy axis 
an be 
hanged;� 
t~�sÆ�n+1 = � 
os�s sin�s� sin�s 
os�s�� 
t~�sÆ�n : (6.21)The fa
tor ~�s provides the phase spa
e aspe
t ratio or, what is a
tually observable,the ratio of (r.m.s) bun
h length �
t to the (r.m.s.) \fra
tional"6 energy spread �Æ ;�
t = ~�s �Æ : (6.22)In an ele
tron a

elerator the energy spread is 
al
ulable from syn
hrotron radiationformulas, so this equation establishes the bun
h length. In a proton a

eleratorthe energy spread is inherited at inje
tion, and evolves adiabati
ally, 
ausing theaspe
t ratio in phase spa
e to be governed by !rf , RF voltage V̂ , and beam energyE0 (or equivalently 
0). The usual way to 
hange this aspe
t ratio appre
iably isby \rebu
keting". This maneuver requires the turning o� of 
avity ex
itation atone frequen
y and turning on a 
avity at another frequen
y.It is again 
onvenient to 
hange the s
ale of the se
ond 
omponent so thatthe phase spa
e motion is 
ir
ular. For this purpose, as always in simple harmoni
motion, the phase spa
e 
oordinates need to be in the ratio (
t; 1
s d(
t)dta ). Combiningthis result with Eq. (6.22) and Eq. (6.8), 
omponents (
t; ~�sÆ) map out a 
ir
le inphase spa
e if ~�s = �
t�Æ = j(�rf=�0)j�s C(0): (6.23)This is the result needed to obtain bun
h length from energy spread. In parti
-ular, to lowest approximation, the bun
h length goes to zero at transition, where(�rf=�0) = 0. Passage through transition will be analysed shortly. A UAL simula-tion is shown in FIG 6.6.For using beta-fun
tion terminology, the 
ir
ular phase spa
e 
oordinates needto be (
t; �s d(
t)ds ). This requires �s = 1�s C(0): (6.24)This 
an be regarded as the \longitudinal beta-fun
tion". The phase advan
e perturn �s is rarely as great as 0:1. As a result the \longitudinal beta fun
tion" �snormally greatly ex
eeds the ring radius R. This justi�es some of the assumptionsthat have been made, su
h as negle
ting �s and treating �s as 
onstant. It 
an alsobe noted, sin
e the transverse beta fun
tion satis�es <�x> � C(0)=�x, that�s<�x> � �x�s ; (6.25)the ratio typi
ally being in the range of hundreds or thousands.6.1.3. Large Amplitude Motion. The analysis to this point has been lin-earized, but des
ription of large amplitude motion is also important, espe
ially inhadron a

elerators for whi
h the region of stability 
an be nearly �lled. In general6Re
all that 
alling Æ = �E=p0
 \fra
tional energy spread" is only really valid for fullyrelativisti
 motion.
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Figure 6.1. "Fish diagram" of longitudinal phase spa
e motion.On passing through transition the pattern is right-left re
e
ted.i.e. the �sh points in the opposite dire
tion.this requires numeri
al treatment, but analyti
 formulas for features of the separa-trix, su
h as the maximum ex
ursions of the variables and the approximate \bu
ketarea", 
an be obtained. The large amplitude motion is easiest to understand in 
on-ne
tion with the \�sh diagram" shown in FIG 6.1.Be
ause RF 
avities 
ause essentially dis
ontinuous motion it would be appro-priate, and not diÆ
ult, to 
ontinue to use di�eren
e equations for this dis
ussion.But most a

elerator physi
ists are more 
omfortable using the di�erential equationthat be
omes a good approximation for �s << 1. This is known as the \smooth ap-proximation" be
ause the a

eleration is regarded as spread out uniformly aroundthe ring. This approximation is ex
ellent for essentially all hadron a

eleratorsand most ele
tron a

elerators. In this approximation the result of the followingproblem 
an be used to derive the appropriate di�erential equation.Problem 6.2. If the quantity zi, i = 0; 1; 2; ::: varies slowly enough (i.e. jzi+1�zij << jzij) the index i 
an be 
onsidered to be 
ontinuous rather than dis
rete.Then the 
ontinuous time variable t is given by t = Tsi, where Ts is the revolutionperiod. Derivatives dz(t)=dt and d2(t)=dt2 
an then be approximated by di�eren
eformulas based on su

essive values, zi�1, zi, and zi+1. Derive these formulas.For large amplitude motion Eq. (6.13) 
an be repeated, but without lineariza-tion, by substituting dire
tly from Eq. (6.4);
ti+1 � 2
ti + 
ti�1T 2rev = (�rf=�0) 
Trev QV̂ � sin �!rf
 
t+ �0�� sin�0�p0
 : (6.26)



6.1. SYNCHROTRON OSCILLATIONS 85Interpreting the left hand side as a di�eren
e approximation to the se
ond derivatived2(
t)=dt2a, one obtains the \Newton's law" equation satis�ed by 
t;d2(
t)dt2a = (�rf=�0) 
Trev QV̂ � sin �!rf
 
t+ �0�� sin�0�p0
 : (6.27)Espe
ially in situations where �0 is not 
hanging, this equation is simpli�ed 
on-siderably by introdu
ing a new variable �, de�ned by� = !rf
 
t+ �0; 
t = 
!rf (�� �0): (6.28)In terms of �, Eqs. (6.8) and (6.27) be
omed(� � �0)dta = !rf�frÆ; d2(�� �0)dt2a = (�rf=�0) !rfTrev QV̂p0
 (sin�� sin�0): (6.29)\Fixed points" are points where the \for
e" on the right hand side of the se
ondequation vanishes;sin� = sin�0 ! � = �0; or � = � � �0: (6.30)Referring to FIG 6.1, the angle �0 has already been de�ned so that the stable �xedpoint, at the 
enter of the pattern, is at 
t = 0, whi
h is to say at � = �0. Theunstable �xed point, the point of maximum ex
ursion of 
t, is therefore given by�max = � � �0: (6.31)The separatrix separating stable and unstable motion passes through the 
t axis atthis point. The rest of the separatrix is determined by analogy with \
onservation ofenergy", whi
h will be explained next. Quotation marks indi
ate that the quantitiesbeing dis
ussed do not a
tually have the dimensions of energy. To exploit the fa
tthat the right hand side of Eq. (6.26) depends only on the dependent variable �,the equation 
an be written d2(�� �0)dt2a = ��V�� ; (6.32)where V is a \potential energy" fun
tion given byV = (�rf=�0) !rfTrev QV̂p0
 (
os�� 
os�0 + (� � �0) sin�0): (6.33)Note that, without spoiling its use, a 
onstant term 
os�0 + �0 sin�0 has beensubtra
ted so that V vanishes at the stable �xed point. The \total energy" is thenumeri
al value of a fun
tion H, known as the \Hamiltonian";H = 12 �d(�� �0)dta �2 + V= 12 !2rf�2rf Æ2 + (�rf=�0) !rfTrev QV̂p0
 (
os�� 
os�0 + (� � �0) sin�0): (6.34)To re
over small os
illation theory one must extra
t the leading term in the poten-tial energy term;H(�; Æ) = 12 !2rf�2rf Æ2 � 12 ((�rf=�0) 
os�0) !rfTrev QV̂p0
 (�� �0)2: (6.35)



86 6. LONGITUDINAL DYNAMICSAs explained previously, the parenthesized fa
tor has to be kept negative for sta-bility; that is, for H to be positive de�nite.As always in os
illatory motion, energy sloshes between kineti
 and potential,and phase spa
e traje
tories are 
urves of 
onstant H. In this language, the �rstterm of H is to be thought of as \kineti
 energy". The area en
losed by su
h atraje
tory is known to be an adiabati
 invariant �s. (The true adiabati
 invariantis the area in true momentum phase spa
e. Sin
e we work with Æ, our phasespa
e area a
tually shrinks proportional to p0 whi
h, in the relativisti
 regime, isproportional to 
0. This is the well-known \adiabati
 damping" as it in
uen
eslongitudinal motion.) For any individual parti
le this area is the analog of theCourant-Snyder invariant of transverse motion. For the bun
h as a whole it isknown as the longitudinal emittan
e. All parti
les in the bun
h, if they are not tobe lost, must lie inside a separatrix en
losing the stable bu
ket.Sin
e Æ = 0 and � = � � �0 at the maximum ex
ursion point of the motion,the maximum value of H is given byHmax = �((�rf=�0) 
os�0) !rfTrev QV̂p0
 �2� (� � 2�0) tan�0�: (6.36)The maximum value of Æ is then obtained from the stuation when the \energy isall kineti
" by Æmax = p2Hmax(�rf=�0)!rf : (6.37)The parti
ular 
urve for whi
h H = Hmax, be
ause it separates stable and unstablemotion, is referred to as the \separatrix". It en
loses the so-
alled \stable bu
ket".The approximate bu
ket area is �Æmax(
t)max when the phase spa
e axes are Æand 
t. The bu
ket area, re-expressed in units of ele
tron-volt-se
onds, is givenapproximately by A � �Æmax(
t)maxp0
=
: (6.38)One of the UAL/USPAS simulations will investigate longitudinal bun
h evolu-tion within the stable bu
ket, emittan
e growth due to �lamentation and passagethrough transition. \Rebu
keting" in whi
h RF of one frequen
y is gradually re-pla
ed by RF of another frequen
y is also a 
andidate for simulation. The purposeof rebu
keting is to permit the use long bun
hes during passage through transitionand shorter bun
hes at 
ollision (in a 
olliding beam fa
ility.)6.2. Some Formulas for Relatisti
 Kinemati
sFor the study of longitudinal dynami
s it is ne
essary to 
al
ulate deviation ofthe revolution period, and for this both the 
ir
umferen
e C(~Æ) and velo
ity v(~Æ)must be 
al
ulated as fun
tions of the fra
tional momentum o�set. For ele
tronsthe velo
ity is normally 
lose enough to the velo
ity of light that the di�eren
efrom 
 
an be negle
ted, but for protons the following 
al
ulations are ne
essary.The dynami
al variable governing de
e
tion in a magneti
 �eld is the momentump, whi
h deviates from the 
entral momentum p0 a

ording top = p0(1 + ~Æ): (6.39)This de�ning equation for ~Æ was introdu
ed earlier in Eq. (2.25). Note that Eq. (6.39)is an exa
t equation and the use of the in
remental quantity ~Æ by no means impliesthat linearized equations are ne
essarily being used.



6.3. THE OFF-MOMENTUM ORBIT LENGTH 87A few relativisti
 results will now be quoted without proof.� = v
 ; 
 = 1p1� �2 ; (6.40)E2 = p2
2 +m2
4 = total energy squared; (6.41)p = mv
; E = m
2
 (6.42)v = p
2E ; dEdp = p
2E = v; dvd~Æ = p0p v
2 : (6.43)These may be familiar or 
an be looked up or derived. The relation we will a
tuallyuse, evaluated on the 
entral orbit, isdd~Æ�1v�~Æ = 0 = � 1
20 1v0 ; (6.44)and 1v = 1v0 � 1
20 1v0 (~Æ + 12 v20
2 ~Æ2) + � � � : (6.45)Near transition even the ~Æ2 term has observable e�e
t.For 
omparison purposes a few formulas will next be 
opied from Jie Wei'sthesis[16℄. 11 +�tvel(~Æ)=T (0) � v � v0v0 = 1
20 ~Æ � 3�202
20 ~Æ2 � (1� 5�20)�202
20 ~Æ3 + � � � : (6.46)The �rst two terms agree with Eq. (6.45). The 
orresponding dependen
e of 
ir-
umferential length is de�ned byC(~Æ)� C(0)C(0) = ~Æ
2t (1 + �1~Æ + �2~Æ2 + � � � ): (6.47)For a 
losed orbit made up of straight line segments, su
h as general fodo.adxfthe 
oeÆ
ients in this expression 
an be obtained by 
omparison with Eq. (6.58).Using the expansion 
oeÆ
ients just de�ned, a more detailed expansion of theslip fa
tor 
an be de�ned; �rf = �0 + �1~Æ + �2~Æ2 + � � � : (6.48)The 
oeÆ
ients are given by�0 = 1
2t � 1
20 ; �1 = �1
2t � 1
20 � 1
2t � 1
20 �+ 3�202
20 ; : : : : (6.49)This expansion is useful for a purely analyti
al treatment of passage through tran-sition. But for numeri
al simulation there is little point in using su
h term-by-termexpansions. Instead, the dire
t evaluation of the time delay �t(Æ), as given, forexample, in Eq. (6.59) below, gives the needed phase slip per turn at the RF 
avityfor arbitrary Æ. 6.3. The O�-Momentum Orbit LengthFor longitudinal dynami
s the arrival time of the parti
le at the RF 
avityis of 
riti
al importan
e. As well as depending on parti
le velo
ity, the arrivaltime also depends on the o�-momentum path length. Be
ause of the elongatedgeometry in a large ring, the geometry of this 
al
ulation is diÆ
ult. The so-
alled\momentum 
ompa
tion fa
tor" �0, (also known as 1=
2t ) the fra
tional momentum



88 6. LONGITUDINAL DYNAMICSproportional in
rease in 
ir
umferen
e C, is 
al
ulable in terms of lo
al radius �(s)and o�-momentum 
losed orbit fun
tion ~D(s);�0 � 1
2t = dC=C(0)d~Æ = 1C(0) Z C(0)0 ~D(s) ds�(s) : (6.50)For reasons already dis
ussed 
t is known as \transition gamma" A rule-of-thumbformula gives ~Dtyp: in terms of the horizontal tune Qx;~Dtyp: � C(0)2�Q2x (6.51)From this follows the semi-quantitative heuristi
 relation,
t � Qx: (6.52)This se
tion now pro
eeds to 
al
ulate the ex
ess ar
 length for our thin el-ement, general fodo latti
e. For this 
al
ulation, to simplify the geometry, weassume the dipole �lls the entire half-
ell length (ld = l) but still apply the entirede
e
tion as a kink at the midpoint. This is not very a

urate but the (relatively)simple formulas 
onvey the essen
e and the diÆ
ulties of the 
al
ulation.As shown in FIG 6.2, the on-momentum, design path length through one half
ellis C1=2 = 2l�� tan ��2 , Referring to FIG 6.3, and using 
oordinate axes s; x 
enteredat q1 with s being normal to the multipole plane, the equation of the o�-momentum
losed orbit is x = ( ~D1 � q1 ~D1s)~Æ: (6.53)The equation of the transverse plane through the dipole 
enter iss = (x + �0) tan ��2 ; (6.54)where �0 = l=�� is the bending radius of the referen
e orbit. At the 
enter of a fo-
using quad, using its lo
al (s; x) 
oordinates, the 
oordinates of the o�-momentum
losed orbit are (0; ~D1~Æ), and the 
oordinates of the interse
tion with the 
enterlineof bending magnet are sd1(~Æ) = (�0 + ~D1~Æ) tan ��21 + q1 ~D1~Æ tan ��2 ; (6.55)xd1(~Æ) = ~D1~Æ � q1 ~D1~Æ�0 tan ��21 + q1 ~D1~Æ tan ��2 :Starting from q2 the 
orresponding quantities sd2(~Æ) and xd2(~Æ) are obtainedby repla
ing 1 by 2. The 
ontribution to the 
ir
umferen
e of the o�-momentum
losed orbit from one half
ell isC1=2(~Æ) =q(xd1(~Æ)� ~Æ ~D1)2 + s2d1(~Æ) +q(xd2(~Æ)� ~Æ ~D2)2 + s2d2(~Æ): (6.56)There is a useful numeri
al tri
k that avoids the need for evaluating these squareroot expressions. (In a \ki
k 
ode" the traje
tory 
onsists entirely of straight linesegments like this.) De�ning C(~Æ) as the o�-momentum path length along a straightline segment, and C(0) as the 
orresponding on-momentum path length, the quan-tity needed is C(~Æ)� C(0) = C2(~Æ)� C2(0)C(~Æ) + C(0) � C2(~Æ)� C2(0)2C(0) : (6.57)
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al
ulation.
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Figure 6.3. Geometry for 
al
ulation of o�-momentum, polygo-nal path length. The on-momentum and o�-momentum orbits areshown. The bending magnet is represented by a prism symbol.For ea
h straight line segment the numerator expression is one of the fa
tors underthe square root signs in Eq. (6.56). The �nal approximation here is adequate formost purposes. Applying this formula and Eq. (6.56) to the general fodo.adxflatti
e, the fra
tional momentum-dependent in
rease in 
ir
umferen
e isC(~Æ)� C1=2C1=2 � (xd1(~Æ)� ~Æ ~D1)2 + s2d1(~Æ) + (xd2(~Æ)� ~Æ ~D2)2 + s2d2(~Æ)� 0:5C21=2C21=2 :(6.58)(For improved numeri
al a

ura
y, the TEAPOT 
ode expands the numerator ex-pressions to take advantage of the expli
it 
an
ellation of the dominant lengthterms.)



90 6. LONGITUDINAL DYNAMICSWith there being n=2 
ells in all, the o�-momentum arrival time delay afterone revolution, relative to the referen
e traje
tory, is�t(~Æ) = n2 C1(~Æ)v � n2 C1(0)v0 = n2 C1(~Æ)� C1(0)v + n2 C1(0)�1v � 1v0 � (6.59)= �t
ir
(~Æ) + �tvel(~Æ):The two terms in Eq. (6.59) 
an be interpreted separately. The �rst is the delay inarrival time due to altered 
ir
umferen
e�t
ir
(~Æ) = n2 C1(~Æ)� C1(0)v ' 1v0 dC(~Æ)d~Æ ~Æ = normally positive for ~Æ > 0: (6.60)�t
ir
(~Æ) = C(0)v0
2t ~Æ (6.61)The se
ond term in Eq. (6.59) is the delay in arrival time due to altered velo
ity;�tvel(~Æ) = C(0)�1v � 1v0 � ' �C(0)v0 1
20 ~Æ; (6.62)whi
h is always negative for ~Æ > 0. Combining Eqs. (6.61) and (6.62) yields�t = Trev� 1
2t � 1
20 �~Æ; (6.63)where Trev is the period of one on-momentum revolution. Near transition, wherethis expression vanishes, more a

urate determination of �t may be 
alled for.The term �tvel does not depend on latti
e design but �t
ir
 
an be altered overa large range by altering the ma
hine opti
s. Noti
e the possibility that �t(~Æ) =0, whi
h is known as the 
ondition for \transition". In this 
ondition there isno 
hange in revolution period a

ompanying an in
rease in momentum be
ausethe in
rease in 
ir
umferen
e 
an
els the e�e
t of in
reased velo
ity. In ele
trona

elerators 
2 is normally so large that transition would be 
rossed only at energiesfar below the inje
tion energy. In proton a

elerators transition 
rossing normallyo

urs for energies of several or several tens of GeV. If transition is regarded astoo undesirable, 1=
2t 
an be redu
ed to zero, or even made negative, by 
ausingthe average dispersion to be arti�
ially small (by making the dispersion negativeover large se
tors of the ring.) In this 
ase 
t be
omes imaginary, whi
h violatesno physi
al prin
iple. The toy latti
e iso
hronous.adxf has been designed to give
t =1. 6.4. Numeri
al Approa
h Using TIBETANWithin UAL, instead of element-by-element tra
king, it is (optionally) possibleto treat transverse motion in linearized fashion while representing longitudinal dy-nami
s with faithful nonlinear formulas. This formalism (due to Jie Wei) is 
alledTIBETAN. It is a semi-empiri
al formalism in whi
h propagation around the ring isrepresented by linear transfer matri
es and the representation of RF 
avity (or 
av-ities) e�e
ts in
lude realisti
 nonlinear dependen
ies. For the general fodo.adxflatti
e introdu
ed earlier, most of the needed parameters have already been ob-tained.The APDF (A

elerator Propagator Des
ription Format) �le for this simulationis espe
ially simple. In its entirety it is
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elerator="blue"><
reate><link algorithm="TIBETAN::OneTurnTra
ker" se
tor="Default" /></
reate></propagator></apdf>There is no RF entry be
ause the RF parameters are under 
ontrol of the GUI. Thispermits these parameters to be adjusted without requiring any 
ode re
ompilation.Simulation 6.1. Investigate the longitudinal behavior of the ra
etra
k latti
e.Though there is an element named rf in this latti
e, it is designated as a driftelement. This is not in
onsistent with the design of the longitudinal simulator.The reason for this is that the longitudinal simulator \takes 
ontrol" of the lon-gitudinal dynami
s, applying a longitudinal ki
k to ea
h parti
le on ea
h turn. Thisputs the relevant longitudinal parameters under the 
ontrol of the GUI.Sin
e the ra
etra
k latti
e was originally generated with ele
tron rings inmind, it might not seem to be appropriate as an a

elerator for gold ions. Neverthe-less, to begin, leave most parameters the same as for the simulation of a

elerationof fully ionized gold ions in RHIC, whi
h stands for \Relativisti
 Heavy Ion Col-lider". But the beam energy should be adjusted to be below transition. Before beingable to make this setting you have to �nd 
t. Allowing the simulation to run youshould see �lamentation like that exhibited in FIGs 6.4 and 6.5. Find the emittan
egrowth the beam has su�ered due to �lamentation, from the time it is inje
ted untilit has equilibrated. Sin
e there are no quantum 
u
tuations, nor radiation damping,this simulation is not at all appli
able to an ele
tron storage ring. Then �nd thefra
tion of beam 
aptured by the RF. Finally, 
hange the initial bun
h length andmomentum spread to be \mat
hed", and as large as possible so that all or mostof the parti
les are 
aptured. Cal
ulate the longitudinal emittan
e of this maximalbeam bun
h. Compare your values with formulas given in the text.Simulation 6.2. Reprodu
e FIG 6.4 and FIG 6.5.Problem 6.3. This problem should only be attempted by individuals with ex-perien
e in obje
t-oriented programming, preferably C++. The previous tutorialidenti�ed the lo
ation of the 
ode to be modi�ed to introdu
e ad ho
 dampinginto the longitudinal motion. The problem here is to study the 
ode, startingwith �/USPAS/examples/longitudinal/sr
/run.

 to �gure out how the program
alls the 
ode that was modi�ed in the tutorial.6.5. Typi
al Parameter Values for RHICA 
onsistent set of parameter values 
an be taken from a paper by Montag andKewis
h[17℄, whi
h des
ribes longitudinal bun
h manipulation in RHIC. Some ofthese values are given in Table 6.1. They apply to the a

eleration of fully-ionizedgold ions in RHIC. Harmoni
 number h is de�ned by h = !rf=!rev and nonlinearmomentum 
ompa
tion fa
tor �1 was de�ned in Eq. (6.47).



92 6. LONGITUDINAL DYNAMICSTable 6.1. RHIC parameters for fully stripped gold ions[17℄.Property Symbol Value UnitTransition gamma 
t 22.8A

eleration rate d
=dt � 
0 0.5 1/sMaximum o�-energy parameter Æmax 0.0043Cir
umferen
e C(0) 3833.845 mAtomi
 number Z 79Atomi
 weight A 197Transition energy per nu
leon Et 21.4 GeVPeak RF voltage V̂ 300 kVHarmoni
 number h 360Nonlinear momentum 
ompa
tion parameter �1 -0.54Chara
teristi
 nonadiabati
 time T
 0.053 sChromati
 nonlinear time Tnl 0.188 sTransition gamma jump �
t 1.0Transition gamma jump time �tjump 0.030 s6.6. Simulation of Longitudinal MotionThe following �gures show various examples of longitudinal bun
h evolution,as exhibited by the UAL longitudinal simulator. The 
onditions are indi
ated inthe 
aptions, and in the inset parameter boxes. (The 
ontents of these baxes arenot readable in the �gures shown in this text, but, using the GUI, the boxes 
an beresized for readability.) In ea
h 
ase 10,000 gold ions are tra
ked for for some thou-sands of turns, and the distributions are updated every 100 turns. The simulationuses a realisti
 representation of the RHIC a

elerator. In FIG's 6.4 and FIG 6.5the �gures are grouped into quartets de�ned in the �gure 
aption. In longitudinalphase spa
e plots the abs
issa is longitudinal phase � and the ordinate is �E=(p0
).\Mountain range" plots (whi
h are 
ommonly available in the 
ontrol room using alongitudinal pro�le monitor) 
onsist of a series of one dimensional plots with beam
harge density represented by 
olor 
ode, or by shading, at regular intervals. Byshifting the plots up the plot as time progresses, evolution of the longitudinal beampro�le is displayed. The three dimensional spatial bun
h distribution is exhibitedin the upper left 
orner of ea
h quartet.6.7. Longitudinal Dynami
s Near TransitionThe 
ondition that must be satis�ed for the adiabati
 analysis des
ribed so farto be valid is 1
2s d
sdta << 1: (6.64)Stating this in words, during unit advan
e of longitudinal phase, the fra
tional
hange in 
s is small 
ompared to 1. This 
ondition 
annot be met at transitionsin
e (�rf=�0), and hen
e 
s, vanish at that point. Rede�ning the time variable tato be zero at the instant of 
rossing transition, the beam energy evolves a

ordingto 
 = 
t + 
0tt: (6.65)



6.7. LONGITUDINAL DYNAMICS NEAR TRANSITION 93

Figure 6.4. Top: Parti
le distribution just after inje
tion ofslightly over-sized 10000 parti
le beam. Bottom: Parti
le distribu-tions 100 turns after inje
tion of the same beam. Counter
lo
kwise,starting at upper left, the �gures are 3D spa
e, longitudinal phasespa
e, transverse phase spa
e, and turn number vs. longitudinal.
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Figure 6.5. Top: Parti
le distribution 800 turns after inje
tionof the same beam. Bottom: Parti
le distributions 7000 turns afterinje
tion of the same beam.



6.7. LONGITUDINAL DYNAMICS NEAR TRANSITION 95Some form of alternative analysis (su
h as numeri
al simulation) has to be per-formed during a time interval 
ontaining the transition time. The length T
 of anadequately long interval 
an be obtained by working problem 6.4.Another 
ompli
ation of transition 
rossing is that, be
ause the parti
les havedi�erent syn
hrotron os
illation amplitudes, and hen
e di�erent values of 
s, theydo not all 
ross transition at the same time. This means that, in prin
iple, the timeorigin has to be de�ned for ea
h parti
le individually. For beams of small enoughlongitudinal emittan
e this e�e
t is negligible sin
e 
s is essentially the same forall parti
les. But for bun
hes that nearly �ll the stable bu
ket the e�e
t be
omesimportant. In fa
t, in that limit, some loss of parti
les out of the stable bu
ket isinevitable. Again this e�e
t is best studied numeri
ally.To quantify the nonlinear e�e
t one de�nes a \
hromati
 nonlinear time" Tnl,su
h that, for a parti
le of maximal energy o�set �Æmax, the transition-
rossingtime is shifted by �Tnl. As a following problem, Tnl 
an be derived using formulasgiven previously. A typi
al numeri
al value is given in se
tion 6.5.If nothing else were to be done, the beam would be
ome unstable after transi-tion 
rossing, and it would blow up inexorably and be lost. One therefore swit
hesthe RF phase as has been dis
ussed previously. The time taken for this phaseswit
h to o

ur 
an be assumed negligible relative to the other times that havebeen dis
ussed.If beam degradation during transition 
rossing is too great some other longitu-dinal gymnasti
s are 
alled for. Be
ause of the large indu
tan
e of super
ondu
ting(or any other) magnets, it is typi
ally not pra
ti
al to in
rease 
0t by in
reasingthe magneti
 ramp rate. But re
all from Eq. (6.52) that 
t depends on latti
eproperties and hen
e 
0t 
an potentially be in
reased by shifting Qx toward lowervalues as the beam energy in
reases through transition. This is done by impulsivelyaltering the 
urrents in some latti
e quadrupoles. Of 
ourse this 
annot be doneinstantaneously. For the example given in the next se
tion, for a jump �
t = 1,the time taken is �tjump = 30ms. This in
rease the e�e
tive value of 
0t by a fa
torof 60 whi
h, a

ording to Eq. (6.67), redu
es T
 by a fa
tor of about 4.



96 6. LONGITUDINAL DYNAMICSProblem 6.4. For times t 
lose to the time of transition 
rossing, show thatthe syn
hrotron frequen
y is given approximately by
2s � jtjT 3
 ; (6.66)where T
 = � �Et�2t 
3tQV̂ j
os�tj
0th!2rev�1=3: (6.67)Time T
 is referred to as the \
hara
teristi
 nonadiabati
 time". Typi
al values forT
 and other parameters are given in se
tion 6.5.Problem 6.5. Estimate the 
hromati
 nonlinear time Tnl to beTnl = j�1 + 1:5�20Æmax
tj
0t : (6.68)Simulation 6.3. Re
onstitute the simulation illustrated in FIG 6.6. In that�gure, to illustrate phase spa
e evolution, an unrealisti
ally small emitta
e bun
h(espe
ially as regards energy spread) was used. Alter the phase spa
e before tran-sition to be better mat
hed and to almost �ll the stable bu
ket. Then 
al
ulate thegrowth of all three emittan
es �x, �y, and �s as gold ions are a

elerated throughtransition in RHIC.
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Figure 6.6. Series of distribution snapshots (every 1000 turnsfor a beam of 10000 parti
les) starting just before, and endingjust after transition. The RF phase is jumped at the instant oftransition 
rossing.





CHAPTER 7De
oheren
e and Filamentation7.1. Introdu
tionEven in ele
tron rings, where some damping due to syn
hrotron radiation isto be expe
ted, the damping is so weak that the Courant-Snyder invariant of anyone parti
le is, in fa
t, almost 
onstant for thousands of turns. The sensitivityof the beam position monitors (BPM) used to re
ord su
h motion are usually \inthe noise" unless a bun
h of some large number N of 
o-moving parti
les, equalto millions or more, are sensed. If all of these parti
les were exa
tly superimposedthen the observed signal would simply be N times greater than the signal from asingle parti
le. Of 
ourse this is not the 
ase. Commonly there is some physi
alphenomenon limiting the density of parti
le in phase spa
e, with the result thatthe more parti
les there are present in a bun
h, the larger the phase spa
e volume
ontaining all parti
les tends to be. Even so, if all de
e
tions in the ring were linear(as that term has been de�ned in earlier 
hapters) then the signals indu
ed in a BPMwould be very nearly the same as that of a single, magnitude N \ma
roparti
le"situated at the 
entroid of the moving bun
h. Again, this is unrealisti
, sin
e thelinearity requirement is never met exa
tly.Many e�e
ts di�erentiate bun
h motion and single parti
le motion. Some ofthese, su
h as spa
e 
harge for
es, in
luding beam-beam for
es in 
olliding beamfa
ilities, beam wall for
es, and 
oherent syn
hrotron radiation, are further 
ompli-
ated by the need to treat the 
harges both as sour
es (from whi
h for
e �elds haveto be 
al
ulated) and dynami
al obje
ts whose traje
tories need to be determined.Other multiparti
le topi
s, su
h as feedba
k and sto
hasti
 
ooling, are 
ompli
atedby the fa
t that external pi
kups and ki
kers are impli
ated in the bun
h dynami
s.To avoid these 
ompli
ations, in this 
hapter, parti
les are assumed to notintera
t with ea
h other, or with other \external" apparatus (not in
luding themagnets and RF 
avities making up the basi
 latti
e.) Even so, there are impor-tant multiparti
le e�e
ts, that go by names su
h as �lamentation, de
oheren
e,Landau damping, and beam e
hos. Even though these phenomena are all based onessentially the same basi
 physi
s, the di�erent terms are used to distinguish amongseemingly di�erent observed phenomena. These are the topi
s of this 
hapter.7.2. Experimental ObservationAn example of �lamentation from CESR[18℄ is exhibited in FIG 7.1. This datawas obtained only by simulation, but signals observed in real life were in semi-quantitative agreeement. For this plot a bun
h of ele
trons was inje
ted o�-axisand tra
ked for 1000 turns. The 
entroid displa
ement is 
al
ulated ea
h turn andre
orded as a point on the plot. Sin
e this is an ele
tron beam, some damping, dueto syn
hrotron radiation, is expe
ted. But the observed damping time (seen from99
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Figure 7.1. Multiparti
le de
oheren
e. Using the modeling pro-gram TEAPOT, an appropriately distributed \beam" 
onsisting of200 ma
roparti
les, �E=E = 0:0006, is tra
ked for 1024 turns andthe horizontal 
entroid 
oordinate is plotted ea
h turn.the plot to be about 700 turns) is some 10 times shorter than 
an be a

ountedfor by radiation damping. In this 
ase the nominal tune setting has Qx = Qy andthe 
hromati
ities were large and highly unbalan
ed, Q0x = +5, Q0y = �20, (in
onne
tion with a study of an e�e
t 
alled \
hromati
ity sharing"). The data ofFIG 7.1 look very mu
h like what would be observed in single parti
le dissipativemotion with a damping time of 700 turns. The term \Landau damping", appli
ablein this 
ase, in
ludes the term damping even though there is no dissipation anywherepresent in the system. The e�e
t is also known as de
oheren
e. In a bun
h ofparti
les inje
ted o�-axis, if the bun
h dimensions are smaller than the o�set, allparti
les have suÆ
iently the same amplitude that they ea
h 
ontribute the sameamplitude to the 
entroid signal. But there is inevitably a tune spread ; 
all it �Q,typi
ally a part in a thousand or so. With �Q = 0:001, two parti
les with identi
alstarting 
onditions, but with tunes di�ering this mu
h would, after 500 turns, havephase spa
e phase advan
es di�ering by �. In this 
ondition their 
ontributionsto the 
entroid amplitude would 
an
el. This would give the 
entroid motion theappearan
e of being damped, even though there is no a
tual dissipation present.This phenomenon is known as \de
oheren
e", 
onveying the notion that parti
lesinitially in phase, gradually drop out of phase over multiple turns.The fundamental tune spread 
ausing the 
entroid damping visible in FIG 7.1is due to momentum spread. In the presen
e of large 
hromati
ities this 
ausesthe large tune spread that 
auses the observed de
oheren
e. This form of damping
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e is perfe
tly linear. The result is the approximatelyexponential damping observed in the �gure. It will be seen in the next se
tion thatthe apparent damping due to de
oheren
e is not ne
essarily exponential, whetherit is observed in the laboratory or in a simulation.Furthermore, be
ause of the relatively small number of parti
les used in this(or any) simulation, the damping 
annot be expe
ted to be faithfully representedover times mu
h longer than are shown in the plot. For su
h a small number ofparti
les as 200, on
e the apparent 
entroid motion has dropped to some \
oor"value, it 
an be expe
ted to exhibit errati
 motion depending on the a

idental
onstru
tive and destru
tive 
ombinations of the parti
les present.The phenomenon of �lamentation is 
losely related to the de
oheren
e justdes
ribed, in that the e�e
t is due to tune spread. The di�erent terminology isused to 
onvey the idea that the tune spread in the 
ase of �lamentation is dueto nonlinear for
es (of the RF waveform in this 
ase). An example of longitudinal�lamentation was shown in the lower left of the sequen
e of plots in FIG 6.4 andFIG 6.5. These are phase spa
e plot that 
orresponds to the \mountain rangeplots" shown in the same �gures. Nonlinearity 
auses the longitudinal tune todepend on longitudinal amplitude. As a result the rate of revolution in phase spa
e
hanges with in
reasing phase spa
e radius. This 
auses the beam extremities to\shear" gradually as time advan
es. A

ording to Liouville's theorem, this pro
ess,even though it depends on nonlinearity, should still preserve the lo
al density ofparti
les. This is not 
ontradi
ted by the �gure. The �nal �gure in the sequen
e oplots ending with FIG 6.5 shows the same phase spa
e distribution a long time later,after the extremities have 
ompletely wrapped around many times. The wispy tailshave be
ome so narrow that they deserve to be 
alled �laments. This pi
ture isstill 
onsistent with 
onservation of lo
al phase spa
e density. But this has be
omea
ademi
 be
ause the �laments are so skinny and so hopelessly entwined with areasinitially devoid of parti
les. One 
ould say that va
uum has been stirred into the
uid. For all pra
ti
al purposes this has redu
ed the density of parti
les in phasespa
e. This still does not 
ontradi
t Liouville's theorem. But, for all pra
ti
al usesof the beam, its density has been diluted. The 
orresponding emittan
e in
reasedue to �lamentation 
an be inferred from the data inserts shown in the �gures.7.3. Analyti
 Treatment of De
oheren
eThe de
oheren
e and �lamentation phenomena mentioned so far 
an be anal-ysed theoreti
ally. As well as knowing the distribution of amplitudes it is ne
essaryalso to know the dependen
e of the tunes on the transverse and longitudinal am-plitudes. Dependen
e of tunes on amplitude for the ra
etra
k.sxf �le are shownin FIG 7.2,Phase spa
e evolution 
an be studied with plots like FIG 7.3, whi
h shows(x; p) betatron phase spa
e. Su
h plots, showing a parti
le's position ea
h turn, arealso known as \Poin
ar�e plots". A
tually, in order to suppress the dominant, smallamplitude evolution, this is a Poin
ar�e plot in a frame rotating at a rate su
h thata small amplitude parti
le appears not to move at all. Ve
tors in the �gure show,therefore, 
hanges in position over and above what their linear motion would 
ause.The s
ales have been adjusted so that (linearized) motion in phase spa
e isalong 
ir
les 
entered on the origin, with phase advan
e per turn ��0. S
aling p
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.

tune vs momentum curves for   racetrack lattice  needed here

Figure 7.2. Average transverse tunes exhibited by a single par-ti
le exe
uting longitudinal os
illations in the ra
etra
k latti
e,for various 
hromati
ities Q0x and Q0y.
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Figure 7.3. Evolution with turn number i of a point P in be-tatron (horizontal) phase spa
e, as viewed from a frame rotatingat nominal phase advan
e per turn �0. The trigonometry of this�gure only makes sense for small perturbations (�p << R) whi
his assumed.



7.3. ANALYTIC TREATMENT OF DECOHERENCE 103to be a length, and assuming the beam is Gaussian and isotropi
 in phase spa
e,the beam distribution 
an be expressed either as PR(R) or as Px(x)Pp(p), depend-ing on whether polar or 
artesian 
oordinates are employed. The parti
les arealso distributed with distribution PÆ̂(Æ̂) in Æ̂ whi
h is the maximum value (as theparti
le os
illates longitudinally) of its fra
tional momentum deviation Æp=p. Thedistributions are given byPx(x) = 1p2�� exp�� x22�2 �;Pp(p) = 1p2�� exp�� p22�2 �; (7.1)Px;p(x; p) = Px(x)Pp(p) = PR(R)2�R ; or PR(R) = R�2x exp�� R22�2�:The last distribution 
an also be expressed as a joint probability distributionPR;�(R;�) = PR(R)=(2�). In every 
ase the probability of a parti
le lying ina di�erential interval of the subs
ripted variable(s) is obtained as the P -fun
tionmultiplied by a di�erential (or produ
t of di�erentials) of the indi
ated variable(s).To start the de
oheren
e investigation a \ki
k" �p is administered to everyparti
le in the beam at i = 0 and hen
e also to the beam 
entroid. Motion ofa parti
le initially at point P is shown in FIG 7.3. If every parti
le advan
es atthe same angular rate, the 
entroid does the same and the 
entroid radius remains
onstant. But, in general, sin
e �(R;�; Æ) depends on the lo
ation of P, as well ason Æ, the parti
le motions \de
oherere" 
ausing the 
entroid amplitude to \damp".Digression. There may or may not be a subsequent re
oheren
e. The predomi-nant de
oheren
e/re
oheren
e o

urs through ea
h 
y
le of syn
hrotron os
illation.As the energy of a parti
le os
illates due to syn
hrotron os
illation, the parti
letune is too small when the parti
le energy is positive (relative to the referen
eparti
le). As a result its betatron phase a

umulates negatively. On the otherhand, when the relative energy is negative the betatron phase a

umulates posi-tively. During one 
omplete 
y
le of syn
hrotron os
illation the net betatron phasea

umulation is zero to ex
ellent a

ura
y. At the instant the transverse ki
k isapplied the longitudinal phases are distributed uniformly. Thereafter, dependingon their starting longitudinal phase, some parti
les initially gain betatron phaseand others lose betatron phase. This 
auses de
oheren
e and (transverse) 
entroiddamping. At a later time, exa
tly one syn
hrotron period after the initial ki
k, ev-ery parti
le, whatever its initial longitudinal phase had been, will have 
ompletedexa
tly one 
y
le of syn
hrotron os
illation. As just shown, the ex
ess betatronphase a

umulation during this time will have averaged exa
tly to zero. As a resultthe bun
h \uns
rambles" itself, and re
onstitutes the original just-ki
ked distribu-tion. This phenomenon is 
ommonly observed in most a

elerator 
ontrol rooms.The re
onstituted pulse is often referred to as an \e
ho". The e�e
t is simulatedin FIG 7.6. There are also situations in whi
h even more 
ompli
ated, even withnonlinearity-
aused de
oheren
e, that exhibit e
hos. End of digression.To simplify the present dis
ussion, let us negle
t syn
hrotron os
illation (eitherbe
ause the beam energy spread is negligible or be
ause we will be 
on
erned withtimes long 
ompared to the syn
hrotron period). Averaging over the longitudinalmotion, any surviving (small amplitude, transverse) tune dependen
e is expressable
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Figure 7.4. On the left the betatron phase spa
e distribution isvisualized as a sum of distributions, uniform over disks of radii su
-
essively 
hanging in steps of �p. This permits deviations from theunki
ked distribution to be represented by positive and negativedistributions uniform over the \lunes" shown on the right.as dependen
y of phase advan
e �(Æ̂), where Æ̂ is the longitudinal Courant-Snyderinvariant expressed as the maximum energy o�set.We assume the transverse de
oheren
e is due entirely to the \shearing" motionalong 
ir
les of di�erent radius in phase spa
e for di�erent values of Æ̂. This negle
tsthe small e�e
t that, be
ause of nonlinearity at large R, the transverse phase spa
e
urves, even while remaining regular, be
ome distorted (though not 
haoti
).For points 
lose to the origin in transverse phase spa
e, and having small Æ̂,the shear is negligible and the distribution rotates undistorted, as if rigid. To takeadvantage of this, FIG 7.3 is a snapshot (of the i'th turn) from a frame of referen
erotating at rate �0. The e�e
t of ki
k �p is to 
hange the initial phase spa
elo
ation of point P to (approximately)R0 = R+�R = R+�p sin�0; �0 = �+�� = �+ �p 
os�0R : (7.2)After the ki
k, the parti
le tune is �0 +��(R0; Æ̂), and its positions on subsequentturns are indi
ated by short arrows in FIG 7.3. After i turns its 
oordinates are�xi(�p;R;�; Æ̂)pi(�p;R;�; Æ̂)� = R0 
os�� i�
os�0sin�0�+R0 sin�� i�� sin�0
os�0 � : (7.3)The 
entroid 
oordinates are given then by�xi(�p)pi(�p)� = Z 10 dR Z 2�0 d� Z 10 dÆ̂�xi(�p;R;�; Æ̂)pi(�p;R;�; Æ̂)�PR;�(R;�)PÆ̂(Æ̂): (7.4)These formulas are impra
ti
al for 
al
ulation be
ause of the 
ompli
ated depen-den
e of �0 on position P. Sin
e the trigonometry of FIG 7.3 breaks down near theorigin, we assume �p << R: (7.5)



7.3. ANALYTIC TREATMENT OF DECOHERENCE 105Even with assumption (7.5), it is not legitimate to approximate �0 by �. Ifthis approximation is made, Eqs. (7.3) and (7.4) give a seriously in
orre
t answereven for �� = 0 and i = 0. This failure is at least partly due to the extravagan
eof not taking advantage of the strong tenden
y for 
an
ellation in pairs of parti
lessymmetri
 about the origin.To take advantage of this 
an
ellation, we reformulate the 
al
ulation by fol-lowing instead the evolution of deviations from the unperturbed distributions assuggested by FIG 7.4. (For the time being we suppress indi
ations of Æ dependen
yfrom the formulas, sin
e they will be easily restored later.) Sin
e volumes in theplot on the left 
orrespond to probabilities, the units along the verti
al axis arelength�2 and the total \volume" is 1. Planning eventually to apply ki
k �p to thebeam, the unki
ked beam distribution 
an be re-expressed in terms of the parti
ularde
e
tion �p that will be applied.The volume shown in FIG 7.4 
an, on the one hand, be visualized as nested\
ollars" of inner radius R � �p=2, wall thi
kness �p. The height of a 
ollar is
onstant and 
an be evaluated along the x-axis to be Px(0)Pp(R). On the otherhand, the volume 
an be visualized as the pile of sta
ked disks shown in the �gure,with radius R +�p=2 anddisk thi
kness = Px(0)�� dPp(p)dp �p=R�p = R2��4 e� R22�2 �p = PR(R)�p2��2 : (7.6)When the beam is displa
ed by �p along the p axis most of the probabilityin any parti
ular one of the sta
ked disks, for example the one with radius R,
an be regarded as un
hanged; the entire 
hange 
an be as
ribed to an in
reasein probability density in the positive-p \lune" shown on the right in FIG 7.4 anda 
orresponding redu
tion in the negative-p lune. (Though the latter probabilitydensity is negative the total probability density in the region remains positive.)Sin
e the entire deviation in this region 
omes from this parti
ular disk and isa

ounted for by these lunes, and the subsequent shearing motion respe
ts ringboundaries, it is suÆ
ient to work out the subsequent evolution on a ring-by-ringbasis. From these distributions the ring 
entroids will then be found and �nally theoverall 
entroid lo
ation.Toward this end the lune (two dimensional) density 
an be squashed into anangular (one dimensional) distribution. Furthermore the negative lune 
an bedropped, 
ompensating by doubling the positive-lune probability. With the areaof one lune being 2R�p, the volume it represents is equal to the lune area times thedisk thi
kness. In
luding both lunes, this volume is equal to 4R(�p)2PR(R)=(2��2).Sin
e volumes represent probabilities, this quantity will be referred to as \deviationprobability". Even though not normalized, this volume 
an be used for 
entroid
al
ulations as if it is a normalized probability distribution, sin
e the extra volumeneeded to yield unit total probability 
ontributes no 
entroid shift.Letting P devR dR stand for the deviation probability in range dR we haveP devR (R) = 2�p��2 RPR(R): (7.7)Be
ause the shearing motion preserves the radius in phase spa
e, P devR is indepen-dent of turn index i. When distributed in x, the just-ki
ked deviation probabilityP devR (R)dR is uniform. Therefore, when distributed in �, whi
h is related to x byx = R 
os�, the distribution is proportional to dx=d� = R sin�. We therefore



106 7. DECOHERENCE AND FILAMENTATIONde�ne a (normalized) angular probability distribution,P�;0(�) =8><>:0 for � < 0(1=2) sin� for 0 < � < �0 for � < � : (7.8)This is a universal initial angular distribution, independent of R.Then the joint probability distribution P devR;�, de�ned so that P devR;�dRd� standsfor the deviation probability in range dRd�, 
an be fa
torizedP devR;�(R;�; i) = P devR (R)P�(�; R; i): (7.9)Initially it is given byP devR;�(R;�; i = 0) = P devR (R)P�(�; R; i = 0) = �p��2RPR(R) sin�: (7.10)Ex
ept for the eventual integration over R, all that is required is to evaluate an-gular distribution P�(�; R; i) as it evolves away from P�;0(�)|a one dimensional
al
ulation. Furthermore the R dependen
e allowed for notationally by the se
ondargument of P�(�; R; i), will be present only to the extent the betatron motion isnonlinear.The 
entroid 
oordinates are obtained as the averages of x = R 
os� andp = R sin� weighted by P devR;�(R;�; i);�xi(�p)pi(�p)� = Z 10 RP devR (R)dR Z d� P�(�; R; i)�
os�sin�� : (7.11)Here the limits of the � integration are not indi
ated. They 
an safely be set largesin
e, for �nite i, the integrand vanishes exa
tly outside a �nite range. At i = 0the non-vanishing range is from 0 to � and for other values of i the range needs tobe extended only by ��maxi where ��max is the maximum possible tune deviationfrom nominal.To 
he
k for 
onsisten
y, let us 
al
ulate the i = 0 
entroid lo
ation;p0(�p) = Z 10 RdR Z �0 d� P devR;�(R;�; i = 0) sin� = �p 4� Z �0 sin2�2 d� = �p;(7.12)as expe
ted.The only dependen
e on i in Eq. (7.11) is introdu
ed via�i = �0 +��(R; Æ̂) i; (7.13)whi
h, for a parti
le with initial phase �0, gives its phase after i turns. Any
ontribution to ��(R; Æ̂) that is independent of R and Æ̂ 
auses no shearing andhas been subsumed in �0. The leading dependen
e of �� is then given by��(R; Æ̂) = r1R+ r2R2 + � � �+ d1Æ̂ + d2Æ̂2 + � � � : (7.14)After i turns the distribution originally given by P�;0, having pre
essed throughangle ��(R; Æ̂) i, will have be
ome P�;i(�; R; Æ̂) = (1=2) sin(� ���(R; Æ̂) i); (andzero outside the 
entral lobe.) This, along with Eq. (7.11), is exa
t in the small ki
klimit where approximation (7.5) is valid, and the dependen
e is simple enough foreasy and a

urate numeri
al evaluation. But, be
ause of various other un
ertainties,great pre
ision is rarely justi�ed. This makes it sensible to approximate the angulardistribution in a way that will simplify subsequent 
al
ulations. Also we take the
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e a more 
onvenient azimuthal angle � in terms of whi
hthe starting distribution is symmetri
 about � = 0;� = �� �2 : (7.15)The approximate form to be used isP�;i(�; R; Æ̂) � 1p2���t exp(� (����(R; Æ̂) i)22�2�t ): (7.16)This form eliminates the need for the multiple 
ases of Eq. (7.8) and permits anin�nite � integration range. The quantity ��t is simply a dimensionless number(an angle in radians) 
hosen to make the approximation in Eq. (7.16) as a

urateas possible. The value ��t = (2�)�1=6 = 0:736 would mat
h the quadrati
 variationat � = �=2, but we 
hoose insteadexp�� �fit2 � = �4 ; or ��t = 0:695; (7.17)whi
h 
auses Eq. (7.12) to be satis�ed, thereby avoiding a (small but inelegant)error in the just-ki
ked 
entroid lo
ation. Substituting Eq. (7.16) into Eq. (7.11)yields�xi(�p; Æ̂)pi(�p; Æ̂)� = �p Z 10 dR 2��4R3e� R22�2 Z 1�1 d� 1p2���t e� (����(R;Æ̂) i)22�2fit �� sin�
os� �(7.18)= �p 2��4 1p2���t Z 10 dRR3e� R22�2 �� sin�� i
os�� i �Z 1�1 d� 
os� e� �22�2fit (7.19)= �p 12�4 Z 10 dRR3e� R22�2 �� sin��(R; Æ̂) i
os��(R; Æ̂) i � (7.20)where the dependen
e on Æ̂ has been restored to the notation. This formula, with��(R; Æ̂) expressed, for example, as in Eq. (7.14), is the main formula des
ribingthe e�e
t of de
oheren
e due to R-dependent tune 
aused by nonlinear betatronmotion. For small i, evaluating the integral numeri
ally is easy. For large i, themethod of stationary phase may be appli
able.[19℄Sin
e there has been no averaging over Æ̂ as yet, Eq. (7.20) should also bevalid with Æ̂ repla
ed by Æ. The major e�e
t of this would be evident in FIG 7.3where the phasor amplitudes would vary sinusoidally be
ause of 
hromati
ity andsyn
hrotron os
illation. Whatever shearing this 
auses is exa
tly undone over a
omplete longitudinal 
y
le, 
ausing periodi
 de
oheren
e/re
oheren
e ea
h periodof syn
hrotron os
illation. By performing these 
al
ulations it would be possible to
ompare to a formula due to Meller et al.[20℄ but this has not been done. Thefeature distinguishing the present 
al
ulation from Meller's is that he assumedno systemati
 dependen
e of tune on Æ̂. It is not easy to 
ompare formulas herewith his paper sin
e the order of integation is di�erent and he does not make theapproximation Eq. (7.16). (This should 
ause only small numeri
al di�eren
es.)We 
ontinue, but now keeping just the term ��(R; Æ̂) = d1Æ̂ (whi
h permitsthe R integration to be performed) and assume that Æ̂ is distributed a

ording toPÆ̂(Æ̂) = Æ̂�2Æ exp�� Æ̂22�2Æ �; (7.21)
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Figure 7.5. Time evolution of (fra
tional) 
entroid positionx=�p, slope p=�p, and px2 + p2=�p after initial de
e
tion �p,viewed in a frame of referen
e rotating at the small amplitude tune,as given by Eqs. (7.23-7.25). An exponentially de
aying fun
tion1:2 exp(�0:38d1�Æi) is also shown for 
omparison.and average over Æ̂ to obtain1pi(�p)�p = 1�2Æ Z 10 dÆ̂ Æ̂ exp�� Æ̂22�2Æ � 
os(d1Æ̂ i) (7.22)= 1� (d1�Æi)2 + 13(d1�Æi)4 � 17:5:3(d1�Æi)6 + 19:7:5:3(d1�Æi)8 + � � � ;(7.23)andxi(�p)�p = � 1�2Æ Z 10 dÆ̂ Æ̂ exp�� Æ̂22�2Æ � sin(d1Æ̂) i = �r�2 (d1�Æi) exp�� (d1�Æi)22 �:(7.24)The most dire
tly observable quantity is the \de
oheren
e fa
tor",Fi(d1�Æi) =s�xi(�p)�p �2 + �xi(�p)�p �2: (7.25)These fun
tions are plotted in FIG 7.5. As explained previously, the quantitiesxi and pi tend to vary slowly be
ause they refer to a frame of referen
e rotating1Formula (7.23 is poorly 
onvergent and 
an only be used for values of the argument lessthan 2 or so.
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orresponding invariant amplitude qxi2 + pi2 varies even moreslowly. But when it is viewed as a ve
tor in a stationary frame it rotates rapidlyand is interpreted as the betatron os
illation of the 
entroid. The magnitude of theinvariant amplitude is the same in stationary and rotating frames. This was thebasis for the statement made above that the \de
oheren
e fa
tor" Fi is the theoret-i
al quantity that 
an most easily be 
orrelated with experimental observations.2From FIG 7.5 it 
an be seen that the time evolution of xi and pi are very di�erent,the latter falls o� in more or less Gaussian fashion while the former rises initially,then falls. Neither of these behaviors seems deserving of the name \damping", butthe fun
tion Fi falls o� more nearly as the de
aying exponential that is normallyasso
iated with damping. To illustrate this point a pure exponential de
ay 
urvethat 
rudely mat
hes Fi is also shown in FIG 7.5.When damping rates are measured experimentally in the 
ontrol room, the ob-served response is usually not a pure exponential de
ay. Rather, an initial transient(that is hard to interpret and may be instrumental in nature) is followed by a 
urvewell �t by a pure exponential. An empiri
al re
ipe extra
ting damping rates hasbeen to sele
t the range over whi
h the log plot is most nearly linear as the signalfalls by 1=e|typi
ally this is from about 0.8 to about 0.3 of the just-ki
ked signal.This is not very di�erent from the range over whi
h the exponential des
ribed inthe previous paragraph gives a tolerable �t to the theoreti
al response 
urve. Con-sidering the only-semi-quantitave \absolute" a

ura
y of the measurements and thela
k of a

ura
y with whi
h the various parameters in
uen
ing the phenomenon areknown, we therefore judge the exponential �t shown in the graph to be a reasonablerepresentation of the theory, for 
omparison with the experimental data.We have obtained a simple pres
ription for predi
ting the \damping rate" ��;de
with whi
h the 
entroid will be observed to damp after the beam has been pinged.By parti
le tra
king in the latti
e under 
onsideration (CESR in our 
ase withparameters 
orresponding to FIG 7.1), for a parti
le with invariant longitudinalinvariant equal to the r.m.s. value Æ̂ = �Æ = 0:6 � 10�3, the tune shift is foundto be �Q(�Æ) � 1:5 � 10�3. Assuming the dependen
e linear, this �xes the d1
oeÆ
ient in Eq. (7.14); d1 = 2��Q(�Æ)�Æ : (7.26)Then the 
entroid amplitude varies as exp(���;de
t) = exp(�0:38�2��j�Q(�Æ)ji),where time t and turn number i are related by t = i=f0, with f0 = 0:39� 106Hz.Then we obtain ��;de
 = 2:39j�Q(�Æ)jf0 (7.27)When parameters appropriate to FIG 7.1 are used, the predi
ted damping rateis 1160 s�1. This ex
eeds the rate inferred from the multiparti
le simulation by afa
tor 1.7. Considering the various un
ertainties, this is probably as good agreementas 
an be expe
ted.
2Though more detailed information about the beam is measurable in prin
iple, we are mainly
on
erned with signals from the beam position monitors whi
h 
ontain only information aboutthe 
entroid.
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oheren
e/Re
oheren
e E
hosMore than one of the de
oheren
e phenomena mentioned above may be oper-ative at the same time. This is illustrated in FIG 7.6, whi
h was obtained usingthe de
oheren
e simulator on the ra
etra
k latti
e. Initially there is de
oheren
ein both horizontal and verti
al motion due to the spread of tunes. That is, the
entroid motion \damps". As dis
ussed earlier, the 
entroid amplitude is expe
tedto re
ohere to give an e
ho after one 
omplete syn
hrotron period and to repeat this
y
le at the syn
hrotron frequen
y. This is visible in both x and y motion. Fromthe graphs it is 
lear that the situation is a bit more 
ompli
ated than this expe
-tation. Espe
ially the < x > 
entroid does not return to its full starting amplitude.This presumably indi
ates the presen
e of (betatron)-amplitude dependen
e of thetransverse tunes. These phenomena are to be investigated in assignments givenbelow.Two views of the GUI used for this simulation are exhibited in FIG 7.7 andFIG 7.8. As shown in FIG 7.7 the requested 
hromati
ities are Q0x = 20 andQ0y = �20 in the basi
 latti
e des
ription. Modi�ed entries 
an be typed intothose two slots. From the ra
etra
k.sxf �le one 
an infer that the names of the
hromati
ity sextupoles are sext1 and sext2. These names are to be typed intothe slots labeled b2f and b2d. Cli
king on the setup button adjusts the strengthsof sextupoles with those names to a
hieve the desired 
hromati
ities. Su

essful
ompletion of this pro
ess is printed.For simulating de
oheren
e a bun
h of, say, 1000 parti
les is initialized, thenki
ked transversely by the ki
ker element, and then tra
ked for, say, 1000 turns.All three 
entroids < x >, < y >, and < s > are plotted every 10 turns. Thesevalues are plotted in FIG 7.6.The detailed simulation is 
ontrolled by the APDF �le. Two su
h �les areshown in Table 7.1. How the ki
k is administered is governed by the line<link algorithm="UAL::USPAS::OneTurnKi
ker" elements="ki
ker" />whi
h is 
ommon to both APDF �les. Propagation around the ring 
an be donein element-by-element, ki
k 
ode, fashion. This 
al
ulation is governed by theteapot.apdf �le. Alternatively the tra
king 
an pro
eed by trun
ated power series(TPS) tra
king. This 
al
ulation is governed by the mapping.apdf �le. For thispropagationmethod the maps from every bpm to its adja
ent bpm are �rst 
al
ulated,and then the map is used to evolve individual parti
les. Not shown in the APDF �le(for now) is the trun
ation order, whi
h was 3, \o
tupole order", for the simulationshown in FIG 7.6.
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Figure 7.6. Beam e
hos observed one syn
hroton period (andmultiples thereof) after a beam is ki
ked both horizontally andverti
ally in the ra
etra
k latti
e. Q0x = 20, Q0y = �20.



112 7. DECOHERENCE AND FILAMENTATION

Figure 7.7. Simulator window used for adjusting 
hromati
ities.

Figure 7.8. Simulator window listing available propagators.



7.4. SIMULATION OF DECOHERENCE/RECOHERENCE ECHOS 113Table 7.1. Two APDF �les for simulating the same de
oher-en
e/re
oheren
e phenomenon by two di�erent methods|element-by-element, and map tra
king.<apdf><propagator id="teapot" a

elerator="ring"><
reate><link algorithm="TEAPOT::DriftTra
ker" types="Default" /><link algorithm="TEAPOT::DriftTra
ker" types="Marker|Drift" /><link algorithm="TEAPOT::DipoleTra
ker" types="Sbend" /><link algorithm="TEAPOT::MltTra
ker" types="Quadrupole|Sextupole|Multipole|[VH℄ki
ker"/><link algorithm="TIBETAN::RfCavityTra
ker" types="RfCavity"/><link algorithm="AIM::Monitor" types="Monitor|[VH℄monitor" /><link algorithm="UAL::USPAS::OneTurnKi
ker" types="Ki
ker" /></
reate></propagator></apdf><apdf><propagator id="mapping" a

elerator="ring"><
reate><link algorithm="TEAPOT::MapTra
ker" se
tor="Default" /><link algorithm="AIM::Monitor" elements="bpm" /><link algorithm="UAL::USPAS::OneTurnKi
ker" elements="ki
ker" /></
reate></propagator></apdf>



114 7. DECOHERENCE AND FILAMENTATIONSimulation 7.1. Use the de
oheren
e simulator to 
orrelate de
oheren
e timewith momentum-dependent tune spread. One 
an adjust the tune spreads by adjust-ing the 
hromati
ities. One 
an plot the tunes versus Æ by preparing initial parti
le
onditions for various values of Æ.Simulation 7.2. By vastly redu
ing the number of bpm's in the ra
etra
klatti
e, speed up the de
oheren
e/re
oheren
e simulation that uses map tra
king.Simulation 7.3. Investigate the dependen
e of de
oheren
e time on initial ki
kamplitude. Sin
e the ki
k amplitude is not available from the GUI it is ne
essaryto \hard 
ode" the ki
k amplitude and re
omplile that part of the 
ode.



CHAPTER 8General Transverse MotionA linearized treatment of transverse parti
le dynami
s was given in Chapter 2.Here, starting from a more general formulation of the equation of motion, we in
ludethe possibility of nonlinear de
e
tions. The next few se
tions spell out the bendinge�e
ts of the simpler magneti
 elements. Then the generalization from transfermatri
es to transfer maps, in order to in
lude nonlinear e�e
ts, is dis
ussed. Thefollowing se
tions dis
uss symple
ti
ity-preserving evolution algorithms. Finally thedis
ussion of FFT beam diagnosis, started in Chapter 4, is extended to nonlineare�e
ts. 8.1. Magneti
 De
e
tionsThe magneti
 �eld of an ideal, ere
t, a

elerator magnet 
an be expressed asB = By �01�+ �By�x �yx�+ 12 �2By�x2 � 2xyx2 � y2�+ � � � : (8.1)Though not indi
ated by the notation, the (
onstant) 
oeÆ
ients, By and its deriva-tives, are evaluated on the magnet 
enterline, in the interior of the magnet. Onlyx and y 
omponents are shown, sin
e the �elds are assumed to be transverse. Alsothe �elds are assumed to be independent of z (ex
ept for vanishing outside themagnet). One 
an 
on�rm immediately that r �B = 0 and thatr�B = 0� x̂ ŷ ŝ�=�x �=�y 0Bx By 01A = 0: (8.2)In fa
t the form (8.1) amounts to starting with a �eld for whi
h only By is non-vanishing for x = 0, but is otherwise arbitrary, expanding it in powers of x, andthen extrapolating o� the x = 0 plane using the Maxwell equations to obtain they dependenden
e and Bx.Using the Lorentz for
e law, the 
hange in velo
ity dv, as 
harge Q passeslongitudinal distan
e ds, is given bym
Q dvds=v = v �B =By0� x̂ ŷ ŝvx vy vs0 1 01A+ �By�x 0� x̂ ŷ ŝvx vy vsy x 01A+ 12 �2By�x2 0� x̂ ŷ ŝvx vy vs2xy x2 � y2 01A+ � � � :(8.3)To treat su
h a magnet as a single \short" element, while allowing for fringe �elds,it is ne
essary to integrate this formula from well before the magnet to well afterit. The e�e
t of passage of a parti
le through su
h a magnet are \kinks", i.e.115



116 8. GENERAL TRANSVERSE MOTIONdis
ontinuities �x0 and �y0 in the slope 
oordinates x0 = dx=ds and y0 = dy=ds.For a dipole (the �rst term) the bend angle �� (assumed small) is determined by���10� = ��x0�y0� = ��(vx=vs)�(vy=vs)� = Z ds 
Byp
=Q ��xy � ; (8.4)with the result that �� = Z ds 
Byp
=Q: (8.5)This has negle
ted any variation of vs, x, or y as the parti
le passes the magnet.From the derivation this result might seem to provide only a rough approximationto the de
e
tion. But, in fa
t, a thi
k magnet 
an be segmented into arbitrarilymany thin magnets. So this formulation 
an be the basis for a

urate numeri
alintegration of parti
le orbits through (ideal) magnets. Be
ause By and p
 varyproportionally, �� has the desired property of being momentum-independent. Fur-thermore �� is dimensionless as an angle must be.For a quadrupole (the se
ond term of Eq. (8.3)), the strength (i.e. inverse fo
allength) q is determined byq��xy � = ��x0�y0� = ��(vx=vs)�(vy=vs)� = Z ds 
�By=�xp
=Q ��xy � ; (8.6)with the result that q = Z ds 
�By=�xp
=Q : (8.7)Like ��, q is a purely geometri
 quantity, an inverse length. It is independentof parti
le momentum and 
harge whi
h 
an
el against By. The inevitability ofopposite-sign fo
al properties in the two transverse planes has also been exhibited.For an ere
t sextupole (the third term of Eq. (8.3) the strength S is determinedby 12 S�x2 � y22xy � = ��x0�y0� = 12 Z ds 
�2By=�x2p
=Q �x2 � y22xy � ; (8.8)with the result that S = Z ds 
�2By=�x2p
=Q : (8.9)Expressions like ��, q, and S are known as \�eld integrals" be
ause integration overa 
omplete element is implied. Higher pure multipole magnets are de�ned similarly.A potential sour
e of error to be aware of 
omes from the fa
tor 1=n! that entersthe relation between multipole strength and �Bn=�xn. This fa
tor 
omes from theTaylor series expansion formula. For the sextupole the fa
tor is 1=2.In spite of the fa
t that su
h magnet �elds violate Maxwell's equations, it is
ustomary to treat the �elds of ideal magnets as uniform within an e�e
tive or\magneti
" length lm and dropping dis
ontinuously to zero outside that length.1In this 
onvention the �eld By and its derivatives are evaluated at the longitudinal
enter of the magnet and lm is adjusted to mat
h the �eld integral over the magnet.For this reason lm tends to be 
lose to, but not exa
tly equal to the geometri
 lengthl. Repeating the dis
ussion of thin elements made earlier, though these magneti
strength de�nitions have the appearan
e of being 
rude approximations, they 
anbe made in
reasingly a

urate by redu
ing lm. (This a

ura
y is vitiated by the1Within ADXF the notation for magneti
 length lm is ml whi
h is distin
t from the \geometri
length" l, notation l. But, by default, ml and l are taken to be equal.



8.2. ADXF AND SIF ELEMENT STRENGTHS AND DEVIATIONS 117inevitable presen
e of longitudinal �eld 
omponents, present when transverse �eld
omponents depend on s. But in most 
ases the de
e
tions 
aused by Bs areextremely small.)In this approximation the above formulas be
ome,�� = 
Byp
=Q lm; q = 
�By=�xp
=Q lm; S = 
�2By=�x2p
=Q lm; � � � : (8.10)8.2. ADXF and SIF Element Strengths and DeviationsWithin \standard input format" SIF, whi
h has evolved into MAD input format,the strengths of magneti
 elements 
an be expressed using the formulas just derived.In parti
ular, for quadrupoles and sextupoles, the leading fa
tors in Eqs. (8.10) areexpressed asK1 = 1B� �By�x � 
�By=�xp
=Q ; K2 = 1B� �2By�x2 � 
�2By=�x2p
=Q ; (8.11)where the 
onventional \B-rho" quantity is de�ned by either of these equations or,better motivated, by the �rst of formulas (8.10):(B�) � By lm�� = p
=Q
 ; (8.12)where, as usual, rather than 
an
eling fa
tors, it is 
onvenient to retain the 
ombi-nation p
=Q whi
h has S.I. units, namely volts.As already implied, the merit in grouping fa
tors into B� is to redu
e strengthparameters to purely geometri
 terms. The dimensions of K1 and K2 are m�2and m�3 respe
tively. These dimensions are appropriate for longitudinally variable\thi
k element des
ription" for whi
h integration over the magneti
 element re-mains to be performed. Generally speaking, element strengths is SIF are expressedas lo
al strength fun
tions, like K1 and K2. The 
onvention in ADXF's generi
 ele-ment <element> is di�erent; strengths are represented by integrated (over length)values of lo
al strength fun
tions. Examples q and S were given earlier. As hasbeen mentioned before, this distin
tion is purely 
osmeti
, and is unrelated to a
-tual pre
ision of representation. A
tually, for ba
kward 
ompatibility, ADXF alsosupports a MAD-like syntax whi
h, other than being expressed in XML is equivalentto MAD8.The main way in whi
h ADXF extends MAD8 is that pre-existing elements 
anbe assigned new attributes su
h as magneti
 �eld deviations. A simple example �leshowing the syntax for in
luding deviations is eq tune fodo.adxf. In ADXF a dis-tin
tion is drawn between uninstalled elements (in Etienne Forest's PTC terminol-ogy they are 
alled \on-the-ben
h elements") and installed elements. The latter are,of ne
essity, fully-instantiated, meaning they have their own individual names, posi-tioning, and strength deviations. The strengths shown in the eq tune fodo.adxf,say for quadhf elements, are uninstalled properties, shared by all o

uren
es ofquadhf elements in the latti
e. Within ADXF there is an \inheritan
e" me
hanismin whi
h an individual installed element, with its own individual name, 
an bereferred to a design element, su
h as quadhf, from whi
h it inherits parameters.Su
h an installed element 
an be assigned parameters that override or augment theuninstalled parameters.This 
an be illustrated by the following 
ode fragment



118 8. GENERAL TRANSVERSE MOTION<elements><marker name="mk1"/><sbend name="bend" l="lq" angle="deltheta"/><quadrupole name="quadhv" l="lq" k1="kq1"/>...</elements>whi
h amounts to re-expressing MAD input language as XML, with an exampleexhibiting inheritan
e:<elements><sbend name="d0mp08" l="3.58896" angle="-0.0151186"/><element name="bi8-dh0" design="d0mp08"/><mfield b="0 0 0.005476 0.033503"a="0.0 -0.010166 0.024366"/></element></elements>where the "bi8-dh0" element is based on the "d0mp08" design element, but with�eld deviations des
ribed within the <m�eld> tag whi
h is asso
iated with mag-neti
 �eld attributes.In ADXF, as in most latti
e des
riptions, magneti
 �eld deviations are expressedas multipole series. For a bending magnet the magneti
 �eld, as well as the e�e
tof transverse positioning deviations (�x;�y), are expressed as a (
omplex) series:(By + iBx)lm = B0lm MXn=0(bn + ian)�(x��x) + i(y ��y)�n: (8.13)The maximum multipole index M is usually �xed at a moderately large value,su
h as 10, but with dynami
 memory allo
ation M 
an be made larger, if desired.When trun
ated power series (TPS) are used a highest retained power is de�ned.Multipole terms with index higher than this are simply ignored in TPS 
al
ulations.Field expansions for Bx and By individually are obtained by separating Eq. (8.13)into real and imaginary parts. The fa
tor lm has been intentionally left as a 
om-mon fa
tor on both sides of this equation. Note that this representation in
ludesthe possibility of arbitrary roll angles around the longitudinal axis, even in
ludingpurely verti
al bends. The a
tual fa
tors expressing dipole �eld deviations in theADXF �le are ~bn = B0lmbn; and ~an = B0lman: (8.14)In parti
ular, for an ideal thin se
tor bend, ~b0 = ���. For an arbitrary se
tor bendmagnet this formula be
omes �� = �2 sin�1 ~b02 : (8.15)Note that, like similar quantities introdu
ed previously, ~b0 is a \�eld integral"quantity. Bend �elds that depend on longitudinal 
oordinate s 
an be representednumeri
ally and a

urately by longitudinal segmentation.The 
oeÆ
ients in multipole series (8.13) 
an be related to other 
onventionalmagnet strength parameters as shown in Table 8.1. Real and imaginary 
oeÆ
ientsRn and In are de�ned by (x+ iy)n = Rn + iIn: (8.16)



8.3. NONLINEAR MAGNETIC FIELD EXAMPLE 119Table 8.1. De
e
tions 
aused by standard magnets and notationsfor their strengthsn Rn In ~bn ~an �x0 = � ~By �y0 = ~BxHorz. bend0 1 0 ��x 0 ���x 0Vert. bend 0 ��y 0 ��yEre
t quad1 x y q = 1=f 0 �qx qySkew quad 0 qs = 1=fs qsy qsxEre
t sext 2 x2 � y2 2xy S=2 0 �S2 (x2 � y2) S2 2xySkew sext 0 Ss=2 Ss2 2xy Ss2 (x2 � y2)Ere
t o
t 3 x3 � 3xy2 3x2y � y3 O=6 0 �O6 (x3 � 3xy2) O6 (3x2y � y3)Skew o
t 0 Os=6 Os6 (3x2y � y3) Os6 (x3 � 3xy2)Ere
t de
a 4x4 � 6x2y24xy(x2 � y2) D=24 0 � D24 (x4 � 6x2y2 + y4) D244xy(x2 � y2)Skew de
a +y4 0 Ds=24 Ds24 4xy(x2 � y2) Ds24 (x4 � 6x2y2 + y4)The fa
tors 1!, 2!, 3! entering the de�nitions of quad strength q, sextupole strengthS, o
tupole strength O, et
. are 
onventional. Noti
e, for example, the relation toSIF syntax; ~b2 = S2 = K2 � L2 : (8.17)Formulas giving transverse kinks are�x0 = � ~Byjn = �~bnRn + ~anIn; (8.18)�y0 = ~Bxjn = ~bnIn + ~anRn:Multipole expansions to express �eld nonuniformity are reasonably standardfor dipoles.2 But magnet types other than dipoles have vanishing �elds on axis,whi
h makes it ne
essary to repla
e the fa
tor B0 if an expansion like Eq. (8.13) isstill to be used. Otherwise the 
oeÆ
ients, as measures of fra
tional deviation, 
anbe pla
ed in one-to-one 
orrespondan
e with dipole �eld multipoles, but with theindi
es shifted by one. A 
ommon 
hoi
e for an (approximately) ere
t quadrupoleis to write(lmBQy ) + i(lmBQx ) = (lm �BQy�x )�x+ iy + 10�4 MXn=2(bQn + iaQn ) (x+ iy)nRn�1r �; (8.19)where Rr is a referen
e radius, su
h as 1 
m. The value of Rr and the fa
tor 10�4are normally 
hosen su
h that the numeri
al values of aQn and bQn are of order 1for \bad", low order, multipoles and mu
h less than 1 for high order multipoles inwell-designed magnets.8.3. Nonlinear Magneti
 Field ExampleThe outline of a typi
al horizontal steering magnet, viewed from downstream,is shown in FIG 8.1, whi
h also shows the same magnet rotated to steer verti
ally.The measured, midplane, verti
al magneti
 �eld By is plotted in FIG 8.2; it hasthe form By(x; y = 0) = By0(1 + b2x2 + b4x4); (8.20)2A
tually expansion (8.13) is standard only in Ameri
a. In Europe, 
oeÆ
ients are de�nedinitially in an expansion of a ve
tor potential whi
h is then di�erentiated to obtain a series similarto Eq. (8.13) but with fa
tors of n! and indi
es shifted by 1.
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Figure 8.1. A horizontal steering dipole and the same magnetrotated so that it steers verti
ally. The median-plane �eld andits multipole approximation is shown in FIG 8.2. The analyti
des
ription of the rotated �elds is given in the text.where By0 is the nominal value of By. For this magnet the dominant multipoleimperfe
tion 
oeÆ
ient happens to be de
apole b4. Referring to Table 8.1 it 
an beseen that this form 
an be 
ontinued o� the median plane byBy(x; y) = By0(1 + b2(x2 � y2) + b4(x4 � 6x2y2 + y4)): (8.21)This also yields the other �eld 
omponent;Bx(x; y) = By0(b22xy + b44xy(x2 � y2)): (8.22)Note that the �eld uniformity of the a
tual magnet is somewhat better at smallamplitudes than either multipole would give by itself. This illustrates the notun
ommon possibility that trun
ation of the multipole series 
an, by defeatingdesirable 
an
ellation, yield overly pessimisti
 �eld values. Also plotted in FIG 8.2is the \wrong �eld 
omponent" Bx(x; y = 10) plotted as a fun
tion of x, along aline displa
ed to positive y = 10mm.If the steering magnet is rotated by 90 degrees (anti-
lo
kwise to an observerlooking from downstream, so that positive horizontal de
e
tion be
omes positiveverti
al de
e
tion) the new multipole expansion 
an be obtained from series (8.21)and (8.22) by transformations suggested by the labels on FIG 8.1,�Bx(x; y) = (�Bx0)(1 + b2(y2 � x2) + b4(y4 � 6y2x2 + x4)); (8.23)By(x; y) = (�Bx0)(b22y(�x) + b44y(�x)(y2 � x2));where the nominal �eld is now Bx0 with sign opposite to By0. Hen
e we haveBy(x; y) = Bx0(b22xy � b44xy(x2 � y2)); (8.24)Bx(x; y) = Bx0(1� b2(x2 � y2) + b4(x4 � 6x2y2 + y4)):Renaming the original multipole 
oeÆ
ients b2;old and b4;old, to make this formmat
h expansion Eq. (8.13) it is ne
essary to introdu
e skew 
oeÆ
ients a2 and a4
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Figure 8.2. Midplane magneti
 �eld By in a transversely-limited ere
t dipole magnet. Curves with sextupole or de
apole\turned o�" are also plotted, as well as a 
urve showing the de-
apole 
ontribution to the o�-median-plane, \wrong �eld 
ompo-nent" Bx(x; y = 10mm) (displa
ed upwards by 250Gauss for plot-ting purposes.). The multipole 
oeÆ
ients are b2 = 6:99m�2 andb4 = �1:46 � 105m�4. When the same magnet is used for verti-
al steering the non-vanishing 
oeÆ
ients are a2 = �6:99m�2 anda4 = �1:46� 105m�4. The �eld 
al
ulation is due to Sasha Tem-ny
k.into Eq. (8.18);By(x; y) = Bx0(�a22xy � a44xy(x2 � y2)); (8.25)Bx(x; y) = Bx0(1 + a2(x2 � y2) + a4(x4 � 6x2y2 + y4)):If the �eld of the ere
t magnet is des
ribed by the series in Eq. 8.13 with theparameter set (B0 = By0; b2; a2 = 0; b4; a4 = 0) then the �eld of the same magnet,anti-
lo
kwise rotated by 90 degrees, will be des
ribed by the same series (8.13) withthe parameters set (B0 = Bx0; b2 = 0; a2 = �b2;old; b4 = 0; a4 = b4;old). In general,the multipole 
oeÆ
ients an and bn for a rotated magnet are linearly related to theold an and bn, whi
h 
oeÆ
ients depending on the angle of rotation.8.4. TRANSPORT Matrix Elements8.4.1. \Canoni
al" Coordinate De�nitions. A notation for des
ribing loworder transfer map elements was originated by Karl Brown, at Stanford, in hisprogram 
alled TRANSPORT. This program was initially devoted to spe
trometer



122 8. GENERAL TRANSVERSE MOTIONdesign but the notation has been adopted for a

elerator latti
es, and the elementsreferred to as \TRANSPORT elements" even though, by now, their de�nitionshave been slightly 
hanged. The details though purely 
onventional, have to beunderstood for any inveestigation to higher than linear order. In TRANSPORTnotation the general spatial motion of a point parti
le in a latti
e is des
ribed byit 6 displa
ements from an ideal, or design, or referen
e parti
le;x = 0BBBBBB�x1x2x3x4x5x6
1CCCCCCA � 0BBBBBB�xx0yy 0̀Æ

1CCCCCCA ; (8.26)where ` is longitudinal deviation from bun
h 
enter and the other 
omponentshave been de�ned earlier. Small amplitude propagation from point (0) to generaldownstream point in a latti
e 
an be approximated by the teading terms in a Taylorseries; xi = 6Xj=1 Rijxj(0) + Xj=16 6Xk=j Tijkxj(0)xk(0): (8.27)One detail, now obsolete, was that by TRANSPORT 
onvention, to redu
e storagerequirements and evaluation time, Brown 
hose to keep only \above diagonal" el-ements of Tijk. i.e. the k summation starts at k = j. This exploits the fa
tthat xj(0)xk(0) = xk(0)xj(0). So, when 
omparing matrix elements, one has to
he
k whether the 
orresponding o�-diagonal elements are symmetri
, or have hadabove-diagonal elements doubled and below-diagonal elements dropped.A more signi�
ant distin
tion between 
onventional matrix element de�nitions
on
erns the 
hoi
e of 
omponents for x. In order for Hamiltonian dynami
s to beapplied most dire
tly to parti
le propagation, true \
anoni
al" 
oordinates shouldbe used. But, to \geometri
ize" latti
e theory, one divides all momentum 
ompo-nents by the total momentum p0, yielding a form of \s
aled" phase spa
e. (This,basi
ally, is the sour
e of the 
 fa
tor in the de�nition of invariant emittan
e.) InUAL the longitudinal spatial 
oordinate is usually referred to as �
t whi
h has unitsof length, with the sign adjusted so 
oordinate in
reases toward the front of thebun
h. Following MAD, whi
h follows MARYLIE, the longitudinal \momentum" istaken to be �E=(p0
). Only by 
hoosing these 
oordinates to be 
anoni
al 
an therequirements of symple
ti
ity be exploited e
onomi
ally. All these de�nitions re-du
e to the original TRANSPORT de�nitions in the small amplitude, fully relativisti
limit. x = 0BBBBBB�x1x2x3x4x5x6
1CCCCCCA � 0BBBBBB� xpx=p0ypy=p0�
t�E=(p0
)

1CCCCCCA ; (8.28)From Hamiltonian point of view the �fth 
omponent is time, but for 
onvenien
e this
omponent is expressed as a distan
e by multipli
ation by 
. For fully-relativisti
motion this is, in fa
t, longitudinal displa
ement from referen
e position. The a
tualnumeri
al values of the matrix elements depend on what 
onventions have entered
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oordinate de�nitions. Fortunately the Rij elements are largely independent ofthese 
hoi
es and 
onversion of the Tijk elements is fairly straightforward.8.4.2. Linear Matrix Elements in a \Toy" Latti
e. To illustrate theevaluation of matrix elements, and to 
he
k the UAL 
ode, matrix elements for theeq tune fodo \toy" latti
e illustrated in FIG 3.1 will be worked out and 
omparedwith output from the 
ode. A

ording to Eqs. (3.11) and (3.12) the transfer matri
esthrough one 
omplete full 
ell are given byM (x)11 = � 1� 2q2l2 2l(1 + ql)�2q2l(1� ql) 1� 2q2l2� =  
os�1 �(x)1 sin�1� sin�1=�(x)1 
os�1 ! ; (8.29)M (y)11 = � 1� 2q2l2 2l(1� ql)�2q2l(1 + ql) 1� 2q2l2� =  
os�1 �(y)1 sin�1� sin�1=�(y)1 
os�1 ! ;where expressions for �(x)1 and �(y)1 were given in Eqs. (3.16).The diagonal R-matrix elements des
ribing propagation through the full
ell
an be read o� by inspe
tion;R11 = R22 = R33 = R44 = 
os�1; (8.30)and, be
ause Æ is 
onserved R55 = R66 = 1: (8.31)O�-diagonal elements areR12 = sin�1�(x)1 ; R21 = � sin�1=�(x)1 ; (8.32)R34 = sin�1�(y)1 ; R43 = � sin�1=�(y)1 :Sin
e the de
e
tion in sextupoles is quadrati
 in x and y the sextupoles do not
ontribute to R. The de
e
tions in quads depend on Æ but they are also linearin x and y, so quads do not 
ontribute to R55 and R66. But the de
e
tion in thebending element (here treated as if at a single point) is (inversely) proportional tomomentum. It is left as an exer
ise to show thatR16 = 2l(1 + 12 lq)��; R26 = (2� lq � l2q2)��: (8.33)Working out these formulas also makes a good start toward working out the Tijkelements.One 
an 
he
k theRmatrix elements with the values shown in Table 8.2. (Notethat, as displayed (for programming 
onvenien
e) this printout a
tually reads asthe transpose RT .) For this data the relevant numeri
al values werenhalf := 200lhalf := 10q := 0.061909deltheta := 0.031415
ellmu := 1.33517s1 := 0.05767s2 := -0.10939betax1 := 33.302betay1 := 7.8345



124 8. GENERAL TRANSVERSE MOTIONTable 8.2. Rij elements for a weakly-
oupled system0.231876 -0.029239 0.000000 0.000000 -0.031317 0.00000032.36138 0.231876 0.000000 0.000000 -0.822722 0.0000000.000000 0.000000 0.233472 -0.124089 0.000000 0.0000000.000000 0.000000 7.619439 0.233472 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 1.000000 0.0000000.822722 0.031317 0.000000 0.000000 -0.012908 1.000000Problem 8.1. Adjust the input parameters to eq tune fodo.adxf to repli
atethe R matrix listed as Table (8.2). The value nhalf=200 has been 
hosen to be largeenough to make this a big a

elerator, to de-emphasize the dipole fo
using e�e
t.Give two matrix elements that are very nearly equal, but would be exa
tly equal,if there were no bending elements in the FODO 
ell. The surviving x; z 
oupling�gures prominently in the following problems.Problem 8.2. Use formulas in this se
tion to derive all R matrix elementsex
ept R5i, i=1..6. Note that R66=1 and R6i=0 for i6= 6 sin
e magneti
 elements
annot 
hange the parti
le energy or, therefore, Æ.Problem 8.3. Using any matrix pro
essing devi
e you have available, su
h asprogrammable hand 
al
ulator or spreadsheet program, to 
al
ulate the determinantdetM. Is this 
orre
t? If, as a last resort, you 
hoose to work out the determinantby brute for
e 
al
ulation with a matrix-deprived 
al
ulator, be sure to observe thatthere are no o�-blo
k-diagonal elements 
oupling either x or z to y. This means they elements 
an be treated as a 2� 2 matrix and the x and z 
omponents as 4� 4.Problem 8.4. Refer ba
k to formulas in the se
tion 5.1, \Analysis of a 4� 4Symple
ti
 Matrix". Those formulas emphasized 
oupling between x and y but thesame formulas apply to the x and z 
oupling in the matrix M under study. Simplysuppress the third and fourth rows and 
olumns. Sin
e any elements dropped havingindi
es 
orresponding to x or z vanish, the remaining 4� 4 matrix 
an be analysedas in that se
tion. Evaluate the elements of the o�-diagonal submatri
es B and Cand show that the 
oupling terms of our (now 4� 4) matrix M do not shift eitherhorizontal or longitudinal tunes.Problem 8.5. Use Eq. (5.3) to derive M�1 and 
on�rm the result to be 
orre
tby evaluating M�1M. This proves (or not) that M is symple
ti
. Unit determinantis a ne
essary, but not suÆ
ient 
ondition for symple
ti
ity.Problem 8.6. Previously all but the elements R5i, i=1..6 have been 
he
kedanalyti
ally. Use symple
ity to determine the R51, R52, and R56 elements.8.4.3. Se
ond Order Matrix Elements For Individual Elements. Inworking out the Tijk elements for the full FODO 
ell one must �rst have se
ondorder expressions for the individual elements. For a thin quad the de
e
tions are�x0 = � q1 + Æ x � �qx+ Æ qx; �y0 = q1 + Æ y � qy � Æ qy: (8.34)These formulas yield se
ond order thin quad elementsT216 = q; T436 = �q: (8.35)



8.4. TRANSPORT MATRIX ELEMENTS 125
2lq

lq
l s

∆θ

q
−q

q

−q

1

2 3 4

5Figure 8.3. Labeling of points in a full 
ell of the eq tune fodo latti
e.Referring to Table 8.1, for a thin sextupole the de
e
tions are given by�x0 = �S2 (x2 � y2); �y0 = Sxy; (8.36)whi
h produ
e T211 = �S2 ; T233 = S2 ; T413 = S: (8.37)To quadrati
 order in Æ the de
e
tions in a thin dipole are given by�x0 = � ��1 + Æ = ��� +�� Æ ��� Æ2; �y0 = 0; (8.38)whi
h give T266 = ���; (8.39)as the only non-vanishing se
ond order matrix element.8.4.4. Con
atenation of Matrix Elements. Even for the simplest possiblenontrivial latti
e (namely the eq tune fodo full 
ell we are working with) it is fairlylaborious to work out even se
ond order elements. (This is known as \
on
atenat-ing" the maps sequentially.) Still it is worth working out a few to get a feel for whatis involved. Within UAL this 
on
atenation is performed using di�erential algebra(DA) on trun
ated power series (TPS) but here a more elementary approa
h is tobe used for 
al
ulating some of the elements.Labeling of intermediate points is given in FIG. 8.3. Let us work on only hor-izontal motion. To obtain the subsequent e�e
t of a de
e
tion at one point it isuseful to de�ne an \in
uen
e fun
tion" or \sine-like fun
tion" Gx(j; i) that gives thee�e
t at element position j of unit de
e
tion at position i. As this fun
tion propa-gates through subsequent elements it negle
ts all but linearized de
e
tions. Extrade
e
tions at downstream points will ea
h laun
h their own sine-like 
ontributions.
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e it is straightforward to work out all needed Gx(j; i) entries.Gx(5; 1) = 2l(1 + ql); G0x(5; 1) = 1� 2q2l2;Gx(5; 2) = 32 l + ql2; G0x(5; 2) = 1� 12ql � q2l2; (8.40)Gx(5; 3) = l; G0x(5; 3) = 1� ql;Gx(5; 4) = 12 l; G0x(5; 4) = 1� 12 ql;Gx(5; 5) = 0; G0x(5; 5) = 1: (8.41)De�ning �x0(i) to be the exa
t de
e
tion at lo
ation i, propagation from 1 to 5 isgiven by the exa
t equationsx(5) = 
os�x(1) + �(x)1 sin�1 x0(1) + 5Xi=1 Gx(5; i)�x0(i); (8.42)x0(5) = � 1�(x)1 sin�1 x(1) + 
os�1 x0(1) + 5Xi=1 G0x(5; i)�x0(i):Here a sine-like 
ontribution is added for ea
h perturbation (i.e. at sextupoles) and(if Æ 6= 0) at bends. These equations are de
eptively simple. The exa
t de
e
tions�x0(i) 
an only be obtained by exa
tly a

ounting for all pre
eeding de
e
tions.But, sin
e we are satis�ed to 
al
ulate only quadrati
 terms, it is easy to drop termsthat don't 
ontribute. Eqs. (8.42) are also somewhat ambiguous as to the treatmentof momentum dependen
e. Certainly the de
e
tions depend on momentum, but itis not 
lear whether Æ is to be treated as a parameter in a 2D approa
h or as a
omponent of x. We will follow the latter, 3D approa
h.We plan (here) to keep only linear terms, x, x0, and Æ, and quadrati
 terms x2,xx0, x02, Æ2, xÆ, and x0Æ. Of 
ourse there is also the possibility of a 
onstant termappearing. Even though it is not mathemati
ally 
onsistent, let us refer to su
h a
onstant term as also being \linear". The only possible justi�
ation for doing thisis that the presen
e of su
h a term really implies a shift of the equilibrium orbitwhi
h 
ould be used to suppress this term.There is an important physi
al distin
tion between \geometri
" terms x2, xx0,and x02 and \
hromati
" terms Æ2, xÆ, and x0Æ. The former terms are nonlinearfun
tions of the dependent variable x. They have the property of be
oming arbi-trarily large as x or x0 be
omes large. Su
h terms inevitably 
ause motion to beunstable at suÆ
iently large amplitude. (The only ex
eption to this behavior iswhen the nonlinear term is, by itself, unphysi
al. This 
an o

ur when a for
e thatis well-behaved at large amplitude, su
h as a beam-beam for
e, is approximatedby a term, su
h as a 
ubi
, whi
h diverges at large amplitude.) This leads to the
on
ept of \dynami
 aperture" that will be pursued later on. The 
hromati
 termsa
tually leave the theory linear. All su
h terms 
ould be in
orporated exa
tly bytreating Æ as a parameter rather than as a 
oordinate. This 
ould be regardedto be a more elegant, though less straightforward, approa
h. The leading e�e
tof 
hromati
 terms is to 
ause the equilibrium orbit to be displa
ed more or lessproportional to Æ and to 
ause the tunes to depend on momentum. In pra
ti
e, the
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al degradation due to Æ is often at least as serious as the degradation due tononlinear terms.Suppressing the (0)'s from the initial displa
ements, Eqs. (8.42) 
an be ex-pressed in terms of R-matrix elementsx(5) = R11 x+R12 x0 +R16 Æ + 5Xi=1 Gx(5; i)�x0(i); (8.43)x0(5) = R21 x+R22 x0 +R26 Æ + 5Xi=1 G0x(5; i)�x0(i):Apart from having introdu
ed the term linear in Æ the only new feature of theseequations is that we need retain only quadrati
 terms in the �nal summations.To 
al
ulate to this a

ura
y it is adequate to 
al
ulate them using the followingunperturbed (i.e. �rst order a

ura
y) traje
tory.x(1) = x;x(3) = (1� ql)x+ lx0 +�� l2 Æ; (8.44)x(5) = (1� 2q2l2)x+ 2l(1 + ql)x0 + 2l(1 + 12ql)�� Æ:The se
ond order de
e
tions at the various points in the 
ell are�x0(1) = q x(1) Æ � S12 x2(1);�x0(2) = ��� Æ2;�x0(3) = � 2q x(3)Æ � S2 x2(3); (8.45)�x0(4) = ��� Æ2;�x0(5) = q x(5) Æ � S12 x2(5):To get an element T1jk or T2jk for the full 
ell we substitute into Eq. (8.45) fromEq. (8.44) and then substitute the result, along with Eq. (8.40), into Eq. (8.43).Then the Tijk elements are obtained by mat
hing terms. For example the 
oeÆ
ientof x2 in the expansion of x(5) isT111 = �S1 l(1 + ql)� S2 l(1� ql): (8.46)
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ond order elements for x and x0 are:T111 = � S1 l(1 + ql)� S2 l(1� ql)2;T122 = � S2l3;T166 = � 2�� l(1 + ql)� 14S2��2 l3;T112 = � 2S2 l2(1� ql);T116 = 4q2l2 � S2�� l(1� ql);T126 = � 2ql2 � S2�� l3; (8.47)T211 = � S2(1� 3q2l2 + 2q4l4);T222 = � S2 l2(1� ql)� 2S1 l2(1 + ql)2;T266 = ���(2� 2ql� 3q2l2)� 14S2 l2��2(1� ql)� 2S1 l2��2(1 + 12ql)2;T212 = � 2S2 l(1� ql)2 � 2S1 l(1� 2q2l2)(1 + ql);T216 = 4q2l(1� 32ql)� S2�� l(1� ql)2 � 2S1 l��(1 + 12ql)(1� 2q2l2);T226 = 4q2l2 � S2 l2��(1� ql)� 4S1 l2��(1 + ql)(1 + 12ql):As mentioned earlier, some of these elements depend on the detailed de�nition ofthe 
omponents of x. Unless adjusted appropriately these elements will thereforenot agree well with values 
al
ulated by UAL.Problem 8.7. Using formulas (8.47), 
he
k several entries in the Tijk tableresulting from the pro
essing the eq tune fodo latti
e. Be sure that all parametersare identi
al to the parameters used in the earlier problem set in whi
h Rij elementswere derived. It may be ne
essary to modify the 
ode to 
ause the Tijk elements tobe evaluated and printed.



8.5. TRUNCATED POWER SERIES AND LIE MAPS 1298.5. Trun
ated Power Series and Lie Maps8.5.1. Fun
tion evolution. Trun
ated power series play an important rolein UAL. They are used to approximate the \maps" that express \output" parti
le
oordinates (at a later pla
e in the ring) in terms of \input" parti
le 
oordinates(at an initial pla
e in the ring). When trun
ated to linear order these power seriesredu
e to the elements of the traditional, Courant-Snyder, transfer matrix des
rip-tion of the a

elerator latti
e. Histori
ally, most of a

elerator physi
s has been(very su

essfully) based on analysis performed in this linear limit. But e�e
tsappearing already at a \next order of approximation" su
h as 
hromati
ity andamplitude-dependent detuning, have ways of intruding, even in elementary 
on-texts, and nonlinearity be
omes in
reasingly important as amplitudes are in
reasedto a
hieve higher beam 
urrent. As soon as any nonlinearity whatsoever is allowedto enter the des
ription the issue of symple
ti
ity, or rather la
k thereof, rears itshead. Espe
ially for hadron a

elerators, for whi
h there is essentially no truedamping, any anti-damping arti�
ially and erroneously introdu
ed through non-symple
ti
ity 
an ruin an a

elerator simulation program's ability to predi
t thelong term future.Symple
ti
 maps (typi
ally nonlinear) are also known as Lie maps. Onetherefore seeks to des
ribe parti
le traje
tories in an a

elerator by a Lie map.As with all physi
s, su
h a des
ription 
an only be approximate. For one thingthe idealized model of the a

elerator, on whi
h the \idealized map" is based,is undoubtedly ina

urate and in
omplete. A

epting this as inevitable, possiblefurther ina

ura
y results from the 
omputer program's representation of the map.It is the latter sour
e of ina

ura
y that is the subje
t of this se
tion. Maps based ontrun
ated power series 
an only approximate idealized maps. For reasons explainedin the previous paragraph, failure of symple
ti
ity is expe
ted to be more seriousthan other ina

ura
y. An important goal of UAL is to preserve symple
ti
ity, orrather to keep the inevitable failure of symple
ti
ity 
ontrollably small.There is no shortage of ex
ellent referen
e material 
on
erning Lie maps; for ex-ample Dragt[24℄ and Forest[25℄. Be
ause the subje
t is abstra
t, and is sometimes
onsidered impenetrable, this se
tion tries to give a self-
ontained, elementary dis-
ussion of the general ideas. To redu
e 
omplexity the dis
ussion will be restri
tedto two dimensional (x; p) phase spa
e, with p used instead of px. All results gener-alize naturally to higher dimensions.If (x0; p0) represents input parti
le 
oordinates, the sort of map M010 underdis
ussion expresses output 
oordinates (x1; p1) as fun
tions of input 
oordinates(x0; p0). (The prime onM010 will be explained shortly.) For linear maps this mapredu
es to a 2 � 2 matrix, the traditional transfer matrix of standard a

eleratortheory. If nonlinearity is present it is natural to introdu
e a \generalized transfermatrix"M010 in whi
h the four matrix elements are nonlinear fun
tions of x0 andp0. Usually these nonlinear fun
tions are expressed as trun
ated Taylor seris. Likeit or not, this is the representation one is for
ed to use in a 
omputer representationof the map.Consider an arbitrary fun
tion f(x; p)|one may think of f as expressing thedependen
e on position in phase spa
e of some physi
al quantity. A parti
le tra-je
tory de�nes an evolution of the parti
le 
oordinates and it is natural to inquireabout the 
orresponding evolution of f . One has to be aware of the ambiguity a
-
ompanying the distin
tion between fun
tion form and fun
tion value. For example,



130 8. GENERAL TRANSVERSE MOTIONsuppose transformationM010 yields forward formula x1 = x1(x0; p0) = ap0 + bp0and ba
kward formula x0 = x0(x1; p1) = 
x1 + dp1, and that the value of fun
tionf is de�ned to be \the �rst 
omponent squared"; at input this is x20, at output itis x21. An assignment one might have re
eived in 
al
ulus 
lass was to �gure outthe value of x20 from knowledge only of x1 and p1. Expressed in terms of output
oordinates the input value of f is (x0(x1; p1))2 = (
x1 + dp1)2. From a physi
ist'spoint of view, this is tortured usage. By the \evolved value of f" one presumablymeans x21, the square of the �rst 
omponent, evaluated at the evolved lo
ation.This is the way fun
tions of 
oordinates are to be interpreted; for examplex21 = f(x1; p1) = f(M010(x0);M010(p0)) = (ax0 + bp0)2: (8.48)Sin
e the form of the fun
tion does not 
hange, to evaluate this evolution, asEq. (8.48) shows, it is adequate to have formulas for the evolution of individual
omponents. This is the fun
tionality provided by the ve
tors of trun
ated powerseries provided, for example, by UAL. But, for theoreti
al purposes, a slightly moreabstra
t generalization of transfer matri
es is preferable. Let us de�ne transfermapM10 as operating on fun
tions (of lo
ation phase spa
e) rather than a
tingindividually on the 
omponents. That isf1 =M10f0; (8.49)whi
h is de�ned to mean the same thing as Eq. (8.48). Forest 
allsM a \
ompo-sitional map". It is a one-
omponent map a
ting in an in�nite dimensional spa
e(of fun
tions de�ned on phase spa
e.) Note that it is the value of the fun
tion thatevolves; the form of the fun
tion does not 
hange. Sin
e x0 and p0 
an, individu-ally, be thought of as fun
tions of the (x0; p0) pair, the spe
ialization ba
k to therepresentation by a ve
tor-organized set of nonlinear fun
tions is immediate. Sothere is no \physi
s" in Eq. (8.49) to distinguish it from Eq. (8.48).Assuming, as we are, that the physi
al elements in the latti
e are known per-fe
tly, the equations of motion 
an, in prin
iple, be used to determine x(s); p(s),the dependen
e on longitudinal 
oordinate s of a parti
le traje
tory. Commonlythe equations of motion are written in Hamiltonian form and knowing the equationof motion is sometimes expressed as \knowing the Hamiltonian". Be
ause of the
omplexity of a

elerator latti
es it is almost never pra
ti
al to solve the equationsof motion analyti
ally and it is rarely pra
ti
al to solve them numeri
ally. Ratherthe map through a se
tor of the latti
e is formed by 
on
atenating the maps of theindividual elements in the se
tor. This usually involves trun
ation of power series.8.5.2. Taylor series in more than one dimension and Lie maps. TheTaylor series representation of one dimensional fun
tions is se
ond nature to mosts
ientists (perhaps be
ause learned about in high s
hool as the binomial theorem?)The fun
tion of Lie maps is to generalize this des
ription to more than one dimen-sion.The theory of fun
tion evolution, as invented by Lie, has been applied a 
enturylater, in the 
ontext of 
elestial me
hani
s, by Hori[26℄ and, in the 
ontext ofa

elerator me
hani
s, by Dragt.[27℄ The dis
ussion here more nearly follows Horithan Dragt.Let (x; p) be 
oordinates in 2D phase spa
e, and f(x; p) be a fun
tion thatis arbitrary (ex
ept for possible requirements su
h as smoothness and absen
e of



8.5. TRUNCATED POWER SERIES AND LIE MAPS 131vanishing derivatives.) We wish to express the value of f at some phase spa
e pointin terms of the values of its derivatives at some other point.We know how to do this in 1D|use a Taylor series. We therefore try to redu
ethe 2D problem to 1D. Toward this end we draw a family of smooth 
urves in phasespa
e (to be referred to as a \
ongruen
e" of 
urves) that have properties: (a) thereis a 
urve through every point, (b) no 
urve 
rosses any other in the region underdis
ussion, and (
) there is a fun
tion S(x; p), not ne
essarily unique, su
h thatx(�); p(�) (the 
oordinates of the 
urve as fun
tions of a running parameter �) aresolutions of the equations dxd� = �S�p ; dpd� = ��S�x : (8.50)The fun
tion S(x; p) is su
h that its derivatives on the right hand side of thisequation de�ne, at every point (x; p), the dire
tion of the tangent to the 
urvepassing through that point. Note that S is a priori an arbitrary fun
tion, unrelatedto the dynami
s under study.Along any one of the 
urves of the 
ongruen
e, the value of arbitrary fun
tionf 
an be expressed, as a fun
tion of � , by f(x(�); p(�)). One 
an de�ne an along-the-
urve derivative operatorf�; Sg � dd� �����S = dxd� ��x + dpd� ��p = �S�p ��x � �S�x ��p: (8.51)In this notation the � is a \pla
e holder" indi
ating the operator f�; Sg is \waitingfor" a fun
tion, su
h as f , for its argument. (Ex
ept for 
hange in sign/order-of-arguments, f�; Sg is the same as the fun
tion for whi
h Dragt introdu
ed thenotation : S :.) When a
ting on fun
tion f , the result is ff; Sg � : S : (f), whi
h
an be re
ognized as the \Poisson bra
ket" of f and S.Now we 
an exploit our 
ongruen
e of 
urves for its advertised purpose ofrelating values of f at separated points This is espe
ially easy if the points happenlie on the same 
urve be
ause, on that 
urve, the fun
tion depends only on the singlevariable � . In this 
ase, let the parameters of the points that are to be related be �and �+�. It may be helpful 
on
eptually to regard � as being \small", and this maybe appropriate when dis
ussing the 
onvergen
e of the series, but no su
h formalrequirement is assumed. Expressing the Taylor series in new, un
onventional form,we havef(� + �) = (1 + � f�; Sg+ 12!�2 ff�; Sg; Sg+ 13!�3 fff�; Sg; Sg; Sg+ � � � )f(� + �)������=0;(8.52)As usual the derivatives on the right hand side must be evaluated for general � butthen � is set to zero. This is known as the Lie map 
orresponding to fun
tion S.Re
ognizing the terms in this series as 
orresponding to an exponential fun
tion,this series is traditionally abbreviated tof(� + �) = e� f�;Sg f(�); (8.53)but, to evaluate the series numeri
ally, expansion Eq. (8.52) is what is required.Furthermore the evaluation has to be trun
ated at some point. Any di�erentialalgebra pa
kage, su
h as COSY[28℄ or the ZLIB module of UAL, 
an 
al
ulate
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tions, and 
an therefore evaluate the Poisson bra
ket expressionsappearing in Eq. (8.52).This se
tion has been about 
al
ulus, no more, no less. There has been nome
hani
s, Hamiltonian or otherwise. If the signs in Eq. (8.50) had been 
hosendi�erently, say both positive, the analysis would have gone through un
hanged,ex
ept for the swit
hing the sign in the bra
ket expression, whi
h would thereforeno longer deserve be 
alled a \Poisson bra
ket".8.5.3. Symple
ti
ity of Lie map. Hori[26℄ gave a di�erent interpretation toEq. (8.53), regarding it as a 
hange of variable rather than as an evolution equation.To en
ourage this interpretation let us repla
e (x0; p0) by (�; �) and (x1; p1) by (x; p)and interpret the equation as a 
hange of variables from (�; �) 
oordinates to (x; p)
oordinates. The 
oordinates (�; �) are assumed to be \
anoni
al"|this meansthat their Poisson bra
kets re
koned using some known-to-be 
anoni
al starting
oordinates, 
all them (x0; p0), have the appropriate, 0 or 1 values. Copying fromEq. (8.52) and restoring the 2D arguments of f ;f(x; p) = (1+� f�; Sg+ 12!�2 ff�; Sg; Sg+ 13!�2 fff�; Sg; Sg; Sg+� � � )f(�; �)�����0: (8.54)Here S is, as before, an arbitrary fun
tion, and evaluation of the derivatives on theright hand side depends upon the 
ongruen
e of 
urves determined by Eqs. (8.50).(The 
rypti
 subs
ript 0 is supposed to 
onvey this.)It was mentioned earlier that either one of the 
oordinates, say �, is a satisfa
-tory version of the fun
tion f . Plugging this into Eq. (8.54) yieldsx = (1 + � f�; Sg+ 12!�2 ff�; Sg; Sg+ 13!�2 fff�; Sg; Sg; Sg+ � � � )������0; (8.55)and a similar formula relates p to �. By restoring the single variable, along-
urveparameterization (and for brevity, arraying formulas as 
omponents of a ve
tor)these equations 
an be written in a more useful form;��(� + �)�(� + �)� = �xp� = (1+� f�; Sg+ 12!�2 ff�; Sg; Sg+ 13!�2 fff�; Sg; Sg; Sg+� � �)��(� + �)�(� + �)� ������=0(8.56)This shows that the pair (x; p) are, ex
ept for \translation" along a 
urve of the
ongruen
e, the same as the pair (�; �).This has still been \just 
al
ulus", but let us now use the assumption that (�; �)are 
anoni
al variables of a Hamiltonian system. Then Eq. (8.56) provides a 
hangeof variables to new variables (x; p). Now the amazing part; sin
e the (�; �) variablesare, by hypothesis, 
anoni
al through the region under dis
ussion and (x; p) are just\translations" of (�; �), transformation (8.56) is ne
essarily 
anoni
al.Hori[26℄ goes on to develop a perturbation theory based on this formulism.He regards the fun
tion S as a kind of \generating fun
tion" (though it must notbe 
onfused with a \Goldstein" generating fun
tion) and goes on to develop aniterative pro
edure to determine S and new 
oordinates in as
ending powers of a\small parameter" of the perturbation. None of this is relevant for UAL. Whatis relevant is that transformations generated by Lie maps are symple
ti
. By
ontrolling the number of terms retained in the power series evaluation one 
an
ontrol (or even make negligible) the degree of nonsymple
ti
ity.



8.5. TRUNCATED POWER SERIES AND LIE MAPS 1338.5.4. Hamiltonian maps. Returning to the traje
tory evolution interpre-tation of our equations, the Taylor series derived so far might seem to be uselessfor the following reason: it relates only phase spa
e points lying on the same 
urveand no pres
ription has been given for 
hoosing the fun
tion S(x; p) su
h that twoarbitrarily 
hosen points lie on the same 
urve. But, as it happens, we do not haveto insist that the points be arbitrarily 
hosen. We are interested in points lying ona single parti
le traje
tory. One visualizes this traje
tory as a three dimensional
urve in the (x; p; t) spa
e, where t is time, or if one prefers, a longitudinal 
oordi-nate. Proje
ted onto the (x; p) plane the 
urve passing through input point (x0; p0)ne
essarily passes through output point (x1; p1). The orbit is determined by solvingHamilton's equations; dxdt = �H�p ; dpdt = ��H�x : (8.57)where H(x; p) is the Hamiltonian fun
tion. Noti
e that these equations are iden-ti
al to Eqs. (8.50) if the fun
tion S in those equations is repla
ed by H (and �by t.) This magi
ally eliminates both limitations of the formalism of the previousse
tion. The map has be
omef(t0 + t) = et f�;Hg f(t0): (8.58)(As explained above, when written in this form, the notation is too 
ompressedfor the required operations to be exhibited expli
itly, as they are in Eq. (8.52).)Repla
ing f by the individual 
oordinates, as before, yields�x(t0 + t)p(t0 + t)� = et f�;Hg �x(t0)p(t0)� : (8.59)Generalized to six dimensions and trun
ated to arbitrary order, Eq. (8.59)is a form in whi
h the evolution of a parti
le traje
tory 
an be simulated in a
omputer. If Hamiltonian H is only approximate the evolution it produ
es 
an beonly approximate, but any failure of symple
ti
ity 
an be redu
ed by keeping moreterms in the expansion.8.5.5. Dis
rete maps. Eq. (8.59) represents a 
ontinuous mapping|the ex-pli
it appearan
e of t invites taking the limit t ! 0. Similarly the o

uren
e offa
tor � in Eqs. (8.56) invites the limit �! 0 and a 
ontinuous interpretation. But,if the � fa
tor is subsumed into the S fun
tion, Eqs. (8.53) represents a dis
retemap, potentially propagating the parti
le 
oordinates through a se
tor of arbitrarylength.For example 
onsider the fun
tionS = S30x3 + S31x2p+ S32xp2 + S33p3: (8.60)Substitution into Eq. (8.56) yields propagation (x; p)! (x0; p0)x0 = x+ fx; Sg+ � � � = x+ S31x2 + 2S32xp+ 3S33p2 + : : : ; (8.61)p0 = p+ fp; Sg+ � � � = p� 3S30x2 � 2S31xp� S32p2 + : : : :This map is spe
ial in that it is an identity map to linear order. It 
ould thereforenot represent arbitrary propagation through a general se
tor. But, after \fa
toringout" the linear part of a general map the remaining part 
an be redu
ed to Eq. (8.60)by trun
ation to quadrati
 order.Perhaps the pro
edure just mentioned 
an be reversed? Suppose that prop-agation formulas (8.61) have been determined by applying some integrator to an
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e se
tor. If the se
tor has more than a few nonlinear elements su
ha determination would have required trun
ation, for example to quadrati
 order,as in Eq. (8.61). The integrator will therefore have determined the 
oeÆ
ients inexpansions x0 = x+X20x2 +X21xp+X22p2 + : : : ; (8.62)p0 = p+ P 20 x2 + P 21 xp+ P 22 p2 + : : : :For these equations to be 
onsistent with Eqs. (8.61) the six equations obtained byequating 
oeÆ
ients must be satis�ed. Regarding the four S3i 
oordinates as theunknowns, they 
an be determined from just four of the equations. The remainingtwo equations will not, in general, be satis�ed. But, if the integrator determiningseries (8.62) were symple
ti
 (to the order of terms retained), then these equationswould be redundant and the redundant equations would ne
essarily be satis�ed.These equations 
an therefore be applied as a 
he
k on the symple
ti
ity of theintegrator.Assuming the integrator is symple
ti
, so that the redundant equations (to qua-drati
 order) are satis�ed, the fun
tion S will have been determined to 
ubi
 order.A fun
tion S determined in this way 
an be 
alled a \pseudo-Hamiltonian". Byusing this fun
tion in Eq. (8.56), and retaining more terms in the series, propagationformulas for the 
oordinates 
an be obtained to higher than quadrati
 order. Su
hformulas would be useless for studying large amplitude features su
h as resonantislands, onset of 
haos, or dynami
 aperture. But for \intermediate" amplitudetraje
tories the formulas 
an represent propagation that is both \
orre
t to qua-drati
 order" (for example modeling 
hromati
ity) while being symple
ti
 to higherthan quadrati
 order.This pro
edure 
an be illustrated by expli
it example. Consider a mapx2 =Mx1 �M(1) x1; (8.63)where M(1) is the ne
essarily symple
ti
, linearized matrix approximation of themap. (Sin
e x represents the 
omponents as a ve
tor, we may as well take it torepresent the 
oordinates in 6D phase spa
e.) De�ne fM su
h thatx2 = fMM(1) x1; or fM =MM(1)�1: (8.64)Suppose that M has been obtained to some order of a

ura
y, say M(2). Then fMis known to 
orresponding order. Let S be determined su
h thatfM(2) =M(2)M(1)�1 = 1 + f�; Sg: (8.65)De�ning fM(3) = 1 + f�; Sg+ 12 ff�; Sg; S; g; (8.66)then M � fM(3)M(1); (8.67)is symple
ti
 to higher order than was fM(2).Quadrupole end �eld 
orre
tion is an example of this pro
edure. Sin
e thelongitudinal interval for this 
orre
tion was taken to have zero length, terms beyondthe �rst vanish be
ause they are proportional to higher powers of �.
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h Evolution Using Maps. In Se
tion 7.4, whi
h dis
ussed ade
oheren
e/re
oheren
e simulation, it was shown that parti
le evolution 
ould bedes
ribed either by element-by-element tra
king, or by map tra
king. It would bejust as logi
al for that example to appear here as there.Simulation 8.1. Run the de
oheren
e/re
oheren
e example using the map tra
k-ing option for various order of trun
ated power series (TPS). For the results shownin FIG 7.6 the order was 3, whi
h is also known as \o
tupole order".8.6. Thin and Thi
k Elements, and Symple
ti
ity8.6.1. Pure Ki
ks. Elements that are thin enough that they 
an be repre-sented by dis
ontinuous slope 
hanges (or kinks) at �xed position s are known as\ki
ks" and 
omputer 
odes that employ only ki
ks are known as \ki
k 
ode". Therationale for the existen
e of ki
k 
odes is that, 
onsistently employed, they preservesymple
ti
ity. The transfer matrix for su
h an element isMki
k = � 1 0f(x) 1� ; (8.68)where f(x) is an arbitrary fun
tion of transverse position x. The Ja
obean for thismatrix is 1, independent of x. Unity determinant (for all x is the ne
essary andsuÆ
ient 
ondition for a 2� 2 matrix to be symple
ti
. Furthermore a 4 � 4 ki
k
an be de
omposed into a produ
t of two 2� 2 ki
ks. It follows that ki
ks alwayspreserve symple
ti
ity.Another way of assuring that a transformation is symple
ti
 is to derive itexa
tly, rigorously respe
ting Maxwell's equations and Newton's law (appropriatelygeneralized to relativisti
 me
hani
s).8.6.2. Pure Drifts. Sin
e ki
k elements are unphysi
al idealizations, onewould greatly prefer to represent a

elerator elements by symple
ti
, thi
k elementmatri
es. Unfortunately the number of element types for whi
h su
h matri
es areknown is quite small. Even the transfer matrix for a driftMdrift = �1 `0 1� ; (8.69)is symple
ti
 only for appropriate transverse 
oordinates. This matrix 
orrespondsto the exa
t transformation equations for a drift, whi
h arex1 � x0` = dxds ���0; dxds ���1 = dxds ���0; px1 = px0: (8.70)Assuming (unrealisti
ally) that there is no verti
al momentum, and re
alling thatpx is the a
tual transverse momentum divided by the total momentum p0, one seesfrom a momentum ve
tor diagram thatdxds = pxp1� p2x : (8.71)But, knowing that x and px are 
anoni
ally 
onjugate variables, one sees that xand dx=ds 
annot be. So, without taking 
are to in
lude the square root fa
tor,even a drift 
an be non-symple
ti
. Be
ause px << 1, one is sometimes justi�edin negle
ting the denominator fa
tor. But in a hadron a

elerator, where parti
les



136 8. GENERAL TRANSVERSE MOTIONrotate for billions of turns, even the tiniest of failures of symple
ti
ity 
an givetotally wrong results.8.6.3. Drift-Ki
k Split. We have seen that pure ki
ks are naturally sym-ple
ti
 and that, with 
are, drifts 
an be treated symple
ti
ally. For a purelynumeri
al 
al
ulation of a parti
le traje
tory in an arbitrary magneti
 �eld it isnatural to introdu
e \symple
ti
 integration algorithms" in whi
h the de
e
tionsare 
on
entrated in (in�nitely) thin elements and the thi
k dimension is �lled upwith drifts. The simplest su
h algorithm is known as drift-ki
k split. A thi
k ele-ment is segmented into two or more drifts with a ki
k sandwi
hed at ea
h interfa
e.This approa
h was introdu
ed in TEAPOT[6℄ and it is do
umented further in theTEAPOT manual. This 
ode has been ported to C++ as one of the propagationalgorithms available in UAL.8.6.4. Symple
ti
 Propagation Through Se
tor Bends . Other than fordrifts, the only stati
 magneti
 elements for whi
h exa
t, thi
k element equationsare available are uniform �eld magnets. The traje
tories are perfe
t 
ir
les or, inthree dimensiona, heli
es. Even in this 
ase, �nding the exa
t exit 
oordinatesrequires the use of quite 
ompli
ated geometry. In the following 
al
ulation wehave the temerity to work out in detail a result due to E. Forest, whi
h he states(without derivation) in his Beam Dynami
s book.To meet the \exa
tness" requirement for a thi
k element one needs analyti
expressions for output 
oordinates as fun
tions of input 
oordinates. To meet therequirement of polymorphi
 des
ription with 
oordinates given either as numbersor as trun
ated power series (TPS), these formulas need to be expli
it and free frombran
hed evaluation routes. For a �nite se
tor bend of angle�� these 
onditions aremet by the following formulas, whi
h relate to the geometry exhibited in FIG 8.4.These formulas are given as Eqs. (12.18) of Forest's book.To redu
e 
omplexity a bit the �gure illustrates pure radial (typi
ally hori-zontal) motion. (i.e. in the plane of symmetry of the magnet.) This 
an also beregarded as the proje
tion onto the magnet midplane of a 
ompletely general orbitof momentum p0(1+ Æ). By 
onventional de�nition of transverse \momentum" 
o-ordinate px, if the nominal momentum is p0, then the a
tual transverse momentumis pxp0. With verti
al momentum (s
aled the same way) given by py, the totalin-plane momentum is pk =q(1 + Æ)2 � p2y (8.72)whi
h is independent of s. Using this, (radial) entran
e angle �x and the exit angle�x(s) are given in terms of momentum 
omponents bysin �x = pxpk ; sin �x(s) = px(s)pk : (8.73)The 
oordinate s, ar
 length along the design orbit, satis�es� = � s�
 ; (8.74)where �
 is the design bend radius. As shown in the �gure, the exit momentum
omponents, expressed in the appropriate lo
al exit frame, arepx(s); py(s) = py; ps(s) =q(1 + Æ)2 � p2y � p2x(s): (8.75)
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Figure 8.4. Shown along with the 
entral traje
tory is the pro-je
tion of a general traje
tory onto the midplane of a se
tor bendof nominal bend angle ��. With the total parti
le momentumbeing (1 + Æ)p0, where p0 is the 
entral momentum, the s
aledmomentum is 1 + Æ. (A ve
tor of magnitude p0 would have unitlength in the �gure.) Sin
e verti
al and horizontal motion is un-
oupled it is valid to regard the proje
ted 
urve as the traje
toryof a parti
le a
tually lying in the midplane of the magnet but hav-ing momentum pk = q(1 + Æ)2 � p2y. This quantity is 
onservedalong the orbit. The radial 
oordinates at the magnet fa
es aredispla
ement x and (in units of p0) radial momentum px.Expressed in the entran
e frame 
oordinates, with origin at the apex of the se
torbend, the 
oordinates (Z;X) of the 
enter of 
urvature of the displa
ed traje
toryare (Z; X) = (�
px; x+ �
(1� ps)); (8.76)and the equation of the exit fa
e of the se
tor bend isz 
os� + x sin� = 0: (8.77)
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ular (dire
ted) distan
e from the 
enter of 
urvature to this line isd = Z 
os� +X sin�: (8.78)From the right triangle with vertex at (Z;X) we get output angle �x(s) to be givenby sin �x(s) = d�
pk : (8.79)In view of the se
ond of Eqs. (8.73), after simpli�
ation, this gives the lo
ally-radialoutput momentum 
omponent to bepx(s) = px 
os� + � x�
 + 1� ps� sin�: (8.80)Noti
e that this has automati
ally re-expressed the radial momentum in the lo
alFrenet frame of referen
e appropriate at the exit fa
e of the magnet. This is Forest'sEq. (12.18.b). It meets the exa
tness requirement as well as the TPS des
riptionrequirement by giving one output 
oordinate as an expli
it analyti
 fun
tion of theinput 
oordinates. Subsequent formulas 
an be regarded as expli
it even if theydepend on px(s). In parti
ular, ps(s) is given by the third of Eqs. (8.75). As hasbeen impli
it in the dis
ussion so far, the fra
tional momentum maps a

ording toÆ(s) = Æ.The a
tual ar
 length l(s) and the visible-in-�gure ar
 length lk(s) are relatedby lk(s)=l(s) = pk=(1 + Æ). The total bend angle # 
an be determined either interms of lk(s) and radius of 
urvature or in terms of the angles visible in the �gure;l(s)�
(1 + Æ) = lk(s)�
pk = �# = ��� �x(s) + �x: (8.81)Solving for l(s) yieldsl(s) = �
(1 + Æ)���� sin�1 px(s)pk + sin�1 pxpk �: (8.82)Verti
al evolution is given similarly byy(s) = y + py�
���� sin�1 px(s)pk + sin�1 pxpk �: (8.83)All that remains is to determine x(s) using the same output right triangle;�
 + x(s) = �
pk 
os �x(s) + Z sin(��) +X 
os�: (8.84)Re-expressed, this be
omesx(s) = �
�� 1 + ps(s)� px sin� + � x�
 + 1� ps� 
os��: (8.85)All of the needed output 
oordinates have now been obtained.8.7. Identifying Sour
es of Nonlinearity by Spe
tral AnalysisThis se
tion 
an be regarded as an extension, to nonlinear motion, of 
hap-ter 4, in whi
h analysis of diagnosti
 instrumentation was dis
ussed. The presentemphasis is on identifying sour
es of nonlinearity. The idea is to 
orrelate peaksobserved in spe
tra, derived from multiturn BPM output, with the sour
es whi
h
ould produ
e them. These spe
tra 
an be obtained using a hardware spe
trumanalyser or by Fourier transformation of digitized BPM turn-by-turn data.



8.7. IDENTIFYING SOURCES OF NONLINEARITY BY SPECTRAL ANALYSIS 139Table 8.3. Fourier Expansions and Labels for Nonlinear Motion��mxmy � 
os((mx�x +my�y)2�t); ��mx�my � ��mxmy + ��mx�my ; 1 = ��00x = ax 
os(2��xt) = ax��10y = ay 
os(2��yt) = ay��01x2 � y2 = a2x2 ��20 � a2y2 ��02 + a2x � a2y2 ��002xy = axay��1�1x3 � 3xy2 = a3x4 ��30 � 3axa2y4 ��1�2 + 3a3x � 6axa2y4 ��103x2y � y3 = � a3y4 ��03 + 3a2xay4 ��2�1 � 3a3y � 6a2xay4 ��01x4 � 6x2y2 + y4 = a4x��40 � 6a2xa2y8 ��2�2 + a4y4 ��04+ 4a4x � 12a2xa2y8 ��20 + 4a4y � 12a2xa2y8 ��02 + 3a4x � 12a2xa2y + 3a4y8 ��004x3y � 4xy3 = 4a3xay8 ��3�1� 4axa3y8 ��1�3 + 12a3xay � 12axa3y8 ��1�1 (8.86)For suÆ
iently small amplitudes all nonlinear terms be
ome negligible and themotion is des
ribed approximately by the pure (un
oupled by preferen
e) beta-tron motions xt = ax 
os(2��xt) and yt = ay 
os(2��yt) for t = 0; 1; : : : . These\fundamental os
illations" 
an be regarded as the \zero'th" approximation to themotion. These time dependen
ies, and the time dependen
ies they produ
e whennonlinear elements are present, are shown in Table 8.3. Like quantum numbers inspe
tros
opy, integers mx and my 
an be used to label observed lines. The notation��mxmy in the table, having x-harmoni
 number mx on top and y-harmoni
 numbermy on the bottom, is intended to help in assigning labels to spe
tral lines. Whenlongitudinal motion is in
luded another, similar index, ms, is introdu
ed.A nonlinear element 
an be treated perturbatively, with the de
e
tion it 
ausesproportional to a quadrati
 or higher power of the fundamental os
illations am-plitudes. Sin
e the small amplitude motion is harmoni
 these extra 
ontributionsare periodi
 with the same periods, and they 
an be expessed as \nonlinear har-moni
s", also known as \higher harmoni
 frequen
ies" of the fundamental os
illa-tions. Exploiting this feature, a sextupole de
e
tion proportional to x2 appearsas a double-frequen
y motion|though with aliasing this line may appear at aninitially-unexpe
ted lo
ation. O
tupole de
e
tions proportional to x3 
ause tripled(and other) lines. Other nonlinear de
e
tions, for example proportional to xy, 
analso 
ause \mixing" (sum and di�eren
e frequen
ies).The power of Fourier expansion is to \linearize" this weakly nonlinear motion.In lowest order of perturbation theory, a nonlinear element 
ontributes as if linear,but driven at sum and di�eren
e frequen
ies of the fundamental frequen
ies. Higherorder perturbation theory 
an be des
ribed by iterating this pro
edure, but the
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s proliferate badly, and the spe
tra rapidly be
ome uniterpretableas the basi
 amplitudes in
rease. Eventually the motion be
omes 
haoti
.There is one 
ase in whi
h pro
eeding to se
ond order perturbation theory isjusti�ed. It is the (quite 
ommon) 
ase in whi
h a nonlinear element has no e�e
tin lowest order. An example of this is the absen
e of tune shift due to sextupolesin lowest order. To 
al
ulate amplitude-dependent tune shifts it is ne
essary toin
lude o
tupoles in �rst order and sextupoles in se
ond order.Observing whi
h peaks are present, and with what strength, and then 
orre-lating with Fourier expansions of parti
ular multipole �elds 
an give 
lues as towhi
h �elds are 
ausing the motion to be nonlinear. Conversely the importan
eof nonlinearities known (from magneti
 measurements) 
an be assessed. For in-terpreting spe
tra in this way it is ne
essary to write Fourier expansions of themultipole expressions for de
e
tions �x0 and �y0 appearing in Table 8.1. Thefollowing formulas are needed for those expansions:Sin
e the fa
tors ax and ay are presumeably, in some sense, \small", the dom-inant lines tend to be those having minimal powers of these fa
tors.The 
onvergen
e (i.e. the extent to whi
h su

eeding terms be
ome less im-portant) of the multipole series as a formula for magneti
 �eld at displa
ement ax
an be assessed by the numeri
al value of ratios (bn+1an+1x )=(bnanx) = (bn+1=bn)ax.But to estimate the absolute in
uen
e on a

elerator performan
e of a parti
ularmultipole an estimator like that 
al
ulated in Problem 8.10 is needed. In pra
ti
e,as mentioned before, there is a strong tenden
y for lower powers of an and bn todominate.Example spe
tra extra
ted for the toy latti
e general fodo rf are shown inFIG 8.5. These plots were obtained by using the graphi
s program xmgra
e topost-pro
ess turn-by-turn data produ
ed by UAL. (This uses the PERL interfa
ethat is being in the pro
ess of being phased out.) The 
ode is run by$ 
d /home/ualusr/USPAS/ual1/examples/UI_Xmgr$ perl shell_USPAS.plThe lower three graphs show the horizontal, verti
al and longitudinal turn-by-turndata and the upper graphs are the 
orresponding tune spe
tra. Low order tune linesare shown, labeled with triplets (mx;my;mz). The fundamental lines are shownby solid verti
al lines. They are lo
ated by �rst �nding the maxima in the threespe
tra. From these tunes, tune 
ombinations are formed as mx�x+my�y +ms�s,where mx, my, and ms are small integers. Furthermore the tune lines have to be\unaliased" into the range from 0 to 0:5. (This amounts to �nding the absolutedeviation from the nearest integer.)Some features that 
an be observed in these spe
tra are:� The fundamental tunes are Qx = 0:26, Qy = 0:28, Qs = 0:08.� There is a strong 1; 0; 0 signal visible in the longitudinal spe
tum. This iseviden
e of 
oupling between horizontal and longitudinal.� A re
ipro
al 0; 0; 1 line is visible in the horizontal spe
trum.� The verti
al signal is almost pure harmoni
. Absen
e of 1; 0; 0 signalimplies the absense of x; y 
oupling.� There is a weak 2; 0; 0 line in the horizontal spe
trum. This is due to thepresen
e of 
hromati
ity sextupoles.� The line 1;�1; 0 in the verti
al spe
trum 
omes, presumably, from thesame sour
e.
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an be obtained using the UAL player.
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Table 8.4. Spe
tral lines in X-spe
trum (horizontal) 
aused by parti
ular multipoles. ax and ay are \fundamental"amplitudes. There are also numeri
al fa
tors, of order one, not shown.mx 0 1 0 2 1 0 3 2 1 0 4 3 2 1 0my 0 0 1 0 �1 2 0 �1 �2 3 0 �1 �2 �3 4b0 1a0b1 axa1 ayb2 a2x; a2y a2x a2ya2 axayb3 a3x; axa2y a3x axa2ya3 a2xay; a3y a2xay a3yb4 a4x; a2xa2y; a4y a4x; a2xa2y a2xa2y; a4y a4x a2x; a2y a4ya4 a3xay; axa3y a3xay axa3yTable 8.5. Spe
tral lines in Y -spe
trum (verti
al) 
aused by parti
ular multipoles. ax and ay are \fundamental"amplitudes. There are also numeri
al fa
tors, of order one, not shown.mx 0 1 0 2 1 0 3 2 1 0 4 3 2 1 0my 0 0 1 0 �1 2 0 �1 �2 3 0 �1 �2 �3 4b0a0 1b1 aya1 axb2 axaya2 a2x; a2y a2x a2yb3 a2xay; a3y a2xay a3ya3 a3x; axa2y a3x axa2yb4 a3xay; axa3y a3xay axa3ya4 a4x; a2xa2y; a4y a4x; a2xa2y a2xa2y; a4y a4x a2x; a2y a4y
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144 8. GENERAL TRANSVERSE MOTIONProblem 8.8. Show that the e�e
t of 
losed orbit displa
ements �x and �yare to produ
e \feed-down" su
h that the presen
e of multipole 
oeÆ
ients bn andan leads to multipolesb(�x)n�1 = �nbn�x; a(�x)n�1 = �nan�x; b(�y)n�1 = nan�y; a(�x)n�1 = �nbn�y:(8.87)Problem 8.9. The Courant-Snyder invariant � of a parti
le exe
uting onedimensional betatron os
illations is given by 
xx2 + 2�xxx0 + �xx02. With properaxis-s
aling, if the motion is linear, the point in phase spa
e with 
oordinates (x; x0)lies on a 
ir
le and rotates at uniform rate. The e�e
t of a de
e
tion x0 ! x0+�x0will sometimes be to in
rease � and sometimes to de
rease it. Show however thaton the average there is a net in
rease given by< �� >= �x(�x0)2: (8.88)Problem 8.10. Consider the one dimensional motion of a parti
le with am-plitude ax through a bending element that bends the 
entral traje
tory through angle��. The �eld nonuniformity of the magnet is des
ribed by a multipole 
oeÆ
ientbn. Show that he de
e
tion su�ered is bnanx�� times an os
illatory fa
tor in therange from �1 and 1. Continuing to drop a numeri
al fa
tor of order 1, show thatthe average fra
tional in
rease in the Courant-Snyder invariant in passing throughthe magnet is < �� >� � (bnan�1x �x��)2 � (bn��)2�n�12x � n+12x Nn�1x : (8.89)where ax is quoted as N�x where �x is the horizontal beam emittan
e and �x =p�x�x is the r.m.s. horizontal beam size. This formula is not valid for n = 1. Whynot?Problem 8.11. Che
k all (or at least many of) entries in Table 8.4.Problem 8.12. An ere
t quadrupole is misaligned from its design orientationby a small roll angle �� << 1 around the longitudinal axis. In its natural (x0; y0)
oordinates, the quadrupoles multipole expansion isBy0 + iBx0 = b01(x0 + iy0); (8.90)and in the design latti
e 
oordinates it isBy + iBx = (b1 + ia1)(x+ iy): (8.91)Show, to lowest order in ��, thatb1 = b01; a1 = �2b01��: (8.92)In modeling the e�e
t of a misaligned quad the fa
tor of 2 in Eq. (8.92) must notbe overlooked. A mnemoni
 for remembering this fa
tor is that a quadrupole needonly be rotated through angle �=4 (not �=2) for pure b1 to be
ome pure a1.Problem 8.13. Perform the numeri
al 
al
ulations (a

ounting for aliasing ifne
essary) to a

ount for the lo
ations of spe
tral lines labeled 200, 001, 10-1, and10+1, in the Qx plot of FIG 8.5.



CHAPTER 9Colliding Beams9.1. The 
ollider.adxf latti
eThe 
ollider.adxf latti
e is derived from the general fodo latti
e, via thera
etra
k latti
e. The long straight se
tions of ra
etra
k are repla
ed by \lowbeta opti
s" appropriate for a
hieving maximum luminosity from given beam 
ur-rents. The elements making up the irtoar
 transition se
tion are shown in FIG 9.1,and their parameter values are listed next; the initial numeri
al values are su
h thatlfa
=1.0 m.<
onstant name="lfa
" value="s
ale*20*nhalf/100"/><
onstant name="l01" value="1.397753023209*lfa
"/><
onstant name="l12" value="1.497222048429*lfa
"/><
onstant name="l23" value="12.177703590031*lfa
"/><
onstant name="l34" value="5.0*lfa
"/><
onstant name="l45" value="5.0*lfa
"/><
onstant name="l56" value="5.0*lfa
"/><
onstant name="lqir" value="0.001"/><
onstant name="qir1" value="-1.05/lfa
"/><
onstant name="qir2" value="0.5494/lfa
"/><
onstant name="qir3" value="-0.33/lfa
"/><
onstant name="qir4" value="0.1837/lfa
"/><
onstant name="qir5" value="-0.2389/lfa
"/><
onstant name="qir6" value="0.1194/lfa
"/><se
tor name="irtoar
"><frame ref="mkst"/><frame ref="dr01"/><frame ref="quadir1"/><frame ref="dr12"/><frame ref="quadir2"/><frame ref="dr23"/><frame ref="quadir3"/><frame ref="dr34"/>
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Figure 9.1. Lengths and strengths of interse
tion region opti-
al elements. Lens symbols and quad strengths appropriate forhorizontal (
onvex is fo
using) are shown and all Qi are positive.145



146 9. COLLIDING BEAMS<frame ref="quadir4"/><frame ref="dr45"/><frame ref="quadir5"/><frame ref="dr56"/><frame ref="quadir6"/></se
tor>Not shown in this listing are the regular ar
 quadrupole half-strengths; q1 =0:1194 and q2 = �0:1199. The latti
e fun
tions for the latti
e with these valuesare shown in FIGs 9.2, 9.3, and 9.4. One sees from FIG 9.2 that the IR region iswell mat
hed to the ar
s (whi
h are the same as in the ra
etra
k latti
e). Butthe presen
e of small beta fun
tions at the interse
tion point (IP) 
ause high betavalues nearby. This follows inexorably, as 
an be seen, for example, from Table 2in Chapter 2. Sin
e the latti
e is mirror symmetri
 about the IP's, �x� = �y� = 0at the IP. Here the use of asterisk to spe
ify IP is a traditional notation. It thenfollows from Eq. (3.4) that�x1 = �x� + l201�x� ; �y1 = �y� + l201�y� : (9.1)The opti
s has been adjusted so that �y� << �x� . Eqs. (9.1) then shows that �y1in
reases mu
h more rapidly than �x1 , as s in
reases from zero. This requires the�rst quad, Q1, to be verti
ally fo
using, as shown. (The 
on
ave/
onvex symbolsrefers to horizontal fo
using 
hara
ter in this �gure, and all Qi are taken to bepositive.) FIG 9.4 
on�rms these features.Quadrupole lens opti
s is too 
ompli
ated to be taken lightly, as you will dis-
over if you start 
hanging parameters re
klessly, but 
ertain features of a beamlinelike this are subje
t to quite simple treatment. One good plan is to work with\doublets" whi
h, together, behave something like glass lenses by having the same
hara
ter (either fo
using or defo
using) in both x and y planes.The dominant visual feature of these IR opti
s is that l23 is mu
h greater thaneither l01 or l12. This, plus the mat
h to the FODO ar
 opti
s, is what leads tosmall beta fun
tions at the IP. There is a \beam waist" at the origin. This is as
lose to a point fo
us as ever o

urs in latti
e opti
s. Basi
ally the Q1, Q2 doubletfo
uses rays emerging from the origin to an image somewhere in the vi
inity ofQ3 or beyond. With l23 assumed large, we may as well assume that the Q1, Q2doublet fo
uses \at in�nity". In other words we want this doublet to produ
e pointto parallel fo
using.Problem 9.1. Let Mx and My stand for the 2� 2 matri
es governing propa-gation from the origin to point 2. Show that, for point to parallel fo
using, we needMx22 = My22 = 0. Work out these matrix elements and then, assuming l01 and l12are known, show that the doublet quadrupole strengths areQ1 = 1l01 r l01 + l12l12 ; Q2 =s 1(l01 + l12)l12 : (9.2)Finally, show that the entries in the 
ollider latti
e are in rough agreement withyour values; (a
tually somewhat greater in magnitude be
ause we don't really wantthe fo
us as far as in�nity.)In pra
ti
e l01 is 
hosen to be as short as possible, 
onsistent with �tting therequired parti
le dete
tor into that drift, and allowing for Q1 itself to use some of
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e. Typi
ally Q2 has design similar to Q1 and is butted right up against Q1,e�e
tively �xing l12 � l01.Commonly it is the large value of �y1 that �xes the minimum a
hievable valueof �y� . Viewing FIG 9.4 let us assume that the opti
s has been adjusted to satisfythe 
onstraint �y1 < �max = 200m. From Eq. (9.1), treating the leading term asnegligible, we therefore have �y� > l201�max : (9.3)Though quad Q1 restrains �y, it 
auses �x to in
rease even more rapidly in theregion from Q1 to Q2. This in
rease is stopped by Q2 but, typi
ally, not before �xhas in
reased until it is equal, or almost equal, to �max. For simpli
ity, we take thisto be the same as the maximum tolerable verti
al value. (i.e. �x2 � 200m.)Problem 9.2. With Q1 and Q2 given by Eqs. (9.2), �nd the value of �x� su
hthat �x2 = 200m, under the (reasonable) requirement that the maximum of �x o

ursat Q2. FIG 9.4 shows this assumption is quite a

urately 
orre
t, but you 
annotexpe
t 
omparably good agreement for the value of �x� sin
e other approximationshave been made.FIG 9.4 shows that the opti
s is roughly mat
hed to the ar
 opti
s already atQ4. In fa
t, to make the mat
hing 
learer, Q4 
ould be treated as two thin lensesQ41 and Q42, butted together, with Q42 = q1. With this observation, and notingthat Q5 = 2q2 and q6 = q1, one sees that the opti
s are quite a

urately mat
hedalready at a point \part way through" Q4.What this has meant is that, with all lengths �xed, as well as strengths Q1 andQ2, the only adjustable parameters left are Q3 and Q41. All Twiss fun
tions are
onstrained (by the need to mat
h the ar
 opti
s) at the boundary between Q41and Q42. The other 
onstraints that must be met are �x� = �y� = 0. These twoequations �x Q3 and Q41.If all lengths are held �xed, by the arguments given so far, the entire opti
s is�xed, at least approximately. There is little point, therefore, in trying to adjust theIP beta fun
tions by just altering quadrupole strengths for the simple IR 
ollider
on�guration. It is typi
ally diÆ
ult (but not impossible, using rails,) to 
hangedrift lengths in a storage ring. From the arguments given, one sees that this makesit quite diÆ
ult to 
hange the beta-star values using the 
ollider interse
tionregion opti
s.Of 
ourse one 
an vary all lengths in the entire ring. By equations like Eq. (3.17),s
aling all lengths up and all quadrupole strengths down in the same ratio, will leavethe opti
s, in
luding the IR opti
s, mat
hed. The lengths �x� and �y� would there-fore be redu
ed in the same ratio. But one never has the luxury of s
aling the
ir
umferen
e of a storage ring, so this alteration is impra
ti
al.Problem 9.3. In spite of its impra
ti
ality, s
ale all lengths in the 
olliderlatti
e, and s
ale all quad strengths by the inverse fa
tor. Use the simulation 
ode todetermine the new opti
s and 
on�rm the s
aling behavior des
ribed in the previousparagraph.If one must 
hange beta-star values, the most promising pro
edure is to alterl01 and l12 by the same (preferably fairly 
lose to 1) fa
tor and preserving ringgeometry by altering l23. For simpli
ity, let all other lengths remain un
hanged.



148 9. COLLIDING BEAMSBy Eqs. (6) Q1 and Q2 s
ale inversely with l01 and l12. Then it should be possibleto restore the mat
h by adjusting Q3 and Q4 using �x� = �y� = 0.By varying the ratio l01=l12 it would be possible to vary the ratio �y�=�x� . But, asexplained earlier the use of \doublet opti
s" for
es this ratio to be large. Swit
hingthe signs of Q1 and Q2 would produ
e �x� << �y� .Problem 9.4. Using the UAL simulation 
ode, determine a

urate values for�x� and �y� and 
ompare your values with values 
al
ulated by formulas in this se
-tion.The opti
s that has been des
ribed is typi
al of ele
tron a

elerators, where theverti
al emittan
e is already mu
h less than the horizontal emittan
e rendering thebeams ribbon-shaped. In hadron a

elerators the transverse beam emittan
es arenormally approximately equal and there is a luminosity advantage in having thebeams approximately round at the IP. This 
an only be a
hieved by using \tripletopti
s", more 
ompli
ated than 
an be a
hieved with the 
ollider toy latti
e.Just repla
ing the doublet Q1; Q2 by a triplet, most of the pre
eeding argu-ments will remain roughly true, and more-or-less equal betas at the IP 
an bea
hieved. Though �y� � 1 
m, is pra
ti
al with doublet opti
s in an ele
tron a
-
elerator, �x� � �y� � 1m is more typi
al of hadron 
olliders. This is partly dueto the inherently longer fo
al lengths a
hievable using triplet opti
s and partly dueto the mu
h higher parti
le momenta (and hen
e longer quadrupoles) in hadrona

elerators.
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Figure 9.4. Twiss fun
tions for the IR region of the 
ollider latti
e.
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Figure 9.5. UAL-generated Twiss fun
tions for the IR region ofthe 
ollider latti
e.



152 9. COLLIDING BEAMSThis remainder of this 
hapter is rather more te
hni
al than is appropriate forthe USPAS a

elerator simulation 
ourse. It is more appropriate as a se
tion ofthe Physi
s User's Manual. A beam-beam test program bmbm.
pp is appended as a
onvenient way to 
onvey various numeri
al 
oeÆ
ients. A tar �le with 
onsistentREADME, data and make�le is available for a
tual use of the 
ode.As of Mar
h 2005, the elements headonbb and remotebb have not yet, in fa
t,been implemented in UAL. As a result, parasiti
 beam-beam intera
tions 
annot be
on
atenated into nonlinear TPS latti
e maps.9.2. Parti
le De
e
tion Caused by On
oming Bun
hThe de
e
tion of a 
harged parti
le 
aused by an approa
hing 
harged bun
h
an be modeled as de
e
tion by an arti�
ial beambeam element that is lo
ated wherethe bun
hes meet and a
ts mu
h like any physi
al latti
e element. The on
omingbeam is assumed to be Gaussian in all six phase spa
e 
oordinates.In pra
ti
e the bun
hes are long (z 
oordinate) 
ompared to their transverse(x,y) 
omponents. Invariably both bun
hes are fully relativisti
. It is well knownin this 
ir
umstan
e that the ele
tromagneti
 �elds of the bun
h are 
ompressedlongitudinally to be
ome almost exa
tly transverse. This makes it appropriate totreat the �elds as purely transverse and derivable from a 
harge distribution withshape dependent only on transverse 
oordinates and magnitude proportional to thelongitudinal bun
h distribution.To a lowest approximation the beam-beam intera
tion 
an be treated as a singletransverse impulse at the 
rossing point. More a

urate, and espe
ially for non-zero
rossing angle of long bun
hes, it is appropriate to \sli
e" the bun
h longitudinallyand to represent ea
h bun
h 
rossing by several, londitudinally-displa
ed de
e
-tions. Even in this 
ase, it is a good approximation to assume transverse �elds thatare independent of z ex
ept for being modulated by the longitudinal bun
h pro-�le. Beam-beam intera
tions are modeled to both of these levels of approximationin UAL. For even greater a

ura
y, espe
ially in situations where the beam-beamintera
tion ex
ites syn
hrobetatron os
illations, it would be appropriate to in
ludelongitudinal for
es, but this level of approximation is not supported at this time.In the purely-transverse, fully-relativisti
, �eld approximation, the ele
tri
 andmagneti
 �elds are related exa
tly as are the �elds in a plane ele
tromagneti
 wave.(Weissza
ker-Williams approximation.) For a 2D Gaussian transverse 
harge dis-tribution the �elds 
an be expressed as an analyti
 fun
tion of the (
omplexi�ed)transverse position z = x+iy; the fun
tion is variantW (z) of the so-
alled 
omplexerror fun
tion. In UAL (as in most other simulations) this fun
tion is evaluated byvarious nonpolynomial numeri
al algorithms for evaluation of the 
omplex errorfun
tion.[21℄.Parti
le dynami
s 
an be handled polymorphi
ally in UAL. What this means isthat (optionally) the parti
le 
oordinates being evolved 
an be treated as trun
atedpower series (TPS). It might be thought automati
 to treat an analyti
 fun
tionlike the 
omplex error fun
tion by a TPS. As it happens this is is diametri
allyin
orre
t. The inappropriateness manifests itself mathemati
ally, physi
ally, and
omputationally. Mathemati
ally, though analyti
 in some regions, W (z) is notanalyti
 at the z = x + iy = 0 origin, whi
h is pre
isely where a TPS has to be adi�erentiable fun
tion of x and y individually. Physi
ally, the beam-beam �elds fallo� (proportional to 1=r) at large radial radius, while a TPS, trun
ated to any �nite
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omplex plane has to be segmentedinto more than one pat
h, with a separate evaluation algorithm applying in ea
hpat
h. The 
omputer program evaluating w(z) starts by sele
ting the 
orre
t pat
hand pro
eeds by applying the algorithm appropriate for this pat
h. This is verysatisfa
tory for purely numeri
al evaluation, but limits the validity of 
on
atenationto su
h a restri
ted pat
h as to be useless for multiturn simulation.Though beam-beam de
e
tions 
an be represented di�erentiably (as requiredby TPS) in lo
al pat
hes, for example near the origin, the nonanalyti
 nature of theele
tri
 �eld ex
ludes the possibility of a pat
h of size even as great as the smallerof the strong beam's transverse r.m.s. sizes.Be
ause of this mismat
h, for head-on beam-beam 
ollisions, the beam-beamde
e
tion 
annot be handled polymorphi
ally. This means that the beam-beamintera
tion map 
annot be 
on
atenated with a latti
e TPS map. To exploit a (pos-sibly nonlinear) map representing the latti
e se
tor pre
eeding an IP, it is ne
essaryto derive ea
h parti
le's 
oordinates at the IP from the map, then to 
al
ulate andapply the beam-beam de
e
tion, and �nally to treat the result as input 
oordinatesfor the map representing the next se
tor.For suÆ
iently non-head-on, parasiti
, beam-beam intera
tions, the limitationjust des
ribed is not operative. Here \suÆ
iently" means something like \severalsigma". For su
h 
ollisions the parasiti
 
ollisions 
an be 
on
atenated into a latti
emap mu
h the way any other latti
e element would be.Be
ause the nonanalyti
 problem is not fatal for suÆ
iently remote 
ollision,it makes sense to introdu
e two distin
t beambeam types, 
alled headonbb andremotebb. The remotebb type 
an be 
on
atenated polymorphi
ally just like anyother beam line element. The headonbb type 
an be subje
ted to near-linear mapanalysis, to obtain small amplitude tune shifts and even amplitude-dependent tuneshifts, but the evaluation pat
h valid at the origin is already very ina

urate fortransverse displa
ement amplitudes 
omparable with the opposing bun
h size. Cer-tainly the des
ription of long term evolution by iterating a single map representingboth latti
e and beam-beam intera
tion is unphysi
al with a headonbb element inthe ring. But there is nothing to prevent 
on
atenation of any number of remotebbelements into a single nonlinear map for the se
tor from one headonbb element tothe next.9.3. Ele
tri
 Field Due to Gaussian Charge DistributionBassetti and Erskine[22℄ give formulas for the ele
tri
 �eld 
omponents at x; y ofa Gaussian 
harge distribution, total 
harge per unit length �, in terms of 
omplexerror fun
tion w(z), where z = x+ iy, The fun
tion w(z) is related to the so-
alled\error fun
tion 
omplement" erf
(z) byw(z) = e�z2erf
(�iz): (9.4)(Introdu
tion of 
omplex numbers into the dis
ussion leads to an unfortunate 
lashof meanings for the word \real". Whether \real" means the real part of a 
omplexnumber or a single de
imal number, as in 
omputer programming language, has tobe inferred from the 
ontext.)The ele
tri
 �eld is given by�ExEy� = �2�0p� 1s �=<��w(xws + i yws )�e�( x2w2s2x+ y2w2s2y ) w(xws sysx + i yws sxsy )�; (9.5)



154 9. COLLIDING BEAMSwhere xw and yw are horizontal and verti
al deviations of a parti
ular parti
le ina \weak beam" from the 
enter of an approa
hing \strong beam". Here we areusing the 
onventional \strong/weak" terminology of 
olliding beams, where thedistribution of the strong beam, i.e. the other beam, or the unperturbed beam,is treated as 
onstant, at least until it is updated after multiple passes have beenevaluated.The horizontal and verti
al strong beam \sigmas" are sx and sy and, to simplifythe expression a bit, a modi�ed transverse beam size s given bys =q2(s2x � s2y); (9.6)has been introdu
ed. So that s is real, the beam is assumed to be wider than it istall, sx > sy, and sx=sy ex
eeds some nominal value, slightly greater than 1, su
has 1:1. Sin
e the \strong beam" aspe
t ratio depends on the lo
al �-fun
tions, thestrong beam will normally be at least this mu
h out of round even if the emittan
esin the two planes are equal.At 
rossing points where the strong beam is nearly round a di�erent approa
his required. For an exa
tly round beam, using S.I. units, the ele
tri
 �eld is�ExEy� = �(z)2��0 1� e�r2=(2s2)r2 �xy� ; (9.7)where �(z) is the longitudinal 
harge density. For a Gaussian-distributed, strongbeam bun
h with Ns 
harges Qs,�(z) = NsQsp2� �z exp�� z22�2z �: (9.8)For long bun
hes, espe
ially if they are relativisti
, the longitudinal ele
tri
�eld 
an normally be negle
ted. Also the magneti
 de
e
tion is, ex
ept for fa
torv2=
2, the same as the ele
tri
 de
e
tion. The total de
e
tion is therefore obtainedby multiplying the ele
tri
 de
e
tion by 1� v2=
2 where the minus sign would beappropriate for the spa
e 
harge for
e on a parti
le 
o-moving with the bun
h. Thepositive sign is appropriate for the 
ounter-traveling bun
hes assumed for beambeamelements. The total de
e
tion su�ered in passing the other bun
h is proportionalto its bun
h length, and hen
e to its total 
harge. (While in
luding the fa
tor ofnearly two to add ele
tri
 and magneti
 for
e one must not forget to in
lude analmost-exa
tly-
an
eling fa
tor due to the relative velo
ity of the 
ounter-movingbun
hes being almost 2
.)The de
e
tion, say horizontal, ��x, su�ered by a weak beam parti
le of 
hargeQw as it passes a strong beam bun
h is given by��x = �pxp0
 = 1p0
 Z dt dpxdt = 1p0
 Z 2QwEx(z) dtdz dz: (9.9)The fa
tor 2 in the numerator in
ludes the magneti
 for
e, and the fa
tor dt=dz =1=(2
) a

ounts for the relative velo
ity of the bun
hes.9.4. The Beam-Beam Tune Shift ParametersTo a lowest (linearized) approximation the for
e on a parti
le in the weakbeam due to the strong beam is lens-like, but unlike a quadrupole in that the fo-
us/defo
us 
hara
ter is the same in both planes. Repeating \golden rule" formulas



9.5. IMPRACTICALITY OF TAYLOR MAP BEAM-BEAM REPRESENTATION 155from Eqs. (3.47), the leading e�e
ts of su
h fo
using are tune shifts given by�x = 14��x�qx; �y = 14��y�qy; (9.10)where �qx and �qy are inverse fo
al lengths depending on the bun
h 
harge andpro�le of the strong beam. Unlike a normal quadrupole, �qx and �qy have the samesign. Espe
ially in ele
tron 
olliding beams �qx and �qy 
an be vastly di�erentbut, for maximum luminosity, �x and �y tend to be roughly equal.The values of � due to a single intera
tion point rarely ex
eed 0:05 in ele
tron
olliders or 0:01 in hadron 
olliders. But 
olliding beam fa
ilities usually have morethan one intera
tion point. The tune shifts they 
ause are stri
tly additive, and
an add up to a total tune shift as great as 0:2 or more, even though this mightseem to have required 
rossing destru
tive resonan
es.Problem 9.5. For the round beam distribution of Eq. (9.7), show that thehorizontal, beam-beam tune shift parameter is given by�x = ��x4� 1p0
=Qw NsQs4��0s2 : (9.11)Problem 9.6. By keeping the next term in the expansion of the round beamde
e
tion, 
al
ulate the o
tupole-order horizontal de
e
tion.9.5. Impra
ti
ality of Taylor Map Beam-Beam RepresentationThe \altitude 
hart", for w(z) in Abramowitz and Stegun's[23℄ FIG. 7.3, showsregular behavior in the upper right quadrant, but there are poles in the lower rightquadrant. From the �gure and the relationw(z) = w(�z); (9.12)one 
on
ludes that expression Eq.(9.5) has the 
orre
t symmetry for left-right re
e
-tion through the verti
al axis, but that it does not give the physi
ally demanded up-down symmetry for re
e
tion through the horizontal axis. It follows that Eq. (9.5)is valid in the upper half-plane and invalid in the lower half-plane. Any analyti
approximation to this formula will have similar properties. For purely numeri
altra
king this is not a problem sin
e lower half-plane de
e
tions 
an be inferred byusing the re
e
tion symmetry. But appli
ation of symmetry for purpose of evalua-tion is in
onsistent with TPS representation.Part of experimental, storage ring, parasiti
-bun
h-
rossing lore is that a par-ti
le in one bun
h will be lost if its amplitude en
roa
hes on the opposing bun
h's\spa
e", meaning the region of non-negligible 
harge density. This is not quali-tatively in
onsistent with the mathemati
al observation that non-vanishing 
hargedensity is in
ompatible with analyti
 two dimensional �eld (as follows from Amp�ere'slaw.) A formalism su
h as TPS, that relies on di�erentiability, is therefore, in prin-
iple, invalid for even remote 
ollisions of Gaussian-shaped beam bun
hes. ButGaussian 
harge distributions fall o� dramati
ally at large amplitudes and physi-
ally realisti
 bun
hes truly vanish outside, say, 5 or 6 sigma. This makes it validto 
ontemplate in
orporating remote, or \parasiti
" beam-beam 
ollisions into aTPS simulation formalism. As mentioned previously, to distinguish su
h 
ollisionsfrom head on 
ollisions (for whi
h the element type name headonbb is employed)parasiti
 
ollisions are modeled by the remotebb type.



156 9. COLLIDING BEAMSThe map simulation of remotebb parasiti
 
rossings will inevitably break downfor 
rossings that are too 
lose. If parti
les 
an a
tually be lost due to parasiti

rossings one 
annot expe
t the simulation to model the loss evolution a

urately.(When 
ontemplating train wre
ks one 
on
entrates on avoiding them, not on a
-
urate des
ription of the wre
kage.) On the other hand, sin
e failure of analyti
itymanifests itself by unphysi
al for
es proportional to a possibly-high power of ampli-tude, one 
an be optimisti
 that numeri
al simulation 
an predi
t with quite gooda

ura
y the amplitude beyond whi
h parti
les are lost. The next se
tion des
ribesformulas to be used, within UAL, to model the remotebb type polymorphi
ally.For a headonbb type, one 
an 
ontemplate using its TPS map to simulate itse�e
t on weak beam parti
les of small amplitude, su
h as \one tenth sigma". Theso-
alled \beam-beam tune shift" parameterization of the 
ollision amounts to justsu
h a pure linearization of the de
e
ting for
e. Even some amplitude dependente�e
ts 
an perhaps be estimated while restri
ting the amplitudes to suÆ
ientlysmall values. But the 
ode warns against 
on
atenation of headonbb elements inany simulation that pretends to be a self-
onsistent model using a distribution ofweak beam parti
le amplitudes mat
hing the strong beam distribution. For faithfulmodeling in this 
ase the 
ode uses pure numeri
al evaluation of ea
h headonbbintera
tion. This is not a serious limitation in pra
ti
e, but it 
auses the appli
ationof some nonlinear tools, su
h as normal form analysis, to be invalid.There are approximation algorithms available for 
al
ulating the �elds of Gauss-ian 
harge distributions a

urately for all possible bun
h separations. But, to avoid
ompli
ation, it is sensible to a

ept redu
ed a

ura
y in the interest of redu
ingthe number of evaluation pat
hes. The next se
tion dis
usses evaluation for par-asiti
 
ollisions and the se
tion after that dis
usses headon evaluation. Sin
e the
ode takes 
are of 
hoosing a good algorithm in ea
h 
ase, for ben
hmarking and
he
king the 
ode reliability, it should be adequate to spot 
he
k only a relativelysmall number of 
ases.9.6. Pad�e Approximation For remotebb Type CollisionsThe trun
ated Taylor series formalism is introdu
ed into parti
le traje
torydes
ription to model nonlinear de
e
ting elements. The de
e
tions 
aused bysu
h elements 
an be expressed as power series in the transverse 
oordinates (xand y). Unfortunately the beam beam de
e
tion 
annot be des
ribed by a sin-gle, everywhere-
onvergent, power series. For example, the �eld at large distan
esfalls o� as 1=r and su
h a term diverges at the origin. This problem is somewhatameliorated by the use of Pad�e approximation. As explained in referen
e[21℄, theneeded fun
tion w(z) 
an be approximated in the vi
inity of a point z0, in termsof (
omplex) deviation z � z0, in a Pad�e formw(z) � 
0 + 
1(z � z0) + 
2(z � z0)2 + 
3(z � z0)31 + d1(z � z0) + d2(z � z0)2 + d3(z � z0)3 + d4(z � z0)4 : (9.13)This expression is relatively qui
k to 
al
ulate, and retains at least as many terms asare likely to be needed for any pra
ti
al Taylor series to be generated subsequently.Be
ause the denominator terminates in a powerN higher by one than the numeratorM , the behavior at large radius is appropriate. If needed, expressions with largervalues of M and N are easily obtainable.
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oeÆ
ients 
i and di 
an be 
al
ulated by a program su
h as the followingMAPLE program:restart: with(numapprox): Digits:=30:M:=6: N:=M+1:z0:=0.0+I*0.0:open("PCoeffs.dat",WRITE):fprintf("PCoeffs.dat", "%d\\n", M):fprintf("PCoeffs.dat", "%15.8e\\n", Re(z0)):fprintf("PCoeffs.dat", "%15.8e\\n", Im(z0)):evalf(pade( exp(-z^2)*erf
(-I*z), z=z0, [M,N℄)):w := subs(z-z0=d, %):wnum:=numer(w): wden:=denom(w):sd:=
oeff(wden,d,0):for j from 0 by 1 to M dofprintf("PCoeffs.dat", "%15.8e\\n", Re(
oeff(wnum,d,j))/sd):fprintf("PCoeffs.dat", "%15.8e\\n", Im(
oeff(wnum,d,j))/sd):end do:for j from 0 by 1 to N dofprintf("PCoeffs.dat", "%15.8e\\n", Re(
oeff(wden,d,j))/sd):fprintf("PCoeffs.dat", "%15.8e\\n", Im(
oeff(wden,d,j))/sd):end do:f
lose("PCoeffs.dat");This program outputs M , z0, and the 
oeÆ
ients to �le "PCoe�s.dat" in aformat (one number per line) 
onvenient for reading into the C++ program that
al
ulates ele
tri
 �elds. (For example \bmbm.
pp", listed at the end of this report.)For example, with (M;N) = (6; 7) and z0 = 0,
0 = 1.00000000e+00 0.00000000e-01
1 = 0.00000000e-01 -1.25647718e+00
2 =-8.25059157e-01 0.00000000e-01
3 = 0.00000000e-01 3.19300157e-01
4 = 7.63191604e-02 0.00000000e-01
5 = 0.00000000e-01 -1.04697937e-02
6 =-6.44878650e-04 0.00000000e-01d0 = 1.00000000e+00 0.00000000e-01d1 = 0.00000000e-01 -2.38485634e+00d2 =-2.51608137e+00 0.00000000e-01d3 = 0.00000000e-01 1.52579039e+00d4 = 5.75922692e-01 0.00000000e-01d5 = 0.00000000e-01 -1.35740709e-01d6 =-1.85678083e-02 0.00000000e-01d7 = 0.00000000e-01 1.14243694e-03An example with (M;N) = (3; 4) and z0 = 3 is,
0 = 1.23409804e-04 2.01157317e-01
1 = 2.33554192e-01 1.60868941e-01
2 = 1.25324805e-01 -4.04528997e-02
3 = 8.84183536e-03 -1.80649734e-02d0 = 1.00000000e+00 0.00000000e-01d1 = 1.19099484e+00 -1.16400275e+00d2 = 8.87402357e-02 -1.07153615e+00d3 =-1.68262727e-01 -2.69022561e-01d4 =-3.19855404e-02 -1.57189728e-02This expansion is appropriate for 
al
ulating w(z) with argument near z = 3. Theprogram is easily extended to 
al
ulate the Pad�e 
oeÆ
ients with 
enter pointslo
ated on a regular grid.Even with Pad�e approximation, problems remain. An expansion like that ofEq. (9.13) is valid only in a restri
ted pat
h. An expansion 
entered on the origingives a respe
table approximation to w in the entire upper half-plane. CBN 80-13gives algorithms appropriate for enough pat
hes to 
over the entire x; y spa
e withhigh a

ura
y. But this multi-pat
h treatment 
an be in
orporated into the TPSformalism only by applying the map, parti
le-by-parti
le, to obtain the numeri
al
oordinate values of every parti
le at every headonbb lo
ation.



158 9. COLLIDING BEAMSWhen used to 
al
ulate the ele
tri
 �eld, be
ause of its x ! �x symmetry,the Pad�e expansion 
entered on the origin �ts the ele
tri
 �eld (whi
h immediatelyprovides the magneti
 �eld as well) reasonably well in the upper half-plane. Pre-liminary investigations have shown that some remote 
rossing 
ases 
an be modeledadequately with just the Pad�e expansion 
entered on the strong beam. This is asensible approa
h to take for preliminary investigations. As shown in CBN 80-13the origin-
entered Pad�e expansion withM = 6; N = 7 (
alled PADE1 in CBN 80-13)gives a respe
table approximation over a the entire upper half plane and a narrowband just below the real axis. This 
an be referred to as a \default" representation.It is implemented with hardwired 
oeÆ
ients in subroutine wpade3 (listed below)and with externally supplied 
oeÆ
ients in wpade4.For higher a

ura
y ea
h parasiti
 
ollision 
ould have its own Pad�e approxima-tion. Sin
e the two o

urren
es of w in Eq.(9.5) have di�erent arguments, it wouldbe ne
essary to use two Pad�e formulas for a single bun
h 
rossing. The MAPLE pro-gram listed above gives Pad�e 
oeÆ
ients at su
h a point. CoeÆ
ients are neededfor the two argument values 
orresponding to the separation of the bun
h 
enters.The same pro
edure 
an handle the 
ase of bun
h separation more verti
al thanhorizontal and the 
ase of beams higher than they are wide (sx > sy.)To avoid the need for programming the 
oeÆ
ient determination into the C++
ode, UAL requires them to be 
al
ulated o�-line, or at least in a separate module.The 
oeÆ
ients are then be passed to the simulation as parameters of the remotebbelement. Other required parameters are (sx; sy; sz), (�x01;�x02, and the strongbeam strength (equivalent to �).Consider a parasiti
 bun
h 
rossing in whi
h the parti
le being tra
ked lies ina \weak beam" that is displa
ed approximately horizontally by (positive) distan
e�x from the 
enter of the \strong beam". This separation might also have non-zeroverti
al deviation. Also, sin
e the horizontal deviation depends, weakly to be sure,on the parasiti
 intera
tion, it is, in prin
iple, ne
essary to determine �x iteratively.Two error fun
tion determinations are required. Always taking the strong beam
enter as origin, one requires Pad�e expansions 
entered on the two pointsx01 = �xs ; x02 = �xs sysx : (9.14)If the beams have verti
al separation it is ne
essary to alter the Pad�e 
enter pointsa

ordingly. The 
ase sy > ss also requires spe
ial treatment not exhibited here.Re-expressing Eq.(9.5) in terms of 
oordinates x and y relative to the weakbeam 
enter yields�ExEy� = �2�0p� 1s �=<� (w(x01+ xs +i ys )�e�( (�x+x)22s2x + y22s2y ) w(x02+ xs sysx +i ys sxsy )):(9.15)For typi
al, many sigma, bun
h separations at parasiti
 
rossing, and for weak beambetatron amplitudes out to all but unphysi
ally large amplitudes, the two w termswill be 
lose enough to the Pad�e expansion points that the Pad�e approximationsgive a

urate de
e
tions. This should not be surprising sin
e the strong beam issimply a multipole-ri
h ele
tromagnet from the point of view of the weak beam.



9.7. PAD�E APPROXIMATION FOR HEADONBB COLLISIONS 1599.7. Pad�e Approximation For headonbb CollisionsAs explained earlier, the pro
edure of the previous se
tion 
an be applied onlyfor small parti
le amplitudes. In this limit both expansions in Eq. (9.15) are 
en-tered on the origin. As mentioned above PADE1 (whi
h has been ported to wpade3and wpade4 below) gives a de
ent approximation in the entire upper half region. Butfor negative verti
al displa
ements y more negative, say, than �sy (whi
h is a veryprobable amplitude) the 
al
ulated ele
tri
 �eld rapidly be
omes in
orre
t. Evenfor amplitudes of smaller amplitude than this, any apparent amplitude-dependenttune shifts would be suspe
t and would require 
areful veri�
ation.For traje
tory following in the presen
e of headonbb elements it is still possibleto use maps, but every traje
tory has to be 
onverted to numbers at every 
rossing.The most 
ompa
t map representation possible would 
on
atenate all elements,in
luding parasiti
 
rossings, in every ar
 into entire-ar
 maps. At every head-on
rossing the next-ar
 map would be applied to ea
h parti
le's (numeri
al) post-intera
tion 
oordinates to obtain its (numeri
al) pre-intera
tion 
oordinates at thenext 
rossing point.
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