Least Squares Fitting

Least-squares fitting is common in experimental physics, engineering, and the social
sciences. The typical application is where there are more constraints than variables
leading to 'tall' rectangular matrices (m>n). Examples from accelerator physics include
orbit control (more BPMS than correctors) and response matrix analysis (more
measurements in the response matrix than variables).

The simplest linear least-squares problem can be cast in the form
Ax=Db

where we look to minimize the error between the two column vectors Ax and b. The
matrix A is called the design matrix. It is based on a linear model for the system. Column
vector x contains variables in the model and column vector b contains the results of
experimental measurement. In most cases, when m>n (more rows than columns) Ax does
not exactly equal b, ie, b does not lie in the column space of A. The system of equations

is inconsistent. The job of least-squares is to find an ‘average’ solution vector x that
solves the system with minimum error. This section outlines the mathematics and
geometrical interpretation behind linear least squares. After investigating projection of
vectors into lower-dimensional subspaces, least-squares is applied to orbit correction in
accelerators.

VECTOR PROJECTION
We introduce least squares by way projecting a vector onto a line. From vector calculus
we know the inner or 'dot' product of two vectors a and b is

a-b=a'b=ab; +ab, + ... + ab, = |a|b|cos®

where 6 is the angle at the vertex the two vectors. If the vertex angle is 90 degrees, the
vectors are orthogonal and the inner product is zero.

Figure 1 — projection of b onto a



Referring to figure 1, the projection or perpendicular line from vector b onto the line a
lies at point p. Geometrically, the point p is the closest point on line a to vector b. Point p
represents the 'least-squares solution’ for the 1-dimemsional projection of vector b into
line a. The length of vector b — p is the error.

Defining x as the scalar coefficient that tells us how far to move along a, we have
p=x a

Since the line between b and a is perpendicular to a,

(b—xa)La
S0
a-(b—xa)=a"(b-xa)=0
or
)—(: a'b
a'a

In words, the formula reads
'take the inner product of a with b and normalize to a*.

The projection point p lies along a at location

- a'b
p=xa= o a

Re-writing this expression as

aa'
= b

isolates the projection matrix, P = aa'/a'a. In other words, to project vector b onto the
line a, multiply ‘b’ by the projection matrix to find point p=Pb. Projection matrices have

important symmetry properties and satisfy P"=P — the projection of a projection remains
constant.

Note that numerator of the projection operator contains the outer product of the vector ‘a’
with itself. The outer product plays a role in determining how closely correlated the
components of one vector are with another.



The denominator contains the inner product of a with itself. The inner provides a means
to measure how parallel two vectors are (work = force - displacement ).

MATLAB Example — Projection of a vector onto a line
>>edit Isq_1

MULTI-VARIABLE LEAST SQUARES

We now turn to the multi-variable case. The projection operator looks the same but in
the formulas the column vector 'a’ is replaced with a matrix 'A" with multiple columns. In
this case, we project b into the column space of A rather than onto a simple line. The goal

is again to find X s0 as to minimize the geometric error E = |A§ — bJ? where now X isa
column vector instead of a single number. The quantity AX is a linear combination of the
column vectors of A with coefficients il, Qz, ...in. Analogous to the single-parameter
case, the least-squares solution is the point p:Ai closest to point b in the column space
of A. The error vector b-A X is perpendicular to that space (left null space).

The over-constrained case contains redundant information. If the measurements are not
consistent or contain errors, least-squares performs an averaging process that minimizes
the mean-square error in the estimate of x. If b is a vector of consistent, error-free
measurements, the least-squares solution provides the exact value of x. In the less
common under-constrained case, multiple solutions are possible but a solution can be
constructed that minimizes the quadradic norm of x using the pseudoinverse.

There are several ways to look at the multi-variable least-squares problem. In each case a
square coefficient matrix ATA must be constructed to generate a set of normal equations
prior to inversion. If the columns of A are linearly independent then ATA is invertible and

a unique solution exists for X.

Figure 2 —multivariable projection



1) Algebraic solution — produce a square matrix and invert
AX =D

ATAX =ATb (normal equations for system Ax=b)
X = (ATA)'ATh
The matrices ATA and (ATA)™ have far-reaching implications in linear algebra.

2) Calculus solution — find the minimum error
E>=|AX —bf

dE%x = 2ATAX —2ATh =0
ATAx =A"b
X = (ATA)'ATD

3) Perpendicularity- Error vector must be perpendicular to every column vector in A

a'(b—AX)=0

a,'(b—AX)=0
or

AT(b—-AXx)=0
or

ATAXx =A'b

X = (ATA)'ATh

4) Vector subspaces — Vectors perpendicular to column space lie in left null space
i.e., the error vector b — A X must be in the null space of AT
AT(b—-AXx)=0

ATAXx = A'b

x = (ATA)'ATD



MULTI-VARIABLE PROJECTION MATRICES

In the language of linear algebra, if b is not in the column space of A then Ax=b cannot
be solved exactly since Ax can never leave the column space. The solution is to make the
error vector Ax-b small, i.e., choose the closest point to b in the column space. This point
is the projection of b into the column space of A.

When m > n the least-squares solution for column vector x in Ax = b is given by
X = (ATA)'ATh

Transforming X by matrix A yields
p=Ax ={AATA)'ATIb

which in matrix terms expresses the construction of a perpendicular line from vector b
into the column space of A. The projection operator P is given by
AAT

P=AAA)'AT T ATA

T

. In both

. . . . . aa
Note the analogy with the single-variable case with projection operator —
aa

cases, p = Pb is the component of b projected into the column space of A.
E = b —Pb is the orthogonal error vector.
Aside: If you want to stretch your imagination, recall the SVD
factorization yields V, the eigenvectors of ATA, which are the axes
of the error ellipsoid. The singular values are the lengths of the
corresponding axes.

In orbit control, the projection operator takes orbits into orbits.

RO =R(R'R)'R"x

X
(R'R)'R" is a column vector of correctors, 6.

MATLAB Example — Projection of a vector into a subspace (least-squares)
>>edit Isq_2

UNDER-CONSTRAINED PROBLEMS (RIGHT PSEUDOINVERSE)
Noting that (AAT)(ATA)™ =1 we can write Ax=b in the form



Ax = (AANATA)'b
or
x = (AN)(ATA) b = A'b

where Ab is the right pseudoinverse of matrix A.

MATLAB Example — Underconstrained least-squares (pseudoinverse)
>>edit Isq_3

WEIGHTED LEAST SQUARES
When individual measurements carry more or less weight, the individual rows of Ax=b
can be multiplied by weighting factors.

In matrix form, weighted-least-squares looks like
W(AX) = W(b)

where W is a diagonal matrix with the weighting factors on the diagonal. Proceeding as
before,

(WA) (WA)x = (WA) Wb
x = (WA) (WA (WA) Wb

When the weighting matrix W is the identity matrix, the equation collapses to the original
solution x = (ATA)*A'b.

In orbit correction problems, row weighting can be used to emphasize or de-emphasize
specific BPMS. Column weighting can be used to emphasize or de-emphasize specific
corrector magnets. In response matrix analysis the individual BPM readings have
different noise factors (weights).

ORBIT CORRECTION USING LEAST-SQUARES
Consider the case of orbit correction using more BPMS than corrector magnets.

X = orbit (BPM)/constraint column vector (n;m)
0 = corrector/variable column vector (ampere or mrad)
R = response matrix (mm/amp or mm/mrad)



In this case, there are more variables than constraints (the response matrix R has m>n).
Using a graphical representation to demonstrate matrix dimensionality, the steps required
to find a least squares solution are

R’ x| = R' : R |8
R’ I x|= R'R |8 (normal equations)
(R'R)* | R” 1x|=16

or
8 =(R'R)'R"x

The projection operator predicts the orbit from corrector set 0:
x =R(R'R)R"x

and the orbit error is
e=x-x = (I- RR'R)'R")x

Note that in order to correct the orbit, we reverse the sign of 0 before applying the
solution to the accelerator. You will not be the first or last person to get the sign wrong.

Feynman’s rule: °‘If the sign is wrong, change it’.

MATLAB Example — Least-squares orbit correction
>>edit Isq_4



RESPONSE MATRIX ANALYSIS EXAMPLE

Response matrix analysis linearizes an otherwise non-linear problem and iterates to find
the solution. The linearization process amounts to a Taylor series expansion to first order.
For a total of | quadrupole strength errors the response matrix expansion is

R=R, +%Ak1 +@Ak2 +...+%AkI
ok, ok, ok,
11 11
RM—R! = R, AK, +..+ gt AK,
ok, ok,

where the measured response matrix R has dimensions m x n and all of {Ro, dR./dk;} are
calculated numerically. To set up the Ax=b problem, the elements of the coefficient
matrix A contain numerical derivatives dR"/dk;. The constraint vector b has length m
times n and contains terms from R-R,. The variable vector x has length | and contains the

Taylor expansion terms AKkj,...Ak;. The matrix mechanics looks like

OoR" OoR™
. . ok,
Rll_RllO 'EE] 'EE]
- aRln aRln
RI" — R ok, ok,
S _G_RZI_ - _O_R;l_
R21 _ RZlo akl ...... akl Akl
R2n _ RZHO aRzn ...... 8R2n Akl
L ok, ok,
R™ _R™, _aigl_ T _a_R;l_
ok, ok,
R™ _R™, e
- - OR™ OoR™
ok, ok,

The ‘chi-square’ fit quality factor is

R measure R model 2
2 _ [ ij N J
- =2

O;

where o, is the rms measurement error associated with the i BPM.



SVD AND LEAST-SQUARES
The least-squares solution to Ax=b where m>n is given by

Xisi= (ATA) 'A'b

Singular value decomposition of A yields
A=UWV",

Using the pseudoinverse,
A=vw'uU’

leads to
Xeid = Ab = VWIU™D

Does Xisq= Xsva for over-constrained problems m > n?

Exercise: analytically substitute the singular value decomposition expressions for A and
AT to show

(ATA) A =vwW1iU.

Hence, SVD recovers the least-squares solution for an over-constrained system of
equations.



