
Least Squares Fitting 
 

Least-squares fitting is common in experimental physics, engineering, and the social 

sciences. The typical application is where there are more constraints than variables 

leading to 'tall' rectangular matrices (m>n). Examples from accelerator physics include 

orbit control (more BPMS than correctors) and response matrix analysis (more 

measurements in the response matrix than variables).  

 

The simplest linear least-squares problem can be cast in the form  

 

 Ax=b  

 

where we look to minimize the error between the two column vectors Ax and b. The 

matrix A is called the design matrix. It is based on a linear model for the system. Column 

vector x contains variables in the model and column vector b contains the results of 

experimental measurement. In most cases, when m>n (more rows than columns) Ax does 

not exactly equal b, ie, b does not lie in the column space of A. The system of equations 

is inconsistent. The job of least-squares is to find an ‘average’ solution vector x  that 

solves the system with minimum error. This section outlines the mathematics and 

geometrical interpretation behind linear least squares. After investigating projection of 

vectors into lower-dimensional subspaces, least-squares is applied to orbit correction in 

accelerators. 

 

VECTOR PROJECTION 

We introduce least squares by way projecting a vector onto a line. From vector calculus 

we know the inner or 'dot' product of two vectors a and b is 

 

 ba  = a
T
b = a1b1 + a2b2 + … + anbn = |a||b|cos  

 

where  is the angle at the vertex the two vectors. If the vertex angle is 90 degrees, the 

vectors are orthogonal and the inner product is zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 1 – projection of b onto a 



 

Referring to figure 1, the projection or perpendicular line from vector b onto the line a 

lies at point p. Geometrically, the point p is the closest point on line a to vector b. Point p 

represents the 'least-squares solution' for the 1-dimemsional projection of vector b into 

line a. The length of vector b – p is the error. 

 

Defining x  as the scalar coefficient that tells us how far to move along a, we have  

 

 p= x  a 

 

Since the line between b and a is perpendicular to a,  

 

    aaxb   

so 

    axba   0 axbaT  

or 
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In words, the formula reads  

 

 'take the inner product of a with b and normalize to a
2
'.  

 

The projection point p lies along a at location 
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Re-writing this expression as  
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isolates the projection matrix, P = aa
T
/a

T
a. In other words, to project vector b onto the 

line a, multiply ‘b’ by the projection matrix to find point p=Pb. Projection matrices have 

important symmetry properties and satisfy P
n
=P – the projection of a projection remains 

constant. 

 

Note that numerator of the projection operator contains the outer product of the vector ‘a’ 

with itself. The outer product plays a role in determining how closely correlated the 

components of one vector are with another. 

 



The denominator contains the inner product of a with itself. The inner provides a means 

to measure how parallel two vectors are ( ntdisplacemeforcework  ). 

 
MATLAB Example – Projection of a vector onto a line 

>>edit lsq_1 

 

MULTI-VARIABLE LEAST SQUARES 

     We now turn to the multi-variable case. The projection operator looks the same but in 

the formulas the column vector 'a' is replaced with a matrix 'A' with multiple columns. In 

this case, we project b into the column space of A rather than onto a simple line. The goal 

is again to find x  so as to minimize the geometric error E = |A x  – b|
2
 where now x  is a 

column vector instead of a single number. The quantity A x  is a linear combination of the 

column vectors of A with coefficients x 1, x 2, … x n. Analogous to the single-parameter 

case, the least-squares solution is the point p=A x  closest to point b in the column space 

of A. The error vector b-A x is perpendicular to that space (left null space).  

 

The over-constrained case contains redundant information. If the measurements are not 

consistent or contain errors, least-squares performs an averaging process that minimizes 

the mean-square error in the estimate of x. If b is a vector of consistent, error-free 

measurements, the least-squares solution provides the exact value of x. In the less 

common under-constrained case, multiple solutions are possible but a solution can be 

constructed that minimizes the quadradic norm of x using the pseudoinverse. 

 

There are several ways to look at the multi-variable least-squares problem. In each case a 

square coefficient matrix A
T
A must be constructed to generate a set of normal equations 

prior to inversion. If the columns of A are linearly independent then A
T
A is invertible and 

a unique solution exists for x . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 2 –multivariable projection 

 



1) Algebraic solution – produce a square matrix and invert 

 A x  = b 

 

 A
T
A x  = A

T
b   (normal equations for system Ax=b) 

 

 x  = (A
T
A)

-1
A

T
b 

 

The matrices A
T
A and (A

T
A)

-1 
have far-reaching implications in linear algebra. 

 

2) Calculus solution – find the minimum error 

 E
2
 = |A x  – b|

2 

 

 dE
2
/x = 2A

T
Ax – 2A

T
b = 0 

 

 A
T
Ax = A

T
b  

 

 x  = (A
T
A)

-1
A

T
b 

 

3) Perpendicularity- Error vector must be perpendicular to every column vector in A 

 a1
T
(b – A x ) =  0 

  … 

 an
T
(b – A x ) = 0 

 

or 

 A
T
(b – A x ) = 0 

or 

 A
T
A x  = A

T
b 

 

 x  = (A
T
A)

-1
A

T
b 

  

4) Vector subspaces – Vectors perpendicular to column space lie in left null space 

    i.e., the error vector b – A x  must be in the null space of A
T
 

 A
T
(b – A x ) = 0 

 

 A
T
A x  = A

T
b 

 

 x  = (A
T
A)

-1
A

T
b 

 

 

 

 

 



MULTI-VARIABLE PROJECTION MATRICES 

In the language of linear algebra, if b is not in the column space of A then Ax=b cannot 

be solved exactly since Ax can never leave the column space. The solution is to make the 

error vector Ax-b small, i.e., choose the closest point to b in the column space. This point 

is the projection of b into the column space of A. 

 

When m > n the least-squares solution for column vector x in Ax = b is given by  

 

 x  = (A
T
A)

-1
A

T
b 

 

Transforming x  by matrix A yields 

 

 p = A x  = {A(A
T
A)

-1
A

T
}b 

 

which in matrix terms expresses the construction of a perpendicular line from vector b 

into the column space of A. The projection operator P is given by 

 

 P =  A(A
T
A)

-1
A

T
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T

T

~
 

 

Note the analogy with the single-variable case with projection operator 
aa

aa
T

T

. In both 

cases, p = Pb is the component of b projected into the column space of A.  

 

E = b – Pb is the orthogonal error vector. 

 

Aside: If you want to stretch your imagination, recall the SVD 

factorization yields V, the eigenvectors of A
T
A, which are the axes 

of the error ellipsoid. The singular values are the lengths of the 

corresponding axes.  

 

In orbit control, the projection operator takes orbits into orbits.  

 

  x  = R = R(R
T
R)

-1
R

T
x 

 

 (R
T
R)

-1
R

T
 is a column vector of correctors,  

 

 
MATLAB Example – Projection of a vector into a subspace (least-squares) 

>>edit lsq_2 

 

 

UNDER-CONSTRAINED PROBLEMS  (RIGHT PSEUDOINVERSE) 

Noting that (AA
T
)(A

T
A)

-1
=I we can write Ax=b in the form 

 



 Ax = (AA
T
)(A

T
A)

-1
b 

or 

 x = (A
T
)(A

T
A)

-1
b = A

+
b 

 

where A
+
b is the right pseudoinverse of  matrix A. 

 
MATLAB Example – Underconstrained least-squares (pseudoinverse) 

>>edit lsq_3 

 

WEIGHTED LEAST SQUARES 

When individual measurements carry more or less weight, the individual rows of Ax=b 

can be multiplied by weighting factors. 

 

In matrix form, weighted-least-squares looks like 

 

 W(Ax) = W(b) 

 

where W is a diagonal matrix with the weighting factors on the diagonal. Proceeding as 

before,  

 

 (WA)
T
(WA)x = (WA)

T
Wb 

 x = ((WA)
T
(WA))

-1 
(WA)

T
Wb 

 

When the weighting matrix W is the identity matrix, the equation collapses to the original 

solution x = (A
T
A)

-1
A

T
b. 

 

In orbit correction problems, row weighting can be used to emphasize or de-emphasize 

specific BPMS. Column weighting can be used to emphasize or de-emphasize specific 

corrector magnets. In response matrix analysis the individual BPM readings have 

different noise factors (weights). 

 

 

ORBIT CORRECTION USING LEAST-SQUARES 

Consider the case of orbit correction using more BPMS than corrector magnets. 

x = R or
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x = orbit (BPM)/constraint column vector (mm) 

 = corrector/variable column vector (ampere or mrad) 

R = response matrix (mm/amp or mm/mrad) 

 

 



In this case, there are more variables than constraints (the response matrix R has m>n). 

Using a graphical representation to demonstrate matrix dimensionality, the steps required 

to find a least squares solution are 
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The projection operator predicts the orbit from corrector set : 

 

 x  R(R
T
R)

-1
R

T
x 

 

and the orbit error is 

 

 e= x – x  = (I - R(R
T
R)

-1
R

T
)x 

 

Note that in order to correct the orbit, we reverse the sign of  before applying the 

solution to the accelerator. You will not be the first or last person to get the sign wrong.  

 

 Feynman’s rule:   ‘If the sign is wrong, change it’. 

 

 
MATLAB Example – Least-squares orbit correction 

>>edit lsq_4 

 



RESPONSE MATRIX ANALYSIS EXAMPLE 

Response matrix analysis linearizes an otherwise non-linear problem and iterates to find 

the solution. The linearization process amounts to a Taylor series expansion to first order. 

For a total of l quadrupole strength errors the response matrix expansion is 
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where the measured response matrix R has dimensions m x n and all of {R0, dRo/dkj} are 

calculated numerically. To set up the Ax=b problem, the elements of the coefficient 

matrix A contain numerical derivatives dR
ij
/dkl. The constraint vector b has length m 

times n and contains terms from R-R0. The variable vector x has length l and contains the 

Taylor expansion terms k1,…kl. The matrix mechanics looks like 
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The 'chi-square' fit quality factor is 
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where i  is the rms measurement error associated with the i
th

 BPM. 

 



 

SVD AND LEAST-SQUARES 

The least-squares solution to Ax=b where m>n is given by 

 

 xlsq= (A
T
A)

 -1
A

T
b 

 

Singular value decomposition of A yields  

 

 A = UWV
T
.  

 

Using the  pseudoinverse,  

 

 A
+
=VW

-1
U

T
 

 

leads to 

 xsvd = A
+
b = VW

-1
U

T
*b 

 

Does xlsq= xsvd for over-constrained problems m > n? 

 

Exercise: analytically substitute the singular value decomposition expressions for A and 

A
T
 to show 

 

 (A
T
A)

 -1
A = VW

-1
U

T
. 

 

Hence, SVD recovers the least-squares solution for an over-constrained system of 

equations. 


