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1 'Transport and One-Turn Matrices

I will refer to Vladimir’s morning lecture notes like he is, with the notation (initial-day-
equation). For example, the definition of the transport matrix M(so|s) is given by equation
(V3-5):

X(s) = M(sols) Xo (1)

Or, in one dimension (much to Vladimir’s dismay)

(20 ) = mtslor (2 @
where the prime denotes differentiation with respect to s.

Transport matrices (and, later, Courant-Snyder parameters) are the bread and butter of
accelerator physics. This lecture will be devoted to outlining how some simple transport ma-
trices look for the most common elements in separated-function synchrotrons: drift spaces,
quadrupoles (thick and thin), bending dipoles and bending dipoles. We’ll stick to one dimen-
sion for simplicity, and to give you a breather; nonetheless, we can calculate useful results

even in one dimension. Remember from Vladimir’s lecture that all the transport matrices
M are symplectic, and it is easy to calculate its inverse (V3-21):

M(s1]s0) = M (so]s1) = =S M(so|s1) S (3)

where the tilde represents the transpose.
The trasport matrix describes the evolution of phase space coordinates (z, '), so you can
follow an evolution from sy to s; to sy by concatenating successive transport matrices:

X (s3) = M(sq|s3) M(s1]s2) M(so|s1) X (s0) (4)

We can then assemble a complete accelerator lattice by combining the transport matrices of
individual elements.

For a synchrotron, the lattice clearly has a periodicity of its circumference C. (Most
lattices are at least close to a higher-order periodicity; for example, the AGS is nearly 12-
fold periodic and RHIC is nearly 3-fold periodic until we break that symmetry by focusing
beams for collisions in 2 locations.) The one-turn matrix around an accelerator is the
complete transport of a particle around the ring. Using the transport matrix,

X(s+C)=M(s|ls+C) X(s) - (5)

The one-turn matrix can be used to generate a Poincare’ plot, or a plot of phase space coor-
dinates of a particle on successive circulations around the machine. For a static accelerator



lattice, the one-turn matrix has periodicity C. The solution for X(s) that has the same
periodicity is called the closed orbit, which ideally is the same as our reference orbit:

Xeo(s+nC) = M(s|s + C)" Xeo(s) = Xeo(s) foralln (6)

One particularly powerful parameterization for the one-turn matrix is the exponential
form:
M = I cos(2nv) + J sin(2nv) = 2™ (7)

where v is called the betatron tune for this plane,

JE( @ b ) J?=—] r (8)

and 8, a = —'/2, and v = % are commonly referred to as the Courant-Snyder parame-
ters.

2 Transport Matrices of Regular Elements

What are the transport matrices of some common accelerator elements? We will assume that
the elements have negligible fringe fields compared to the wavelength of particle oscillations
in the lattice, so we can treat each of our simple lattice elements individually.

2.1 Drift

The drift case (all fields are zero, K = 0, and torsion x = 0) was treated in Vladimir’s
lecture, (V3-28/29). For the transverse dimensions (z,z’) and (y,y’) and a field-free drift
space of length L,

M(s+ L|8)asts = < oy ) | 9)

This means that the angle z’ does not change through a drift, but the position changes
between the entrance and exit of the drift by z(s + L) = z(s) + ’L. From a visualization
of the particle motion through a drift, it would be easy to write down the transport matrix
even if you don’t know any Hamiltonian dynamics.

Unfortunately it is hard to build an accelerator from just drifts and free space. We need
to focus with quadrupoles, and we need to bend the beam with dipoles.

2.2 Thick and Thin Quadrupole

In yesterday’s lecture and homework we took a look at the quadrupole field
By -+ ’LBm = B0b1(37 + ’I,y) or By = nglx Bm = Bobly (10)

We have not discussed the quadrupole length L, but we should assume that it is consid-
erably longer than the aperture so we can neglect fringe fields. We also use the paraxial
approximation, assuming that z’ is small so we can neglect dL/dz’' terms. Then we can
write differential equations of the particle motion through the field:

0B
aj” + Kr=90 y” — Ky =0 where K= ]%a—wy z=0,y=z (11)

having used Maxwell’s equations.



These differential equations can be solved to find the transport matrix for a thick quadrupole,
which may look familiar:

& cosvVKL LsinVKL )\ [z .
- VK 1 :Mocusin 9 12
(:c’) (—-\/I_(sin\/l_( cos VKL )(%) f g(%) (12)

coshvVKL -LsinhvKL
y, = = VK y? = M, defocusing y(/) ( 13)
Yy —+/ K sinhvK  coshvKL Yo Yo

Here we have applied the boundary conditions that Miscusing = Maefocusing = I for K = 0.
Note that a particle displaced by a small position Az receives a kick, or Az’ towards z = 0,
the reference orbit; this quadrupole is focusing in the horizontal plane and defocusing in the
vertical plane. Reversing the current in the leads or rotating the quadrupole by 90 degrees
makes it vertically focusing and horizontally defocusing. '

Your first homework problem is to demonstrate that a net focusing can be achieved in
both planes by alternating focusing and defocusing quadrupoles under certain circumstances.

In some quadrupoles, particularly in large accelerators, the focal length of the quadrupole
is much longer than the quadrupole length itself. In this case we can approximate the effect
of the quadrupole as a single kick and neglect the particle’s change in position through the
quadrupole. This is equivalent to keeping only first-order terms in the cos and sin expansions
above. For VKL << 1 with L — 0 and kL constant, we then have

_ (1 o\ _( 1 o0
Mfocusing,defocusing - < :FKL 1 > - ( :FKL 1 ) (14)

2.3 Dipole: Different Than A Drift

A pure dipole field bends the beam in an arc of a circle. We will neglect edge focusing and
use the coordinate system that follows a reference particle through the center of the dipole.
First consider a short dipole of length L that gives the particle a horizontal kick Az’ << 1.
Here we cannot write the effect of this magnet as a transport matrix since the kick is not
proportional to z or ' — even the reference orbit is affected! Indeed, dipole correctors are
used to perform orbit correction (fixing the reference orbit to be through the centers of the
quadrupoles).

Now consider a long sector dipole which bends the beam by angle § with a radius p in the
horizontal plane. A reference particle passes through the center of this dipole on a trajectory
that is an arc of a circle, and indeed all particles travel on circular arcs through the dipole
with constant field, so we can derive the transport matrix of the dipole geometrically.

Vertical motion is unaffected, since the magnetic field is in this direction. The vertical
transport matrix therefore looks like a drift with arc length pf:

()= 7) () "

The horizontal motion is somewhat more complicated, and can be derived using Vladimir’s
methods or shown through geometric arguments:

T\ _ cosf psind X
(m’>~<—lpsin0 cosd ) <m6> (16)

The full dipole transport matrix can be derived from Vladimir’s notes, including the



effects of longitudinal position and momentum offset relative to the reference particle:

cos @ psin 6 0 0 0 p(l—cosbh)
-—%siné’ cos @ 0 0 O sin
o 0 0 1 p8 0 0
Maspore = 0 0 01 0 0 kIE)
—sinf —p(l—cosf) 0 0 1 —p(6—sindh)
-0 0 0 0 0 1

3 Thin Dipole Error

Consider a think dipole error Az’ at a specific location in the lattice. What is its effect on
the closed orbit (z.,, Z,) at that location? We can write the motion using the one-turn map

() (o) (%) .

to calculate the new closed orbit. This becomes

(7)) a

Now we can rewrite the matrix (I — M)~! using the exponential form for M:

(I-=M1 = [e””J (e"’”’J — e’”’J)] (20)
= —(2Jsinmv) (e™7)? (21)
- ZSirll 8% Jerm (22)
= 5 sirll — (Jcosmv + Isinmv) (23)

Using the Courant-Snyder parameters from J, we find

Teo \ AT B cosmy (24)
zl, | 2sinwy \ sinmv —acoswy
where § and « are defined at the point of the perturbation. We will see tomorrow how this
error propagates around the ring to other locations.




Poisson Brackets and Lie Operators
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January 22, 2008

1 Symplecticity and Poisson Brackets

1.1 Symplecticity

Consider an n-dimensional (2n-dimensional phase space) linear system. Let the canonical
coordinates of the system be ’

a1
P
q2
X=1 p (1)
q’n/
Pn
When we index X; here, 0 < ¢ < 2n, including both ¢ and p. Let M be the 2n x 2n matrix
that describes the map that brings the coordinates of the particles from the initial position
s = 0 to the time of observation s in this linear dynamical system: X = M X,. Then M
must satisfy the symplecticity condition

MISM =S (2)

where the matrix S is the block-diagonal symplectic form:

s=(%4) ®)

Note that all symplectic matrices are necessarily even dimensional. Since S? = —I, S may
be thought of as the matrix equivalent of ¢ = /—1. This analogy extends to the point that
exponentials of symplectic matrices are similar to rotations.

What is remarkable is that the symplecticity condition, Eq. (2), applies also to a nonlinear
system if we identify M to be the Jacobian matrix of the map, whose elements are defined

as 8Xz
9(Xo); @

where (Xj); is the j™ component of the initial coordinates of a particle at s = 0 (including
both coordinates and momenta!), and X; is the i*" component of the final state X of the
particle at arbitrary time s. In a linear system, the Jacobian is just the transformation
matrix, and is independent of the particle coordinates. In a nonlinear system the Jacobian
matrix M depends on the coordinates of Xy and the symplecticity condition Eq. (2) must
be satisfied for all Xj.




The symplecticity condition resembles a unitarity condition since the left hand side of
Eq. (2) is quadratic in M, while the right hand side is almost a unit matrix. This imposes very
strong constraints on M. Some things immediately follow from the symplecticity condition:

1. S and I are both symplectic.

2. If M is symplectic, then det(M) = +1. (We restrict ourselves to det(M) = +1.)
3. M is invertible, with M~ = S~1M7TS = STMTS.

4. If M is symplectic, so are M"* and M.

5. If both M and N are symplectic, then M N is symplectic.

6. If A is an eigenvalue of a symplectic matrix M, then so is 1/A.

This is already starting to look algebraic.

One bit of magic is that all Hamiltonian systems are symplectic. This includes both linear
and nonlinear Hamiltonian systems, or even when the Jacobian depends on the coordinates!
You proved this in your homework last week. For linear systems, the map is independent of
X and X, so the symplectic condition only has to hold for all time s. However, for nonlinear
systems where the map depends on X, the symplectic condition must hold for all s and Xj.
That’s a strong constraint!

The symplectic condition imposes a total of n(2n — 1) constraints since MTSM = S is
antisymmetric, so the 2n x 2n matrix M therefore has n(2n + 1) independent elements. In
the n = 1 case, there is only one constraint (unit determinant), and 3 independent elements;
for n = 2 there are 6 constraints and 10 independent elements. When we get to treating
the group of symplectic matrices as a Lie algebra, the independent elements give rise to the
generators of the group.

1.2 Poisson Brackets

The Poisson bracket between functions f(X;s) and g(X;s) of canonical coordinates might
be familiar from Hamiltonian mechanics:

_ & (of 3g;3f89> |
fg) = ; (8% dp;  Op; O (5)
B af ag

where again the ¢, j range over all coordinates and momenta. Just like symplectic matrices,
the Poisson bracket has some handy properties:

1. Antisymmetry: [f,g] = —|g, f]

2. Real distributivity: [af + bg, h] = a[f, h] + b[g, h] for Va,b e R
3. Functional distributivity: [f, gh] = [f, g]h + g[f, h]

4. Jacobi identity: [f,[g,h]] + [g, [k, f]] + [h, [f, 9] =0

5. Fundamental Poisson brackets: [X;, X;] = S;;

6

. [f,9) =0if f or g are constant with respect to X.



2 Lie Operators and Lie Algebras

2.1 Back To The Map

Recall that for the past week, we’ve been learning how to solve this in a different way, by
writing down a linear Jacobian transport matrix that propagates the coordinates Xo to a
new coordinate X (s) with a transport matrix:

0X;
0(Xo);
The question is how to extend this to nonlinear systems, since accelerators are nonlinear. The
Jacobian is the way that output conditions vary from small variations in input conditions.

One natural way to express a nonlinear transport map is in terms of a truncated power series
of the original coordinates:

X = F(X,) (Truncated power series) (15)

where F(Xy) is, say, a collection of N th order power series in the components of X, where
N is the order to which we are truncating in a perturbative expansion.

Recall that for periodic systems, we often wrote the transport matrix in terms of an
exponential. This exponential depended on the details of our magnets and the lattice layout,
but did not depend on the coordinates themselves. It turns out that another natural way
to extend the Jacobian transport of Eq. (14) is with a Lie map, which is the exponential
of a differential operator : G(s): (which we’ll define in a moment) that can depend on the
coordinates: ,

X =P X (Lie map) (16)
X=X
Note some subtle differences between the truncated power series and the Lie map:

e The Lie map is symplectic by definition, while the truncated power series is not!

e G(X) is a function of the coordinates, while the truncated power series is only a function
of the initial coordinates Xj.

e There are many functions F, one for each coordinate, while there is only one G(X),
called the generator of the Lie transformation. It is a linear combination of the gener-
ators we saw earlier.

e To get the same equivalent order, we need to write the Lie map to the (IV + 1)%* order.
(We'll see we need an extra term from the Poisson bracket differentiation.)

Some group-theoretic babble before we continue: a Lie group is a mathematical group
which is also a finite-dimensional real smooth manifold, and in which the group operations
of multiplication (or concatenation) and inversion are smooth maps. Generally Lie groups
are generated by infinitesimal generators. Some examples of Lie groups are:

e R" is an abelian Lie group under addition

e The orthogonal group O,(R), the group of all rotations and reflections of an n-dimensional
vector space. The subgroup of elements of determinant one is called the SO, (R) special
orthogonal group, or rotation group.

e The group Span(R), or group of all symplectic matrices.
e U(1)xSU(2)xSU(3), the composition group of the Standard Model.



Why is the Poisson bracket useful? Consider f(X(s);s): it changes in time s either
because of explicit s dependence, or because it depends on X (s). The total time derivative
f' can then be written as:

, _ Of Of
r=dey )
_of a0 g on
= 35 T2 ax YK, ®)
oy |
- Y ©)

So a quantity f(X) is a constant of the motion described by H if it is not explicitly s-
dependent, and if it has
[/, H] =0 (10)

Poisson brackets are therefore intimately related to the time evolution of phase space quan-
tities. It looks like the only relevant Poisson brackets.involve the Hamiltonian here, but we’ll
find out that Poisson brackets of other quantities are also useful. As we move from linear
to nonlinear dynamics, we will see that Lie algebras in accelerator physics are basically a
formalism to simplify calculations within the algebra of Poisson brackets.

Poisson brackets in differential algebras used in accelerator tracking are often computed
between two Taylor series of X. We can see that if f is an n*® order and g is an m™ order
Taylor series, their Poisson bracket is another Taylor series of order m +n — 2.

1.3 Example: Coupled harmonic oscillators -

Consider a pair of simple degenerate harmonic oscillators described by the Hamiltonian
1
H= §(w2xz +p2 +w’y® +p) (11)

It’s almost obvious (though we can show) that f; = w?z? + p2 and f, = w? + pz are
constants of the motion. For example,

1
[, H] = W +pp, s lw'e? +p7]]

= L (e e =0 12)

However, another constant of the motion is g = xp, — yp,; this corresponds to the angular
momentum:

1

l9,H] = 3lepy = ype,w’s® +p; + Wy’ + py]
2 |
= = ([zpy, 2] + w*[zpy, 4?) — w?lype, 3] = [yps, p2]) =0 (13)

You can see here why this has to be a degenerate oscillator for the angular momentum to be
a conserved quantity. By forming [fi, g] or [f2, g], we can also find that h = w?zy + p,p, is
a constant of the motion, but it’s a combination of the other invariants: w?g* 4+ h% = fi fa.



2.2 Lie Operators

Since it’s a pain to keep writing brackets all over the place, and because we're not confused
enough yet, we’ll rewrite the Poisson bracket in another notation that emphasizes its operator
nature:

frg=1f9]= Z %,X (17)

f(X) is known as a Lie operator that operates on the function g(X). Antisymmetry imme-
diately follows: : f: g = — :g: f. One convenience of this notation is that powers of this
operator are easier to write, so

(f)?*g=1f1f,4] CFylg=ILha (18)

(L) = 3 sl Pl £ 19

n=0
The Jacobi identity also helps us find that the commutator of two Lie operators : f: and
:g: is given by the Poisson brackets:

{figy=:fug:— g f=1[f 9] (20)

This gives a cool variation of the Jacobi identity that can be used to simplify commutators
of Lie operators: '

{f,gth =hug: f (21)

Eq. (20) is the reason Poisson brackets play a prominent role in Lie algebra of operators.
Commutators of operators occur often, and this equation states that they can be calculated
in terms of Poisson brackets. So, for example : f:and :g: commute if {f, g| is constant.

Recall that we are expanding our map in higher order terms in a way similar to expanding
a power series or Taylor series using the exponential of a differential operator:

of = 2%(:f:)k (22)

This exponential operator a Lie transformation, with : f: as its generator. It is particularly
useful when : f: is nilpotent, i.e. : f:"= 0 for some n.

Note that the Lie algebra is not the same as your typical algebra, particularly because
operators do not necessarily commute. For example, exp(In(z)) = z, but exp(:In(z):) #:z:.
In particular, the map exp(:In(z):) is symplectic: exp(:In(z):)z = z, exp(:In(z):)p = p+1/=,
so its Jacobian has unit determinant: ‘

M = 5%(}%; - ( —11/932 (1) > (.23)

while the map :z: is nonsymplectic (:z: x = 0 and :x: p = 1). Some simple Lie operators
in 2n dimensions are:

oy — a . «— 8

g = o Wi b= 50
cape: = pil g2
‘qlpl' - pzaql qlapz

62
pUPit = Ipptigi= — :q;: and :p;: t
(g p pig B50:0D; (:q;: and :p;: commute)
0 0
= 2 =~ 2P - 24
q U5 P; P (24)



2.3 The One-Turn Map and the Hamilton-Cayley Theorem

How do we describe the general linear one-turn map of our “standard” Hamiltonian in this
formalism? Consider the quadratic form
0 .
fo= —§XTFX | (25)
where F' is symmetric and positive-definite and F' is linear, so it does not depend on X. Our
linear Hamiltonians can be written this way, for example, since they are quadratic forms in
z and p, with symmetric terms. We can show that : fo: X = SFX —
0
Ifgl Xi - fQSJk(?X an
X;
= — B Rg,
0X;

This also gives
2 X =e5FX  or ef =T (26)

Recall that the matrix form of the one-turn map is 7 = I cosu + Jsinp = ¢*/ in the
linear uncoupled case. From (26), SF = pJ, and we can find F' for the one-turn map in
terms of the Courant-Snyder parameters:

F=pS 1] =psTJ = M('y g) (27)

Note that det(F)=u? > 0 so this is positive-definite for a stable lattice. We can then write
the one-turn Lie operator f, for the one-turn map from (25):

fo= —gXT < Z g ) X = g (fy x° + 20xp, +ﬁpi) (28)

More generally, we can find the Lie operator from the matrix and vice-versa for any map.
(An example of doing this is above, and in your homework.) The above example had the
advantage that the matrix form was already an exponential! For other simple cases, like the
quadrupole, this is not the case. Then you will have to use the Cayley-Hamilton theorem:
every square matrix satisfies its own characteristic equation. Another way of saying this is
that if X; are the eigenvalues of an IV x N matrix F, then any function

N-1
F)y=> aF* (29)
k=0
where the a; satisfy the N — 1 equations
N-1
FOG) =30 anh (30)
k=0

We can use this to show that in the two-dimensional case (see homework again):

F—-:(a l;) = +Vdet F :>eSF:cosuI—|—Slzu< b C) (31)

b —-a b




2.4 Lie operators for other accelerator elements

The transport maps for accelerator elements can be represented as Lie transformations. For
example, consider the one-dimensional drift. We know that it’s usual map is

1 L
Mdrift = ( 0 1 > (32)

The Lie transformation corresponding to this is exp(: —%Lp2 1). We can see this by writing
out a few terms:

plix = —~2p (p*)'z=0 Vn>1
plip = .0 (p*)"p=0 VYn>1 (33)
From this it’s apparent that exp(: —1Lp?:)z = 5 + Lp, and exp(: —3Lp*:)p = p.
We can similarly establish Lie operators for other elements, including nonlinear terms such
as thin-lens multipoles. We couldn’t do this with the simple linear matrix formalism before,
but now we can apply the full power of Lie operators and Lie algebras to concatenate these

maps, simulate accelerator maps more efficiently, and solve nonlinear dynamics problems.
Some examples of these elements are listed here in Table 1.

Table 1: Lie Operafors for Common Accelerator Elements

Element Map Lie Operator
Drift space x = o + Lpg exp(: —3.Lp”:)
P =Dpo
Thin-lens quadrupole | z = zg exp(: —51];562 )
b =Dpo— %wo
Thin-lens kick &= Ty exp(: Az™:)
p=po+ Anzg
Thick focusing quad z = x¢cos VEL + £ sin VEL exp(: —3 L(kz? + p?):)

p = —kzosin VKL + po cos VAL
Thick defocusing quad | z = 2 cosh VEL + % sinh \/EL exp(: —1 L(kz® — p?))
p = —kxysinh VKL + po cosh VEL

Coordinate shift z=29—b exp(taz + bp:)
D =Dpo+a
Coordinate rotation T = T COS U + Posin p exp(: —£(z* + p*):)
(Phase advance p) p = —xgsin p + po COS L
Full-turn Hamiltonian | (lots of things) ' exp(C : Heg:) or

exp(: —&(yz? + 2azp + Bp*) 1)

Note that Lie representations are really useful for generalizations to nonlinear systems, and
for power series analysis when performed by computers. However, Lie operators like those
listed in this table really aren’t useful for simple linear accelerator problems. For example,
consider the thin-lens FODO lattice: its Lie representation is given by the concatenation

exp (: ~%I2 :> exp <: —%Lp2 :> exp <: gfﬁ :) exp <: —%Lp2 :) (34)

Note the reverse ordering; these are operators, after alll Considering that these are infinite
series before losing terms when they are applied to (z,p), expanding this is a complete
headache compared to the simple 2 x 2 or 4 x 4 matrix approach.



All of the elements above are exponentials of Poisson bracket operators, so they are Lie
operators. Lie operators, like exponentials, have plenty of useful properties. Many are
intuitive if : f: and : g: commute, such as exp(: f:)exp(:g:) = exp(: f + g:).

2.5 Example: Sextupole Taylbr Map from Lie Operator Hamiltonian

As mentioned before, the one-turn Lie map is simply exp(: —CH :) where H is the Hamilto-
nian and C is the circumference of the accelerator. This can be extended to exp(: —LH :)
where L is any length of integration, including multiple turns. Let’s take the general sex-
tupole Hamiltonian as an example, where

1 1
H = 28(@ = 3ay*) + 5 (% + ) (35)
We can then calculate orders of the Hamiltonian:
OH
‘H: = — = —
z O, Pz
H%z = — :H:pz:—%‘g = —8(z% — %)
oOH oH
H3z = —S( 2z) + —(2 >=2Sxpw—yp
e 2) + 5 (20) | =251 »
oH O0H O0H oOH
" .4 — I hadainl i) e
iH 8 = QS( 8pmpz+x8x +8pypy 8yy>
= 28 [—pi e pz + Sz (a:2 + yz)]
-Hex = Of8%) (36)

We can then obtain the Taylor map up to a modest order:
exp(—L:H:)z = z+4+p,L— %SLZI(xQ’— y?) — %,S’L?’(a:p:c — Ypy)
+T12~SL4[—pi +p2 + Sz(z® + )] + O(S*LP) (37)
where O(S?L?) means terms same-or-higher order than S? in S and same-or-higher order
than L° in L.

We can work through all the math (Mathematica really is your friend) to find the mappings
of other coordinates as well: '

exp(—L :H)p, = ps+SL(a®—y?) — SL*(zp, B, Ypy) — %SLg’[pi —p2 — Sz(z® + )]
+ %552114(5562% — y?p, + 6xyp,) + O(S?LP)
exp(—L:H:)y = y+ Lp,+SL*zy+ %SL3(3:py + Ypz)
+ TliSL4[2pa,py + Sy(z? + 3?)] + O(S?L?)
exp(—L:H:)p, = p,+2SLay+ SL*(zp, + yps) + 1;S’L‘B[ngcpy + Sy(z* + y?)]

3
1
- ESL‘l(xzpy — 6xyp, — 5y°py) + O(S*L?) (38)



This is not too exciting, as we still would have to expand using the Floquet transformation
to find resonance driving terms and strengths, but the real advantage here is that this
expression can be explicitly calculated to any order in S. (Mathematica is your friend!) When
you do this, you find that higher orders of sextupole powers drive higher order resonances,
similar to octupoles, and even higher orders after that. The reason that accelerators still
work despite an infinite number of resonance driving terms from nonlinearities is that these
driving forces are perturbatively small — so small that the resonances are all tiny and
isolated, and tend not to overlap according to the Chirikov resonance overlap criterion that
Vladimir mentioned in the nonlinear dynamics lecture.

2.6 The Ring and the Baker-Campbell-Hausdorff Formula

How do we apply Lie techniques to piecewise continuous Hamiltonians in rings? We have
individual elements (dipoles, quadrupoles, sextupoles, etc) that we chain together, so we end
up with a Lie map that is their product:

H Ne:—LiHi: — ei—cHef{Z (39)

i=1

This can be seen in the following figure, which in some sense expresses our desire to have
a full-ring effective Hamiltonian that carries all the nonlinearity of the system. The goal is
then to find the effective Hamiltonian H.g.

Element 2
Element 1 - J

Element 3 - H2 HS

; ; Pigcawise
Piecawise
constant
Slements Hamitanians
N =iHi _ -CHyy
Accelerator = ] e L= B
|=1 .
Lie representaton Effactve
of the Harmiltonian
atcelerator

If : f:and : g: do not commute, how do we relate exp(: f :)exp(: g :) to a single Lie
operator exp(: h:) — that is, how do we concatenate Lie maps? The basic formula that
allows concatenation of Lie operators is called the Baker-Campbell-Hausdorff formula. It
comes in many useful forms, but we’ll just state two here for convenience — it’s already long
enough! Given exp(: f:)exp(:g:) = exp(:h:), h is related to f and g by:

_ 1 . 1 . £.2 1 a2 1 e f e g2
h = f+g—i—2.f.g+12.f. g+12.g. f+24.f..g. f
1 o4 . 1 £ 4 1 e £.3 1 cf e 4.3
=55 9" f 720.f. g+360.g..f. g+——360.f..g. f
1 2. 2 1 2. 0.2 6
— %0 —— g f 4
g F T f g 9 f g+ O((f,9)°) (40)

We can rewrite this in terms of commutators, so we can see more of the functional nesting,
but it really doesn’t help much. The coefficients of this expansion of the original BCH
formula don’t seem to have a convenient pattern.



If one of the terms in the BCH expansion is perturbatively small, we can sum the infinite
power series in the first form over the function f or g (whichever is NOT perturbative) to
find

efe? = exp [zg + (mg)—_—J F+0o(% :} (41)
efe? = exp[:f + (T_—;Xip(—f—)> g+ O(g2):} (42)

This and other forms of the BCH theorem, along with the Taylor expansion seen in the
last section, allow us to calculate nonlinear accelerator maps to high order. These can be
used for computer simulation, and for analysis. To determine dynamic aperture, or long-
term beam stability, we often “track” for millions or tens of millions of turns around the
accelerator. However, the maps that we’ve generated are not symplectic if they are just
arbitrarily truncated! This leads to the field of “symplectification”, where additional higher-
order terms are added that make the map symplectic again, yet are high enough order that
they do not dominate the dynamics. ‘
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Colliders and Beam-Beam Effects

T. Satogata

January 23, 2008

1 Luminosity, Collider Rings, and Emittance

Recalling homework one (lo these many years ago), the center of mass energy available for
collisions is much greater in a collider than a fixed target experiment. Some of the first
machines to collide beams were done with head-on collisions at Adone (Frascati), ACO, and
VEPP-2, and nearly head-on collisions of protons in the ISR at CERN. Before discussing
.the beam-beam force, we’ll review the parameters of collider luminosity, since beam-beam
effects ultimately are one of the primary limitations of achievable luminosity.

The interaction rate for a fixed target experiment is

R=oNnl (1.1)

where o is the interaction cross section (usually measured in units of 1 barn = 10**
cm~2), N is the number of particles incident on the target every ;second, n is the number
density of the target, and [ is the target length. Note that we also use ¢ for the beam size,
but generally the interpretation is obvious from context. Luminosity is defined as the rate
per unit cross section, so we can define the luminosity for a fixed target experiment as

EZE:an:NleA

o M <12)
where N4 is Avagadro’s number and M is the molecular weight. For a liquid hydrogen
target with density p = 0.07 g/cm?® and a beam flux of 10'® particles per second, this gives
a luminosity of about £ =2 x 103 ecm=2 s71.

One example of a collider is a ring where a single bunch of particles and a single bunch of
antiparticles circulate in opposite directions. The beams cross every half revolution at two
opposite points. For your homework (problem 1 in homework 2, also Lee 1.7(b) p. 27), you

calculated the luminosity of two round equal-size Gaussian beams colliding head-on:
N1 N:
r= SNV,

Amo,oy,

(1.3)

where o, , are the rms transverse beam sizes, f is the frequency of crossings or collision
frequency, and Nj 5 are the number of particles in each bunch. For a collider, typical lumi-
nosities can range from £ = 10%° cm™2 57! up to 10%2 cm™2 s~1. The online collision pattern
for RHIC is shown in Fig. 1 at the top of the next page.

One way to maximize collider luminosity is by minimizing the beam size at the collider
crossing. As you might expect, the beam sizes o, and o, are related to the beta function (or
square of the envelope function), though they are also related to the dispersion D, , through
the longitudinal momentum spread o,:

2 2
%9 3 "y
O'i = ﬁ;Em + <Dzz—)§> O‘; s 6y€y + <Dy—pf) (14)
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Figure 1: The collision pattern for RHIC. There are two counter—rotatlng beams in two separate rings, with
the ability to collide at 6 separate experimental areas. The RHIC blue ring goes clockwise; the RHIC yellow
ring goes counter-clockwise. There are up to about 110 buckets in each ring; some buckets are not populated
with beam bunches to avoid the buildup of electron clouds and electron cloud instabilities, which will be
discussed on Wednesday afternoon.

Here starred values indicate values at the interaction point (IP), or crossing point. Usually
colliders are designed with 3, , as small as possible at the IP, and with zero dispersion to
maximize the luminosity. Some e*e™ collider parameters are listed on p. 514 of Lee.

There are two new quantities in Eq. (1.4), ¢, ,, known as the emittances. This is simply
the scale factor for the beam size related to the standard parameterization of motion:

z(s) = \/B(s)ez cos(Q Y. (s) + 6) (1.5)

in a region where the dispersion is zero. Emittance can also be viewed as a measure of
the total phase space occupied by a certain percentage of the beam, generally a conserved
quantity according to Liouville. However, as the beam momentum py increases, the trans-
verse angles (z',y') = (pz/Po, Py/Po) get smaller by a relativistic factor of 3,7, where the r
subscript indicates relativistic factors. This leads us to an expression for the normalized
emittance

ENgz = ﬂrrYre:c (16)

which is invariant under acceleration of the beam. A typical RHIC Au beam normalized
emittance is 10-20 7 mm-mrad in both horizontal and vertical planes. One comment of
confusion to the uninitiated: the emittance is commonly quoted in units of “r mm-mrad”
with the 7 being part of the units and therefore not used in calculation! Conventions also
vary from lab to lab — some labs use 95% emittance, while others use rms emittance.



2 The Beam-Beam Force

When our Gaussian beams collide head-on, there is a space-charge force arising from the
fields of one beam acting on the other beam. For computational simplicity, we will assume
that the fields of one beam are much stronger than the other. This is the case in pp colliders
like the Tevatron, and is known as the weak-strong approximation. At RHIC, both
beams have approximately the same number of charges and transverse size, so the beam-
beam forces are in the strong-strong regime. For now, we’ll examine the forces encountered
by a single particle encountering the electromagnetic field of an opposing Gaussian beam.

The radial force is similar to the space charge force discussed earlier, but replacing (1—32?)
with (1 + 4?2) since the beams are colliding:

Fu@) = g ) [1- e (2 )] (21)

This function is plotted in Fig. (2) for normalized quantities. It is roughly linear in the range
|z| < o,/2, then curls over strongly and asymptotically decays for large z as 1/z.
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Figure 2: The beam-beam force given by Eqn. (2.1), with the horizontal axis units normalized to the beam
size T = 0 /0,. This is a defocusing force for an oncoming Gaussian beam of the same charge; this force is
reversed for beams of opposite charge.

For ultrarelativistic particles where 8, — 1 and for small amplitude displacements from
the opposing beam center, Eqn. (2.1) becomes linear:

Ng’z

F 2y 2.2
1(@) 2rlog (0, + oy) (2.2)
And the effective angular kick from this force is
Ap, N
Ay = BP= _ Fu0t LCR— (2.3)
P P 0u(oz+0y)

where ry = ¢*/4mmc? is the classical radius of the particle and the time of flight §t = [/2c.
This looks like the defocusing from a thin defocusing quadrupole; Vladimir calculated the
tune shift from a similar term yesterday:

ﬁ;AI{)_— E;NTO . N’f’o

4 2myogu(on+oy) _47rerms,N

AQz:—

(2.4)
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Since the beams are rotationally symmetric, one‘ finds this focusing or defocusing in both
planes, depending on the relative sign of the colliding particles. We have used

Ogp N Oy = o/ Erms,xﬁ; -

and 3, ~ 1 in the last expression to demonstrate that the beam-beam tune shift is inde-
pendent of §* and only depends on the bunch intensity and emittance for relativistic round
beams. This parameter is so commonly used that it gets its own letter and name in the
common literature, the linear beam-beam tune shift or beam-beam parameter &:

Erms,x,Nﬁ;
By

PP L (2.5)

47T€rms,N

where again we have assumed round beams.
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Figure 3: Measured beam-beam tune footprint from the Fermilab Tevatron. The resonance shown at the
center of the diagram is 13*" order! Here the total antiproton beam-beam parameter is about £ = 0.02 since
the beams are in the weak-strong regime. These are oppositely charged beams, so the beam-beam tuneshift
is positive (additional focusing) and the majority of low-amplitude particles lie in the resonance free area
near the diagonal in the upper right quadrant. The unperturbed antiproton tunes here are approximately
(0.576,0.576). (Alexahin, “Theory and Reality of Beam-Beam Effects at Hadron Colliders”, PAC 2005)

£ serves as a natural scaling parameter for the beam-beam interaction, and it is usually
conveniently perturbatively small. Since the beam-beam interaction is strongly nonlinear for
larger amplitudes (as we’'ll investigate more in the next section), the maximum total tune
shift from all beam crossings from beam-beam is quite modest, about < 5 x 1072 at the ISR,
about < 8 x 1073 at RHIC (both strong-strong machines dominated by coherent beam-beam
modes), and < 3 x 1072 at CESR for e*e™ storage rings, where radiation damping helps
stabilize the beams. '



3 Nonlinear Beam-Beam Interactions

3.1 Nonlinear Hamiltonian

Here we will examine one-dimensional horizontal resonances driven by the beam-beam in-
teraction, and use this as a springboard to calculate some measurable quantities about
resonances. There is a computer simulation homework at the end of this section that will
help (literally) illustrate the topology of resonant phase space.

Substituting the general beam-beam kick, Eqn. (2.1), into the beam-beam kick equation,
Eqn. (2.3), and using the expression for the beam-beam parameter £, we get

, 47€ o2 B2 :

Here it is clear that the problem scales with z/0,, so change variables via u = z/0, and
o =1x'/o, = p./(0.p0) (a canonical transformation) to give

Agg! = _47r§ [1—exp (—f)} . [u—— u_3+y_5 +} (3.2)

The force is antisymmetric, so the kick is antisymmetric (or odd) as well, to all higher orders.
The first order term reproduces the linear beam-beam tune shift for small-amplitude motion.

Eq. (3.2 has the form of a Hamilton’s equation, so we can integrate to produce a pertur-
bative thin-kick nonlinear beam-beam Hamiltonian:

oré [u?  uwt Wb
Hp(u, u/),: IB* {? - -]z + '7‘—2‘ + Wi v (33)

(Remember that this is a perturbation on top of the normal beam motion.) This is a
combination of quadrupole, octupole, dodecapole, and higher order terms that are now all
even, so the beam-beam force drives all even-order resonances, or resonances of the form
2nQ, = l. The generalization to two dimensional motion will drive all even order coupling
resonances as well, since the system is radially symmetric in the (z,y) plane. Also note
that it drives all these resonances to first order in the beam-beam parameter ¢! Fortunately
higher order resonance driving terms decay with the terms of the exponential.

3.2 Resonance Analysis

As an example, let’s look at the 4@, resonance driven by the octupole term in Eq. (3.3),
assuming 4Q,; = | + 6Q, where 6@, << 1. Detailed steps to eliminate non-resonant terms
are in Lee pp. 203-205, or in class notes given by Eduard and Vladimir; our primary objective
here is to write a single-resonance Hamiltonian from the beam-beam force and learn about
its resonant topology. .

Expanding © = /27 cos(y) and writing the full Hamiltonian in action-angle coordinates,

we have v
Hi(p,I) = 21Q.I + AI* cos*(p) (3.4)

where constant terms have been absorbed into A = 7&£/28* (which is first order in &), and
we have disregarded all non-octupole terms. This is a so-called “one-turn” Hamiltonian;
without the resonance, ¢ = 27Q, and I = 0. The cosine can be expanded to yield

2

Hi(p, 1) = 27nQ, 1 + % [cos(4¢) + 4 cos(2¢) + 6] | (3.5)




This has resonance terms for the 4@, and 2@, resonances, and also has a term that gives
action-dependent (or amplitude-dependent) tune variation, or detuning:

)i 3 | u

P = 6—11 = 2mQ + A_LAI + (terms that vary with ¢ (3.6)
So the phase changes by 27Q, every turn, plus a term that depends on the action or square
of particle amplitude.

We'll consider only the fourth-order resonance, 4Q), = {+d() where 6@ << 1, and assume

! is odd so we are not also near the second order resonance! Then the Hamiltonian can be
“integrated” to find a four-turn Hamiltonian

_ _ 3 AP |
- 8 Al?
= 8méQI + §AT2 + e cos(4p) (3.8)
Hamilton’s equations give for this motion:
a - AL _
p = 8réQ + 3AI+ 5 cos(4p) (3.9)
I = APsin(49) (3.10)

Fixed points are found where ¢ = I = 0. This immediately gives

@grp = nm/4 (3.11)
F 8moQ
e = Fm 5173 (3.12)
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Figure 4: Examples of regular and chaotic phase space driven by beam-beam forces. { = 6 x 1072 in the left
plot, while £ = 0.22 in the right plot



