Part 4: fiber components

Fiber optic system components

- Connectors
- Directional couplers
- Lens couplers
- Attenuators
- Delays
- Polarization controllers
- Isolators
- Filters
- Modulators
- Amplifiers
- Detectors

Connectors

- Cores must be aligned to sub-micron accuracy
 - Sub-micron concentricity between core, cladding, ferrule, sleeve
 - Cores in contact avoid loss at interface (PC)
 - Loss through is ~0.2dB average, though variable and nonrepeatable
 - Ends are polished convex, to ensure core contact
 - Still some back reflection at discontinuity (see RWV p. 292, esp. 294)
- Some back reflection still exists, minimized by 8 degree angle (APC)
 - Back reflection loss >60dB
- Screw-on and push-on styles (FC, SC, LC)
- Mechanical splices
 - Push flat cleaved fibers together in a tube or groove
 - Fibers are cleaved flat using a good quality "cleaver"
 - High loss (~2 dB), but quick and cheap
- Fusion splices

•

- Melt fibers together with hot arc or filament
- Lowest loss (<0.02dB), negligible back reflection
- Align cladding, assume concentricity, or align cores by passing light through
- Some skill, expensive machine needed (\$5-100k, depending on complexity)

Directional couplers

- Evanescent field in cladding couples to nearby core
- High directivity, low loss, easily manufacturable in any coupling ratio
- Tree for multiple splits

Lens coupler

- To break out of fiber for a short distance, to insert some optical element
- Use lenses to make collimated beam between fibers
- Typical gradient index (GRIN) lens (RWV page 754)
- Less than 1dB loss

Attenuators

- Pulling connectors apart (see RWV p. 783)
 - Adjustable
 - Fixed ring
- Blocking free space beam
 - Digitally controlled versions
- Bend loss
 - Loops or s-curves
- Short sections of lossy fiber
 - Packaged like RF attenuators

Variable phase/time delays

- Optical trombone
- Piezo fiber stretcher
- Heated fiber spool
- AO fiber frequency shifter
- Optical IQ modulator
- **RF IQ modulator**

Trombone, stretcher, heater

- Optical trombone
 - A moving mirror or prism on a rail with motor
 - Slow, long range, few dB loss, stable with power removed
- Piezo fiber stretcher
 - Pulls on fiber to change delay
 - Equation, note stress and lengthening both
 - Acoustic frequency, low loss, short range (~10^-4 to 10^-5 of total length, 12ps for 40m spool)
- Heated fiber spool
 - ~10^-5/C thermal delay coefficient
 - Very slow, low loss, cheap

Piezo stretcher

$$\Delta \mathbf{t}/\mathbf{t} = \varepsilon \left\{ 1 + -\frac{n_o^2}{2} [P_{12} - v(P_{11} + P_{12})] \right\}$$

Bare Lead Fiber Stretcher with Mounting Kit

= (0.78 to 0.81) E (depending on ref.)

MODULATOR	SMF-28 FIBER
Operational Wavelengths	1260 to 1625 nm
Modulation Constant [low frequency]	27 radians/V @ 1.3 μm 23 radians/V @ 1.55 μm
Fiber Stretch / Optical Delay	3.8 µm/V, 0.028 ps/V
Linearity	3% at full scale drive
Frequency Range	See chart page 2
Optical Loss	\leq 0.5 dB, typical 0.2 dB
Extinction Ratio	n/a
Maximum Voltage Range [low frequency]	± 400V [800V P-P]
Impedance [off resonance]	Capacitance 0.1 µF, floating
Wire Lead	18 inches, flying leads, #30
Operational Temperature Range	0° to 70° C
Fiber Type	SMF-28e, 250 um acrylate jacket
Fiber Length	40 meters [includes 1 m bare fiber leads]

RF in-phase and quadrature (I&Q) modulator

- Input wave separated into two components, one shifted $\pi/2$ in phase
- Both components can be multiplied by [-1 to 1]
- They are added at the output to produce a phase shifted wave
 - If the control input is a continuous frequency, the modulator becomes a frequency shifter

Optical I and Q modulator

- Input signal is split equally in two arms
- Amplitude and phase can be controlled in both arms
 - Note that if both arms of a Mach-Zehnder modulator are driven together, the device becomes a pure phase modulator
- When recombined, the resultant output wave has controllable phase
- Used in Differential Phase Shift Keying (DPSK) telecommunications
 - Populate the complex plane with a ring of bit values (4 or 8)

Stress birefringence polarization controller

- Variable stress causes variable relative retardation parallel and perpendicular
- Rotation of the retarder with respect to the input polarization
 - Free space optic embodiment is Babinet compensator

Loop polarization controller

- Looping of fibers induces stress birefringence
- Loops ("paddles") are rotated with respect to the input and each other
- Arrangement allows access to any part of the Poincare sphere from any other part
- H. C. Lefevre, Electronics Letters 16, 778 (1980)

Amplitude modulation

• M is modulation depth

٦

• Note that spectrum analyzer will detect sideband power, so squaring carrier/sideband ratios

$$V(t) = \sqrt{2C} \left[1 + M \cos \omega_m t \right] \sin \omega_0 t$$
$$= \sqrt{2C} \left[\sin \omega_0 t + \frac{M}{2} \sin \left(\omega_0 + \omega_m \right) t + \frac{M}{2} \sin \left(\omega_0 - \omega_m \right) t \right]$$

Phase modulation

$$V(t) = \sqrt{2C} \sin\left[\omega_0 t + \theta \sin\omega_m t\right],$$

- Theta is the modulation depth, which is the peak phase deviation in radians
- If the "pi phase shift" voltage is Vp, the modulation depth is π *V/Vp

$$V(t) = \sqrt{2C} J_0(\theta) \sin \omega_0 t + \sqrt{2C} \sum_{n=1}^{\infty} J_n(\theta) \sin(\omega_0 + n\omega_m) t$$
$$+ \sqrt{2C} \sum_{n=1}^{\infty} (-1)^n J_n(\theta) \sin(\omega_0 - n\omega_m) t.$$

High-index phase modulation

- Sideband amplitudes are the Bessel functions
- One can observe the sideband power, the square of the amplitudes, with a tunable filter
- Mod index is easily determined by noting the relative sideband heights

$$e(t) = A_c \{J_0(\beta) \cos \omega_c t \\ -J_1(\beta) [\cos(\omega_c - \omega_m)t - \cos(\omega_c + \omega_m)t] \\ +J_2(\beta) [\cos(\omega_c - 2\omega_m)t + \cos(\omega_c + 2\omega_m)t] \\ -J_3(\beta) [\cos(\omega_c - 3\omega_m)t - \cos(\omega_c + 3\omega_m)t] + \cdots \} \\ = A_c \sum_{n = -\infty}^{\infty} J_n(\beta) \cos(\omega_c + n\omega_m)t$$

Modulators, electro-optic

- Waveguide on electro-optic substrate (RWV p. 768)
 - Phase
 - Waveguide sort of like a fiber
 - Waveguide material changes index as a function of external field
 - Field applied over a few microns, so low voltage
 - Phase match RF and light for high speed (~100GHz)
 - Amplitude
 - Turns phase modulation into amplitude modulation, by putting phase modulator in an interferometer
 - When phase difference is pi, light is extinguished because field at output looks like higher order mode, doesn't propagate
 - Note: not an amplitude modulator but a power modulator, thus AM sidebands are different
- **RWV** page 709, 710

EO amplitude (power) modulator

• Phase

Modulators, acousto-optic

- **Bragg diffraction** interacts acoustic wave with optical wave
- Periodic index modulation can be created by acoustic wave (stress-optic effect), launched by RF (piezoelectric effect)
- Index modulation is moving at acoustic velocity, Doppler shifting the optical wave up or down depending on geometry
 - The frequency shift is the RF frequency
 - The added phase shift is the RF phase
- Diffraction efficiency depends on index wave amplitude and interaction length
 - Diffraction efficiency can be modulated by changing RF amplitude, resulting in amplitude modulator
- Other functions such as tunable filters and scanners can be realized using swept RF sources

$$n(z,t) = n + \Delta n \cos(\omega t - kz)$$

AO frequency shifter

- Constant amplitude RF applied to modulator
- Frequency shift is RF frequency
- Efficiency of diffraction into first order ~60%
- Couple light out of fiber and back in after diffraction

$$K_d = K_i + / - K$$

 $K_i \equiv 2\pi n_i/\lambda_o$ - wave vector of the incident beam. $K_d \equiv 2\pi n_i/\lambda_d$ - wave vector of the diffracted beam. $K \equiv 2\pi F/v$ - wave vector of the acoustic wave.

Direct modulation of laser diode

- Common in telecom, cable TV
- Capable of very low noise

- Low noise RF source: modelocked laser pulse train on photodiode, bandpass filter at 2GHz
- Source jitter of 11 fsec RMS from 1kHz to 40MHz limited by photodiode shot noise at –155dBc
- Noise after link is 15fsec RMS, 1kHz to 40MHz
- No phase noise added by the link from 10Hz to 10kHz

Isolator

- Based on Faraday effect (RWV page 721)
- Non-reciprocal polarization rotation makes optical "diode" function
- Can be extended to make circulator
- Input polarization-independent versions created by splitting input into two arms, isolating each and then recombining

Filters

- Dielectric bandpass or notch filter
 - Stack of transparent layers with alternating indices of refraction (RWV p. 295)
 - Direct analogy with periodic microwave filter designs
- Fiber Bragg grating
 - Periodic index modulation in fiber itself, very narrow band notch filter
- Birefringent filter (Lyot and Solc filters)
 - Based on wavelength dependence of polarization state after birefringent element
- Fabry-Perot resonator
 - Two-mirror resonator, tunable by varying spacing
 - Essentially one-dimensional fiber implementation has near ideal characteristics

Bragg gratings in fiber

William Morey

Detectors

- **PIN** junction photodiode is most common fast detector (~100GHz)
 - Bandwidth ~ 0.35/risetime for simple RC
 - Bandwidth ~0.44/pulse width for Gaussian
- Bandgap determines spectral sensitivity

Measuring AM-to-PM characteristic

- Saturation occurs when photocarrier density is high enough to diminish intrinsic electric field
 - Efficiency decreases, ultimately limiting signal amplitude
 - Junction capacitance is modulated, changing phase transfer function
 - "AM-to-PM"

٠

- Bandwidth decreases
- Time domain response shows "tail"
- Most diodes saturate at around 100-200mV into 50 Ohms, though higher sat power models are available

- "Kink" in AM/PM curve provides zero-slope operating point
 - +/- 10% in power produces <10fs timing shift</p>
 - **Power is easily regulated to 1%**

Detection in frequency domain

Note that photocurrent is proportional to optical power

•

- Diode output is proportional to the square of the optical field ("square law detector"), thus can be used as a mixer to derive difference frequency (if it's within detector bandwidth)
- Observe beats between two optical signals
- Detect envelope modulation of optical wave

Noise sources in detection

where i_d

dark current;

- i_n op-amp input noise current spectral density;
- e_n op-amp input noise voltage spectral density;
- R_d photodiode dynamic resistance;
- R_s photodiode series resistance.

