Part 2: optical and fiber physics



Coherence

. The main advantage of lasers is, they emit coherent light, in contrast to incandescent or fluorescent
sources

. Coherence is the correlation between phase of the wave at two points. “Incoherent” means large
uncertainty in relative phase. (Thus, repeatable modulation still implies coherence.)

. An amount of incoherence is a deviation from perfect phase linearity
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Coherence and interferometers

- Temporal coherence: unequal-arm Michelson or Mach-Zehnder interferometer
interferes wave at one time with same wave at later time

¢ Detect interference term with photodiode, measures correlation
e See fringes vanish as time separation is increased

OO n

p
=< 1:><: E?_Imax_jmm

- 11‘!1‘.'-[!{ +Imjn

Fringe visibility

V=ly

E.=E,(r,.t)+E,(r,.t +1)

P P
/ \

/ #\ s )\
I,=(E,E a:\(E1+E2)'(El+E2)f

f :{c" TU T
=1,+1,+2 Re{\ElEz ,} (polanzations assumed to be the same)



Degree of coherence
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Michelson interferometer

* Waves from the two arms must have same polarization for maximum signal
- Faraday rotator mirrors are typically used
* With long coherence length laser, reference arm can be short for improved stability

e Add a frequency shifter in one arm, and the resulting beat signal is RF (frequency
shifting, or heterodyne interferometer)

- Phase comparison with local oscillator for frequency shifter
- Better SNR, resolves direction ambiguity faster than dithering
- Typical of commercial, free-space interferometers
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Mach-Zehnder interferometer

Wave is split in two, propagated in two paths of generally different delay

Two outputs, one which emits when in-phase, the other when out-of-phase by pi
Looks like the Michelson interferometer unfolded about the mirrors

We will make one of these and measure the coherence of a laser
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Not-nonlinear optics
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e Typically treat dielectric material as many simple harmonic oscillators
o Get complex response that gives Polarization vector, adds to total Displacement
. Susceptibility gives polarization response, is complex number

- Can be expressed as the index of refraction (relevant to optics)

— Or as dielectric constant (relevant to microwaves, RF)



Absorption and refractive index

o k is the complex wave vector, n the complex index of refraction
o The imaginary part of the index corresponds to changes in amplitude, while the real
part corresponds to changes in phase
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The intensity will change with distance as
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This can also be expressed in terms of the susceptibility:

rr
.rr_x . _ " ,I’J‘J
===, a=2k"=y"—,

)
2 c
If the susceptibility is derived in terms of the atomic energy levels, one gets
a very useful relation between this and the density of ground state and excited
atoms. Note that when (NO-N1) is positive, there is absorption, but it can be
zero or negative (for transparency or gain!)
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Dispersion

. Index characterized by resonances nearby . -
. fj is the oscillator strength of the jth resonance 2 N q; I:g
- Relates to quantum energy levels, N ({U) = 1 -+ Z 5 =
transition probability Eﬂme ] mﬁj — -

Kramers-Kronig relates the real and imaginary parts of the susceptibility
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That’s why one looks like the derivative of the other!
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Group vs. phase velocity
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* RWV page 261
*  Group velocity is the velocity of any modulation

e As modulation sideband relative phases shift, the “beat” shifts in Vernier fashion
Thus, if there is dispersion, the group and phase velocities must be different
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Material dispersion and the Sellmeier equation

o Sellmeier equation computes phase index based on
— This is temperature dependent
- Fit to measured data

e Telecom is concerned about group velocity dispersion (GVD), as they only detect the
envelope
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the wavelength and temperature dependent index:
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Ghosh et al, Journal of Lightwave Technology 12, 1338 (1994)

TABLE T putting in the known values,

SELLMEIER COEFFICIENTS FOR FUSED SILICA (FS), ALUMINOSILICATE (AS), AND VYCOR GLASSES AT ROOM TEMPERATURE AND AT A HIGHER
TEMPERATURE WHICH 15 471°C For FS AND 526°C FOR AS aND V GLasses. n? = A + B/(1— C/A?) + D/(1 — E/A?)

Glass & E= Temp. (©C) Sellmeier Coefficients Expt. accuracy & Our fit RMS error
100.0 A B C D sources ~ O
i n, (T)—n(T) =1%
Fused Silica 26 13121622 0.7925205  1.0996732x10-2 09116877 12119.6 95 g i
(Si02) 471 1.3148367 0.8034391 1.1248041 x 10~ 2 09119589 (o1 [11]
Fused Silica 20 13107237 07935797 1.0959659 x 10— 2 09237144 2.8-1.2 [8] 1.6
8i0y 205 1.3156569 07901384 1.0993430%10-2  1.0248690 +0.3 [6] 0.5
452 1.3066410 0.7994875 1.0919460x 10~ 2 0.9598566 0.3 [6] 04
alumino-silicate 28 1.4136733 0.9503994 1.3249011x 102 0.9044591 +2149.6 34
526 1.5205253 0.8556252 1.5205234% 102 0.9092824 (10] 44 - - -
vycer 28 LISE213 08271916 LossoTx10-? 09384236 21196 a We will see the importance of this later
Glass 526 1.3488048 0.7695233 1.1884981x 102 0.9460697 [10] 5.1




Example of pulse spreading
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. 100fs pulse propagated through 1 and 2km spools
. Lab exercise to see if this makes sense



PM turns into AM via dispersion
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Polarization
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e Two “polarization modes”, x and y wave vectors
e  Their relative phase and amplitude determines polarization state
o Several possible representations
- Poincare sphere
* A “globe” of possible states
e Typical polarimeters display this in real time
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Stokes vectors
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Polarimeters measure these directly with photodiodes and polarizing beamsplitters
They then display the elipse and the Poincare sphere
a1 and a2 are the amplitudes of the E fields

8 is the phase difference between the two components
All together, these uniquely specify the polarization
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The parameter sy is evidently proportional to the intensity of the wave. The
parameters sy, 52, and 53 are related in a simple way to the angle 1 (0 < % <) which
specifies the orientation of the ellipse and the angle y (—m/4 =< y < i/4) which
characterizes the ellipticity and the sense in which the ellipse is being described. In
fact the following relations hold:

81 = S§p cos 2y cos 21, (45a)

82 = 5y cos 2y sin 21, (45b)
83 = §p sin 2y. {45¢c)

Born and Wolf, Principles of Optics



S
Jones matrices J=E(t) = %ﬂ = E“zmy

. 2x2 matrix opeates on 2-vector of polarization in x ana y
J Multiply matrices for concatenated polarizing elements

- : |Optica| Element | Jones Matrix
Polarization Jones Vector
1 0
i 1 7 linear horizontal polarizer |:'U 0]
linear horizontal 0
- 0 0
— linear vertical polarizer |:'U 1]
0
linear vertical 1 11
[ linear polarizer at +45° i
b 13 T
linear 445 a1 1 =1
V2 |1 linear polarizer at -45° 2|11 1
- , 1 0
) 1 1 guarter-wave plate, fast axis vertical e/t [ﬂ —_ :|
linear -45° V2 | =1
: 1 0
B 1 guarter-wave plate, fast axis horizontal e/t |:{] g ]
. : 1
circular, right-handed V2 —i]
- 1 4
i ) ' 1
circular polarizer, right-handed -_:; |: —i 1]
;|1
circular, left-handed V2 1 —i
- circular polarizer, left-handed % |:1- 1 :|




Applications of polarization formalism

e Applications of polarization matrices
- Half and quarter wave retarders
- Polarization controller
- Faraday rotator
- Faraday rotator mirror
e Stress optic effect causes birefringence (waveplate)
— Can be useful, but also a perturbation
e Makes polarization-sensitive components useless, unless...
- Polarization-maintaining fiber (PM), with high birefringence
e Stress birefringence is small compared with intrinsic
- Polarizing fiber (P2Z)
e Doesn’t guide one polarization



Polarization mode dispersion

* In general, fast and slow axes exist

J Polarization drifts due to changes in stress

e Signal will shift from fast to slow axis and back, causing timing shifts
* Averages down to some value due to random “cells”

Fiber axes




Single-mode optical fiber

o Optical waveguides made from transparent material with index step

J Boundary condition imposed by change in index yields modes, as described in RWV
- For our purposes, step index, single-mode fiber is most relevant

e Transverse modes will be ignored, waves treated as one-dimensional

e  V-number

o Numerical aperture

¢  Cutoff wavelength

. Core size

o Index difference



Single mode condition
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They don’t spend much time on step index, unfortunately
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Mode field and numerical aperture

. For a multimode fiber, one can define an acceptance angle by finding the ray that is almost not guided
- Total internal reflection quits working at too-high an angle
. This is not quite valid for single-mode fiber, as diffraction dominates, but NA is useful to know to

determine index difference

NA = I(m)? — (m)?]

Mode field diameter is 1/e”*2 of intensity, an approximately Gaussian distribution
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Waveguide dispersion

* Depends on variation of field distribution with wavelength
e Can be varied by changing fiber geometry
e Strong enough effect to cancel material dispersion, shift the dispersion zero

- Dispersion shifted fiber (DSF): waveguide dispersion adjusted so that total
dispersion minimized (or nearly so) at telecom wavelengths

- Dispersion compensating fiber (DCF): dispersion over-compensated by waveguide
dispersion, so that when concatenated with normal fiber, dispersion is cancelled

- Dispersion managed fiber: alternating pieces of normal fiber and DCF, to maintain

minimum overall dispersion while allowing pulse to spread periodically (reduces
nonlinear effects)
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