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Microwaves and beam interactions
Some definitions and Maxwell equations

The sources of electromagnetic fields are charge and current, and we usually
use the charge and current densities when describing their effects:
_dq
P av

_dl

TS

J=cokE conduction current

J=pv free charge current

These obey the continuity equation: P
EJ+£:O

The Maxwell equations in differential form are

o D=p

OoH=J3+92

ot

Where E isthe electric field strength, B isthe magnetic flux density, D isthe
electric displacement or electric flux density, H isthe magnetic field intensity

B = pH = prioH
D=¢ =¢¢cE



The Maxwell equations in integral form are

rD-dS:f p dv
JS \Y
BedS =0
Js

0

e :-fB-dS
J o,

pedi = [ 205+ [ Deas
J S at S

The energy densities in the fields are:

dUg 1 2
W = HEl

dUy 1 2
v - oMM

Gauss law

Faraday law

Ampere law



The wave equation

take the curl of one of the Maxwell equations in a charge-free, homogenous,
linear, and isotropic medium:

DoooE=-9(0oB)
ot
) oE
-0%E + O(® E)=- (J+ s)
(@ E) o (P HES

2
7% - ?)=po 2+ pe? &
ot ot?

then for regions with no free charge or conduction current

9°E

O%E - pe2 =
ot?

=0

Thisis the homogeneous wave equation, and a similar equation can be
derived for B.

Solutions of the wave equation demonstrate propagation of the function with
avelocity

-1
V_i
I

The energy flow associated with the wave is given by the Poynting vector:

dP _d du

dS dt ds _£oH



Phasor notation

We may use the convention that sinusoidaly time-varying vectors may be
written with the time-varying factor €' suppressed:

E(x.y,zt) = Re E(x,y,z)dt|

Re(€) = in-phase component
gt |
Im (€“') = (90°) out-of-phase component
¢ =
v(t) = vgel &t
ﬂ — .(L’V
dt

e.g. for aseries LRC circuit we have

L dIdE[(t)+ RIR(t) + éf Idt) dt =V codwt)

in phasor notation (and in frequency domain) this becomes:

oL 1 (] + R (o] + 'J.C(wc‘*’) - V(o)



In phasor notation then, the Maxwell equations are easily written as:

ff D=p
OO0DE =-jwB
[ B=0

OJoH=J+jwD
and the average power is given again by the Poynting vector as:

P:;RquHﬂ

The wave equation in phasor notation becomes the three-dimensional
Helmholtz equation:

[1°E = - w2ueE = - kK’E
and

[1°B =- w2ueB = - k°B
where

k? = w2e



Now break the equation into parts using:

2
= +9E
. . 0z . "
And consider atime- | harmonic wave with time and
distance variations described by ) €, (propagation in the z direction

with velocity v,) we have

2
aiE =- BZE
22
and
e = (B2-KJ E
where B isthe propagation constant
=2
=V
k is the wavenumber
k = (\JL/) = (‘)\/?u



We commonly classify the solutions to the wave equation in the following
types:

1) TEM modes
Waves that contain neither electric nor magnetic field in the direction
of propagation. The name transverse el ectromagnetic mode arises
from the fact that all of the fieldslie entirely in the transverse plane.
They are the usual transmission line waves along a multiconductor
guide.

2)  TM modes
Waves that contain electric field but no magnetic field in the direction
of propagation. Also known as E, or electric, waves.

3) TE modes
Waves that contain magnetic field but no electric field in the direction
of propagation. Also known as H, or magnetic, waves.

4) Hybrid modes
Boundary conditions require al field components, may often be
considered a coupling of TE and TM modes by the boundary
conditions. Common in structures with "complex" 3-dimensional
geometry.
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TEM modes

Re-write the three-dimensional curl equations explicitly:

O0E =-jouH 0oH =jweE
= :
Y=z 4 E, =- . .
gy IPET IO ‘2;Z+JBW=-stEx
oE, . -
- 9= L iBEy = - j wpuH
0x
0Ey O0E, _ . oH, oH, _.
Y- T=X = jopH A E
o oy ox oy U
and with E, = H, = 0 we can find
B=w'egn =k
From the Helmholtz equation for E,
2 2 2
(a + 90 L0 e = KRE,
ox2 oy?2 072
substituting for e P dependence
02 . 2F — 12

then

2 2

0° L0 g =

0x2  0y?2
similarly for E,, and we find
A similar equation may be [1?E,=0 derived for H, and we find that
the electric field can be expressed as the gradient of a

scalar potential, asin the electrostatic case

Et =- Lhidy
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The propagation constant for TEM modes (3;g,, must be

Brem = £k
and in avacuum the wave travels at the speed of light c=_1
V €oMo
€
Hy== / 1
Ex
By=2—

TEM modes are the transmission mode of choice when sending information,
since there is no frequency cut-off in their operation, and all frequencies
travel at the same speed, the speed of light.

Examples:
Plane light
Radio waves
Coaxia lines
Striplines

12



TM modes

First solve for the field components, given the curl relationships shownin
the section on TEM modes

Ex=- (JBaEZﬂ(DH

oH,
k2 BZ

oy

aHZ)

E, =1 ( aEz+oo
)= oo IB Gy rien]

H — l (wsaEz_ aHZ
k kz-BZJ oy JBaX

h=. 1 (00 = GHZ)
y k2-[32] ™ JBay

and with (kz_Bz): Kk E 70, H, = 0 we can find

6= | po&:

Y72 oy
J BaEZ
X

0E;
= < jog ——*
X k2J dy

E, =-

Hy=- L1 joe 0E,
k2 oX
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From the Helmholtz equation for E,

2 2 2
? 0% 0
ox2 o0y?2 0272

and again substituting for e !** dependence

EZ: - k2 EZ

02

Z _E,=- 2 E
then 02 P E:
2 2
(a+a+ K? - [52) E,=0
0x2  0y2
or
0?%E, + (k?- BJE, = 0
We write
(- B9 = K2
then

[’E,+ k?E, =0

and the eigenvalue k_ determines the cut-off frequency (w, = kJV(ue))
below which the mode cannot propagete.

The axial propagation number 3 is generally combined into a complex
number y which allows attenuation constant a:

y=a+jf

In this discussion, we have set a = 0.

The phase velocity for each mode is

VZ: (A) - C
VK2 - kZ 1- (%)2
w
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The equation
0%E,+k3E,=0
has general solutions

E, = (A'sin kex + Bcos kXx)(C'sin kyy + D cos kyy)

where

ks + ki = k&
This must be solved subject to the boundary conditions of the specific
problem. Let's ook at a rectangular waveguide as an example. A perfectly
conducting boundary at x=0 and y = O requires B' = 0 and D' = 0. We write
A'C' = A, and have:

E, = A sin kex sinkyy

Boundary conditions of E, = 0 at x = aand
y = b result in the requirement

k a=mT

kyb = n1t

wherem,n=123,....

=
From k>2( + k32, — k(z;
We., = ka,n — 1 “mn)Z + (nT[)ZJ
o " Vpe Ve a b :
and this gives us our attenuation

constant below cut-off frequency, and propagation constant above cut-off:

o=k, 1-(&))2 W < Wy,
' wtm,n
wcmnz wW>w
B=k/ 1-["Cm G
w




Phase velocity

“4
e
i3
- o
= (3. 0x
Group velocity vg=dw =¢c/1- (%)2

w

dp
Energy propagates at the group velocity, and signals become distorted when
v, is not constant over the frequency band of the signal. This effect is known
as dispersion.

16



The other field components are derived by substitution of E, into previous
equations, e.g.

E,=- ) p& gives E, = - PR Acosk,x sin kyy
k> oy K2
Cm,n
similarly

E,=- J[32kyAsin KxX coskyy
ka,n

_ joeky

=
2
Ken

Asin Kyx coskyy

,N

Hy = - JWEKx A cog KxX sin kyy
e,

N
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TE modes

Therolesof E and H interchange in relation to the TM case, but with a
different boundary condition at the conducting wall

ne[JH,= 0
The transverse fields are described by:

H, etife= (B O, etife
k2

Et etifz= +./ € k Z X Ht etiBz
Mo |2

Again the solution for a given case is found by applying the appropriate
boundary conditions, and for the rectangular waveguide we find:

X MIX s
H,=Hqcos— cos— e*If?
z a a

ERb

The TE mode is most commonly used for low-10ss power transmission.
Waveguide is quite dispersive, resulting in signal degradation over long
lengths. At frequencies substantially above the cut-off of the TE mode (say a
factor of two higher), other modes may propagate in the waveguide, with
different group velocities and coupling to input/output systems, causing
more severe signal degradation.

kKe=Tt
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Fic. 2-5.—TField distribution for E-modes in circular waveguide.

1. Cross-sectional view
2. Longitudinal view through plane (-
3. Surface view from s-s
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Frg. 2-6.—Field distribution for H-modes. in circular waveguide.
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1. Cross-sectional view
2. Longitudinal view through plane I-

3. Surface view from s-s



Standing waves

Counter-propagating waves of equal amplitude combine to give a standing
pattern with E and H in both time-quadrature and spatial -quadrature. A
useful application isin resonant fieldsin cavities.

%—3_4
i > [
| I
:Ii Yy * | Current
¥
—— Electric field

——— Magnetic field

then

kea = pnm = mih zero of J,

The field components are smple:

B 80 . B ' (n
=+ = O H =- L (pth)

E

o=t 01/ 0 H=Ey D 0 k) elnospe)

Ho k2 '
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Consider the cylindrical cavity
shown. The mode may be
considered aTM,, wavein
circular waveguide at the cut-
off frequency.

Our Helmholtz equation

O7E,+ (k- BIE, =0
in polar coordinates
(appropriate for acylindrical
system) becomes:

2
10 06, 10%: 0p

with solution:
E, = Eg Jyker) glnesk:2)

The boundary conditionE, =0
at r=arequires



k.= PoL = 2.405
Y
m=0
zeropole
(longitudinal)
'ER 1-1-]
R 0 @0 e e -
s 203 OB S 9 -
TR IR
Vg
m=1
di pole
(fransverse)
XN T T X
[ F N N 'Y X R
' O
m= 2
quadrupole
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Since the energy flowing into a resonator reflects from a boundary, forming
a standing wave, we can picture how power builds up in the cavity from
multiple reflections. Input power is dissipated in the cavity walls, and in any
external "load" that is coupled to the cavity. Theratio of the stored energy to
the dissipated power givesthe "Q":

Standing waves may also form on transmission lines, as aresult of waves
reflecting at discontinuitiesin the line - i.e. achange in line impedance. Such
standing waves may lead to nodes where the voltage / current islarge /
small.

24



Open circuit

Short circuit

Yo
KL
.\ | / _
N ;N\ _x :
2 2 4
_I |
(a) e
b ot
] —
| i -
J-x om0 A\ _» z
4 2 3
_1 -
(b)
Xin
| :
\ | 2
| |
| |
| |
| 1
| ] o
AN A A z
4 2 4
|
|

—
33
o

(b
Xiﬂ
| | f 1 z,
' |
| |
| |
| |
l |
—RN 3 A _A
4 2 4
| |
| 4
- i
(<)

25




Charged particle beams

Relativistic kinematics

\Y

Yrdativisic J1p2 Bretaivisic = &

Intheclassical limit, B<<landy - 1
Intherelativistic limit, B - 1 andy s proportional to energy

Quantity Non-relativistic Relativistic
Energy E 1/2 mv? + m,c? ym,c?
Momentum p mv ymyVv = ymy3c
Force F m dv/dt = ma m/[3 dy/dt

It proves convenient to use units of

energy MeV
momentum MeV/ c
mass MeV/ c?

then the kinematic equations may be written without factors of "c":
E=vVp2+m?=ymg
E=K.E. + m

K.E.=E- mp=mdy-1)

P=Y MoV
v=P-_ P
E “/p2+m2

The fields of ultra-relativistic particles resemble
plane waves - E and B are transverse to each other
and liein adisk transverse to the particle velocity.

26




The opening angle of the radial E-field is of the order 1/y.

We have only radia E field and azimuthal H field, confined to adisk
perpendicular to the direction of motion of the charge, producing a o-
function distribution in the direction of motion.

The situation remains the same for charges moving along the axis of an

infinitely conducting smooth cylindrical pipe. The electric field lines are

then terminated with surface charges on theinside wall.

For non-relativistic particles the situation is more complex. For low-y beams

the space-charge force which cancels out with the magnetic forces of ultra

relativistic charges cannot be neglected, and the fields associated with a

charge are not so well confined to adisk around the charge.

Here, we will deal mainly with the ssmpler case of ultra-relativistic charges,

and ignore these latter complications.

8 Charged particle beams may be sensed via the electromagnetic fields they
create.

8 They may respond to external electric and magnetic fields.

8 They can aso interact with the fields they create.

27



Time domain and frequency domain

We have atendency to experience events as they happen in time, but we are
also sensitive to identifying in frequency, for example the color of objects.

In electrodynamics we measure and understand signals and behavior in two
dominant modes, time-domain and frequency-domain.

Time domain signals may be, for example, the measured current induced by
apassing electric charge. We may see an impulse as the charge passes, then
another as the next charge passes, and so on. Understanding signalsin this
way isvery important.

Sometimes the time-domain information does not clearly explain al
behavior, and we find that looking at the frequency spectrum of asignal can
give amore complete understanding and insight into a problem.

Some problems are best analyzed in time-domain, othersin frequency-
domain.

Frequency Domain appropriate when: Time Domain appropriate when:

Periodic processes Singhe shat

High @, low bandwidth Law Q, high bandwidth

Frequancy-dapandent parametars Amplitude-dapandant paramytars,
e.g. limits of linear range of

+ Complex impedances

omponent
= Filter responss o e

« Saturation (P,
« Slew rates

« Damage thresholds (V__ )

Linear phanomena Nan-linear phenomena
»  MiXers
» diodes
Discrete frequency phenomena Discrete-time operations

« Sample & Hold
. Digiltzation

= pscillators

28



To convert signals from one domain to the other, we use the Fourier
transform:

x(t) = 2::_[ f: X(w) € doo

X(w) = J: x(t) &1 dt

Xq {w)
x (1) !
2T,
1 - L
- F T, T,
-~ N\ N\
~T, Ty t ~ \J ~ w
X, (t) X, (w)
W/n
1
_7 ks - T
w w
t -w w w
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Beam signals

For real beams we may have 10° or more particles in a bunch, and the bunch
has some longitudinal profile, often Gaussian. For such a Gaussian
distribution, the wall currents induced by the passage of an ultra-relativistic
beam may be written:

=9 eliaof g z gt - )

where o is the bunch length, g the charge, and bunches are spaced by time
interval T.

In frequency domain, the spectrum s

|(f): lo e(ﬁncf)z i &f-nfo)

n=-oo

In this expression there are positive and negative frequency components:

Particle

]
Detector

A spectrum analyzer shows positive components, with the negative part
"folded" over at d.c. :
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Single-passage

lirne domain
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For a500 MHz RF system, typical values might be

o=10ps
T=2ns

then we can see that the beam current spectrum e-folding frequency is
1/V2moor about 20 GHz.

If we wish to perturb a single bunch, we must have a system that will
generate fields before the arrival of the bunch and dissipate them afterwards,
such that no other bunches experience the fields. This gives a bandwidth
requirement of the order of 500 MHz in this case.

Much information on beam parameters may be gained by measuring
electromagnetic signalsin the RF to microwave ranges for typical beams.

Higher frequencies and larger bandwidths are required to "see" more detail
and shorter timescales.

Similarly, to operate on typical beams requires devices and power sources
with RF to pwave frequency response.

In the future, for very compact beams with femtosecond timescales, lasers
may replace microwave systems for diagnostics and manipulation of beams.
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Component Frequency range
AM radio S35 1605 kHz
Shortwiave radio 3-30 MHz
FM radio AE-108 MHz
Commercial television
Channels 2—4 54-72 MHz
Channels 5—6 Th=80 MHz
Channels 7<13 174-216 MHz
Channels 14-83 AT0-8%0 MHz
Microwave ovens 245 GHz
Commonly used Frequency Wavelength
letter designation range range
L-band 1-2 GHz 30-15 cm
S-band 2-4 GHz 15-7.5 cm
C-band 4-8 GHz 7.5-3.75 cm
X-band 8-12 GHz 3.75-2.5 cm
K,-band 12-18 GHz 2.5-1.67 cm
K-band 18-27 GHz 1.67-1.11 cm
K,-band 27-40 GHz 1.11-0.75 cm
U-band 40-60 GHz 7.5-5 mm
V-band 60-80 GHz 5-3.75 mm
W-band 80-100 GHz 3.75-3 mm
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Image current

The beam induces in the enclosing vacuum chamber walls an equal and
opposite image current in order to match the boundary conditions at the
walls. The beam may be considered a perfect current source for most
calculations.

iwa||(t) =- ibean{t)
lwal(®) = - | pean{ W)

Thiswall current may be sensed by electrodes mounted inside the vacuum
chamber, and signals derived from the beam-induced wall current provide
valuable information on beam properties, for example beam position:

SMA
CONNECTOR

EXTRUDED -
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I nteraction of beamswith electromagnetic fields
The force on a particle of charge g in an electromagnetic field is
f =dE +v 0B]

A charged particle passing from point ato point b with velocity v = 3¢ will
receive a momentum change (kick):

b, th
Apzqf E +v 0B dt

a1ty

The longitudinal electric field gives an
energy change

AU :qf E-.ds

ta

For ultra-relativistic particles 3= 1 and

ds=dz=Rcdt
then

AU = Apfc

36



The beam voltage

The energy change is often expressed as the beam voltage:

b, tp
Vb:AqU:f E (st)+ds

ta

In phasor notation, Ey(s,t) = E(s) €%, and with t = s/v we have:

b
Vb = f ES dka dS

where k,, is the beam wavenumber. The factor jkes leads usto the transit-

timefactor T:
b
Vp=T f Es ds

b
T =f gkes ds

For resonant cavities, we often find symmetry in the longitudinal direction,
and a cosine or sine term will apply here for the transit time, depending on
the symmetry of the mode about it's center point.

or

The variation of the beam voltage with transverse position is not an arbitrary
function, an done can show that V, is atwo-dimensional scalar solution of
the Laplace equation for highly relativistic particles:

1 0V,

2 - =
OVp + (BW)Z ot?

or in phasor notation:

37



k2
OV + — V=0

8§ Solving for V, reduces to a simple electrostatics problem

8 The problem of calculating the spatial variation of a device's effect across

it's aperture can be reduced to a two-dimensional boundary-value
problem

38



Beam impedance

The various accelerator components, such as RF cavities, bellows, injection
septa, dielectric walls, and even a smooth pipe of finite conductivity result in
scattering or trapping of the beam-induced fields. These fields can last for
long enough to be experienced by a charge following the exciting charge,
causing perturbations to the energy or angle of the following particle's orbit.

In the time-domain the beam-
induced electromagnetic field
in an accelerator component
may be described by wake

L function; in the frequency-
domain by the beam
impedance (sometimes known
as the coupling impedance).

The beam impedanceisa
complex quantity: the rea part
2 is associated with extraction of
energy from the beam,; the
imaginary part with
deformation of the beam

3 profile.

The wake function and
impedance are equivalent, in
the sense that the impedanceis
4 the Fourier transform of the
wake function.

Computer modeling

We have seen here analytical

expressions for
electrodynamic parameters for charged particle beams in electromagnetic
fields. Many components in particle accelerators are too complex and/or

39



devoid of symmetry to allow simple calculation, and we resort to computer
modeling.

Many techniques exist for calculation of e ectrodynamic quantities, e.g.

Finite element
Finite difference
Boundary element
M ode matching
etc...

One example isthe MAFIA code which uses afinite difference technique to
rigorously solve the Maxwell equations on arectangular grid. Models may
be created in full 3-D, and solved in time-domain and/or frequency-domain.

Waveguide load
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Signal Analysis

*Time and Frequency description of signals.

-Fourier transform

-Laplace transform

-Discrete Fourier and Z transforms and aliasing

-impulse response and transfer function
*Modulation/Demodul ation.

-AM

-FM and PM

-Transmission through linear system (AM/PM conversion)
*Noise Considerations

-Nnoise sources

-thermal noise

-signal/noiseratio
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Time and Frequency Domain

Any time domain signal can be expressed as a sum of sinewaves. Thisisknown asa
Fourier transform.

:i h joot
f(t) 5mt f ] F(w)e“dw
The Fourier transform is defined here as (caution: some texts use different definitions.)

F(w)= f f(t)e-otdit

For periodic signals
a & .
V(t):7°+n§1 a,,cos(Nwyt)+b sin(nwot)
where the coefficients a, are given by
an:; f V(t)cos(nw,t)dt
b, =2 j V(D)sin(nayt)dt
Thisknown as a Fourier series

Useful Properties of Fourier Transforms

X(t=tg) = e 19X (w) Time shifting

dx(t) = JuX(w) Differentiation

f x(t)dt@ﬁ)X<w)+M(0)6(w) Imegration

X(@t) = X Time scaling

| mord=t | IF@Fdo  pasevarsThm
Re(X

Im(x(@)=§| dewS) for x(§=0or t<0
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Signal Bandwidth and Time Response

For signals with time length T, the frequency bandwidth is BW~1/2T.
Thisisindependent of the frequency of the signal.

Stf)

S(f)

Sit) a)
1 [
I
F : f V i T Vf\vf
ll‘_‘_—’l H——>:
| ! Te=1/(2wW)
b)
S 4
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| mpulse Response and Transfer Function

Consider a system with aresponse to an impulse given by h(t).
The FT of the impulse response is defined as the transfer function H(w).

A common application of thisin accelerators is wakefields and impedance. Consider a
point charge passing through an RF cavity. It excites a wakefield (e.g. on axis) that
decays with some time constant.

Wake Voltage

Impedance (Q)

Frequency

Often it is more practical or relevant to measure the step response of a system. The step
response of asystemisjust the integral of the impulse response. Therefore a one can get
the impul se response from the derivative of the step response measurement.
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Convolutions

The response of a system to an arbitrary input is given by the convolution of the input
with the response of the system.

y(t)= f T XOh(t-t)dt

where x(t) is the input to the system, h(t) isthe impulse response, and y(t) is the output.

Convolutions can be thought of as summing up the impulse response from a series of
deltafunctions of varying amplitude.

Impulse response

“HTTH.' Hl

Convolutions are most easily evaluated in the frequency domain. The FT of a convolution
isjust the product of the FT of x(t) and h(t)

Y (W)=X(w)H(w)
Once the FT transform of the output is found, the result can be FT'ed back to the time
domain.

A common occurrence of convolutionsin acceleratorsis the response of an RF cavity to
an arbitrary drive (such as beam current). In this case, the voltage is given by

V(t)= f TimwWy (-t

where W|((t) is the wake voltage (i.e. impulse response) of the RF cavity and i(t) isthe
driving beam current. The voltage in the frequency domainis
V(@)=I(w)Z | (w)

where Z|(w) is the impedance.
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Laplace Transform

We can generalize the FT to aclass of signals with complex frequency s=o+jw. This
form of transform is called the Laplace Transform and is defined by

F(s)= f " f(t)e-stdt
Theinverse LT isgiven by
=1 [ Eg)est
f(t)—qu. f ] F(s)estds

The LT isuseful for analyzing linear systems (particularly linear systems with feedback)
because it reduces differential equations to algebraic equations.

Example: Consider asimple L-R circuit. The differential equation for the current is given
by

di iz
Ldt+R| V(t)

where V(1) isan arbitrary input voltage to the circuit. Taking the LT of both sidesyields
sl(s)+(1/1)1(s)=V(s)/L
Solving for 1(s)
V(s)
I(S)=——=—
(5) s+1/1

If we know the LT for V(t) we can find i(t).
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Other Transforms

Discrete time signals have transforms which are very similar to those of continuous
signals called discrete Fourier transforms (DFTS). These signals are most commonly
encountered in systems with digital sampling.

N )
where
_1 % k(Y N)n
A=y, 2, Xnle

The most common form of the DFT is the fast Fourier transform (FFT) whichisa

common algorithm for finding the DFT of 2" points. The DFT is also useful in describing
bunched beam signal's since they often are periodic pulses.

For discrete time data, the equivalent to the Laplace transform is the Z-transform given
by

00

X@)= 2_x[n]z™

Theinverse ZT is
-1 -1
x[n]= Zm'fﬁ X(2)z"-1dz

Hilbert Transforms

HH=1 f Lz

Used for analyzing transmission through linear systems. Generates only positive
frequency signals.
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Amplitude M odulation/Demodulation

Simple amplitude modulation can be written mathematically as
V(t)=V,,c0s(w, t+@,) VCOoS (W t+@)

:@(cos((wm—wc)ﬁ(%“Pc))+005((00m+03c)t+(%+(pc)))

AM modulation including the carrier is usually written as
V)=V cos(w.t+q,) (1+m cos(wmt+@y))

The ratio of the sideband to the carrier ismv2.

Consider the above case where a signal has been modulated onto a carrier. How do we
demodulate the the result in order to recover the original modulation signal? One
technique is to multiply the signal by the carrier resulting in two sets of frequencies, wm
and 2* w. . If the signal is low-pass filtered, we can recover the origina modulation.
Thisis sometimes referred to as demodulating or mixing asignal down to baseband.
Another common technique illustrated below is a diode or envelope detector.

i~
%)

AM wave 1 C Demodulated
input ’L R output
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Phase and Freguency Modulation

The phase of asignal can aso be modulated
V)=V cos(@(t)

where
([(t)=00ct+(A[Bin (Omt)

Frequency modulation is just a special case of phase modulation. The instantaneous
angular frequency is given by

w(t)=%p=wc+fpwmcos(wmt)=wc+2TtAfcos(oomt)

where Af is the peak frequency deviation from the carrier. The peak phase deviation and
frequency deviation are related by

o=Lf
(P:fm

Using the Fourier expansions
cos(xsinB)=Jy(x)+2J,(x)c0s26+2],(X)cos46+...
sin(xsinB)=2J;(x)c0s8+2J;(x)c0s36+...

where J, are the Bessel functions, the PM signal can be written as
Vs(t) = O(EP)COS((*)ct)_J 1(&’) (COS(OOC—(JOm)t—COS(Q)C+(0m)t)
+J,() (COS(W 20y, t+COS (W +2wW)t)
—J3(0)(COS(W—3w,)t—COS(0+3w)t)

The signal becomes an infinite sum of harmonics of the modulation frequency, each
proportional to the Bessel function corresponding to that harmonic.
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A phasor representation of the signal is shown below.
Locus of R E .}3 fﬂ

e

=

- .

, 3! 12 ‘
J2 (‘1) 3y (), - e DT 32 (1 7

-

\ 7

_Jo (1)

wmt=0 wm-t=~%- wmt = L

Jp (1 T3 ()

\\ —’-rJZ (1)
S s
g (1)

wmt=rw

Wmt= —g—
The frequency spectrum is shown below. Note that the relative phase of the upper and
lower sidebands is different. The relative phase does not appear on the spectrum analyzer

because phase information is lost.

Jo
Jo 42
20 T 2
‘ J3
e 1 P
1 we=2wm we Wetwm wet2wm wetdwm

Jo3 41
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AM/PM Conversion

Consider amodulated signal

V(t)=Re{V (1+acos(w t))el@t+@in(mt))

For small amplitude modulations this can be written as
V(t):VCRe{ejwct 1+%(ejmamt+e_jwamt)+(§p(ejwamt—e_jwamt) }

We can compare amplitude and frequency modulation using a phasor representation
shown below.

Narowbsnd FM

In the frequency domain representation is ’sh:(‘ﬁwn'bél ow.

we ‘ g
“’c“wm, ek iy ’ Wt oy
r I W=
w : coom r

AM

Narrowband FM

When the modulated signal passes through afilter (e.g. an RF cavity), AM can become
FM and vice versa. Shown below isan FM signal. When the cavity is tuned to the
carrier, the upper and lower sidebands have the same response. When tuned away, the
asymmetry in the response doesn't allow cancellation of the FM phasors and an AM

OCCuUrs.

o1



Noise

External to detector
eenvironmental noise (i.e. EMI,atmospheric, etc.)
*beam noise (Schottky noise)
epropagating modes in the vacuum chamber

Internal to detector
*magnetic noise (Barkhausen effect)
*shot noise (quantized electron current flow)
*1/f noise (flicker noise)
thermal electronic noise (Johnson noise)

(V2)=aKT f " R(f

=4KTRAf

where

k=Boltzmann's constant=1.38x10"23 Joul es/deg-K
T=absolute temperature of source resistance R in degrees-K
Af=system bandwidth in Hz

R=source resistancein Q

(note that thisis an approximation valid up to ~1x1013 Hz.)

If amatched load is connected to the noise source (i.e. load impedance=R), the maximum
power transferred to theload is
P, =KTAf

The noise power density isjust KT.

Signal/noiseratio is defined either as the ratio of the signal power to the noise power or
signal voltage to noise voltage.

The noise figure of adevice is defined to the ratio of the S/N at the device input to the
S/N at the output. This can be written as

_NpyrtKTAfGp it
~ KTAfGpyp

where Gpyt and NpyT are the gain and noise of the device under test. The noise figure
of an adeviceisusualy defined at room temperature (290 K).
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Microwave I nstruments

Spectrum analyzers

Spectrum analyzers allow us to examine signals in the frequency domain, that is, to determine the
frequency spectrum of signalsthat in everyday life are experienced as time-varying phenomena that
can be viewed for example on an oscilloscope. From Fourier analysis we know that atime-varying
signal may be constructed from a collection of sine waves of different frequencies and amplitudes. A
spectrum analyzer will allow measurement of the sinusoidal frequency components of atime varying
input signal. The spectrum is a graphical display of the amplitude and frequency of asignal's sine
wave components.

=

Time Domain Frequency Domain
Measurements Measurements

The need for spectral analysis of signals arises in many applications, where afrequency domain
approach is more instructive than analyzing complex time-domain waveforms. With an analyzer it is
possible to observe:

an oscillator frequency

carrier frequency

amount and frequency of amplitude and frequency modulation
unexpected modulation
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Time Domain
a) Sine Wave

IAAAA .
Ty
b} Square Wave
100NAL .
T
c) Transient
d) Impulse

Amplitude

Amplitude

Frequency Domain

f=1T

Amplitude

Amplitude

Frequency
111_ 3IT ng L Frequency
Frequency
Frequency
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RESOLUTION
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O=cilloscope Waveform: Modulated Carrier
at 1 MHz, 15 kHz Modulation
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Spectrum analyzers fall into two categories: (a) sweeping or superheterodyne analyzers, and (b) fast
Fourier transform (FFT) or dynamic signal analyzers. FFT analyzers measure signalsin the time
domain and apply a Fast Fourier Transform to obtain frequency domain information on the stored
signal. Spectrum analyzers may also be equipped with tracking generators, and signal analyzers are
often equipped with noise generators, allowing the measurement of frequency response of devices
such asfilters, amplifiers, and particle beams. Although signal analyzers have advantages in some
measurement applications, current technology limits the frequency range, sensitivity, and dynamic
range of FFT analyzers, and we will discuss the sweeping analyzer here.

Sweeping or super heter odyne analyzer

The sweeping analyzer is basically atuned receiver whose center frequency can be swept
electronically. It has adjustable bandwidth, and detects the rms amplitude of the input spectrum over
it's passband. Heterodyne means to mix (translate frequency), and super refers to super-audio
frequencies.

LP IF
Filter . Filter Envelope
Mixer Detector
Rt o
>—’ X ~ |—
~ Ly, 4
A -
L.O.
RAMP

Generator

The ssimplified diagram above shows the basic operation of the analyzer. The input signal is low-pass
filtered (why), mixed with asignal from alocal oscillator, and the mixing products bandpass filtered.
Any signals within the bandpass of this intermediate frequency filter will be rectified, amplified and
digitized, and used to provide avertical displacement on the cathode ray tube. A ramp generator
tunes the local oscillator in proportion to the ramp voltage, and also provides horizontal

displacement of the CRT.

In addition to the low pass filter at the input, we will find an attenuator to maintain the required
signa level at the mixer:
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STEP RF ATTENUATOR

50 dB MAX
1 sY
|F MIXER
F F-F sT
L s s
INPUT I Lo 1 IF
g\/\/\é E FILTER >
R
FLO
MAXIMUM OPTIMUM ——
SIGNAL LEVEL SIGNAL LEVEL P
+20 dBm -30 dBm LOCAL
OSCILLATOR

It is very important that the total signal level - at any frequency - is below the level that would cause
damage to the analyzer components. DC current may also damage a spectrum analyzer.

The local oscillator frequency and the bandpass filter center frequency are chosen to alow detection
of the mixer product
fir=fLo- fsignal

The IF frequency (filter) isfixed, and ramping the L O frequency brings successive signal
frequencies through the bandpass filter to the detector. The example below shows the signal just
below the passband of the filter; increasing the LO frequency will bring the mixing product into the
| F passband and a signal will be seen on the display. The horizontal axis of the CRT display can be
calibrated in terms of the input frequency. Typical frequencies are 3.6 GHz < f_ 0 < 6.5 GHz, f|g =
3.6 GHz, for an analyzer that tunes up to 2.9 GHz.

Freq Range IF
of Analyzer —1r———"

1% Freq Range
of LO

Freq Range

|
|
|
of Analyzer !

f
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The purpose of the low-pass filter at the analyzer input isto reject input signals at which the mixer
product fir = fggna - fLo would result in a detected signal after the IF filter. Also, the low pass filter
must reject input signals at the IF frequency itself, which are present in the mixer output.

The resolution of an analyzer is afunction of the bandwidth (resolution bandwidth, RBW) of the
| F bandpass filter. The shape of asignal on the spectrum analyzer is a combination of the shape of
the signal and the IF filter. In order to separate two equal sinusoids closely spaced in frequency, the
filter must have a 3dB bandwidth equal or less than the signal separation.

The resolution is defined as the frequency separation of two signals which merge with a 3 dB notch:

Notch > 3dB when 6dB
——————— RBW is specified

Hypothetical analyzer
response to two
equal-amplitude sine
waves

Response to Response o
Signal 2 Signal 1

If we are dealing with signals that are not equal in amplitude, the smaller signal may be lost in the
skirts of the filter response. To characterize this, another specification, the selectivity or shape factor,
isused in defining the bandpass filters. The selectivity isthe ratio of bandwidth at 60 dB down from
maximum, to the bandwidth at 3 dB (or 6 dB) down from maximum. Typical selectivity of filters for
high performance analyzers might be 11:1 (60:3 dB ratio).

Narrow |F bandwidths, perhaps into the range of 10's of Hz, are difficult to achieve at high
frequencies. In order to obtain high resolution, several mixing stages are employed:

3 GHz 3.6214 GHz 321.4 MHz 21.4 MHz 3 MHz

—~ —~ ~ Detector

>—> e &4 ~ ~~ ~~ s —N—

~ (e, 52 [ 2 e oo
3.62-6.52 GHz
3.3GHz 300 MHz 18.4 MHz
CRT X
g '
RAMP

Generator

The required resolution bandwidth is a function of both the resolution and selectivity of the IF filter,
and the separation and amplitudes of the signals we wish to resolve.
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Some spectrum analyzers also contain adigital filter to achieve the highest resolution (lowest
resolution bandwidth). In this case the signal is mixed down to low frequency, passed through a
narrowband analog filter, amplified, sampled and digitized. The signal is acquired in the time-
domain and put through a Fast Fourier Transform agorithm which filters the data with a highly
selective filter. The analyzer then steps to the next frequency in the span (by changing the LO
frequency), and another time-domain sample is taken and analyzed and then displayed.

Another factor affecting the resolution is the stability of the local oscillator. Modulation of the local
oscillator frequency will result in products from the mixer which are not present in the input signal.
Residual FM of the local oscillator signal may limit the resolution of low-cost analyzers (with ssmple
Y 1G-tuned oscillators as the LO source). Phase noiseis present on all spectrum analyzer LO
systems, and manifestsitself as a broad skirt around a signal when displayed above the noise-floor of
the analyzer. Note that the noise-floor varies with RBW since the noise power is proportional to
bandwidth.

The resolution bandwidth of the analyzer imposes significant restrictions on the sweep time. The
sweep rate must be slow enough that the filters can respond and reach peak amplitude in the time
that asignal iswithin the filter passband. The timein the passband is

Tpasshand = RBW/(span/sweep time)
and therise time of thefilter is
Trilter = 0.3/RBW
then if we equate these times the sweep time is related to the resolution bandwidth by
sweep time = 0.3 (span)/(RBW)?2

and thisis an lower limit on the sweep time for CW signals. Selection of RBW is particularly
important in measurements of pulsed signals, where the time duration of the input signal must be
accounted for also.

The IF filter output is converted to avideo signal by an envel ope detector. The detector will put out a
dc voltage for a CW sinusoidal input that gets through the IF filter, the voltage dependent on the
amplitude of the signal. The video signal contains the information on the input signal, and also noise
introduced by the analyzer itself. Thissignal may be low-pass filtered to reduce noise. When the
video filter has a passband less than the IF filter, the video system cannot follow the rapidly

changing variation of the envelope detector, resulting in averaging or smoothing of the displayed
signa. The video bandwidth (VBW) should be used with caution, if set below the RBW it may
affect the amplitude of the signalsif the sweep rate is not adjusted to allow the filter signal to
maximize. The VBW is usually set equal to the RBW as a defaullt.

The spectrum analyzer may also be used in CW mode, where the LO isfixed. The video output then
may be used to monitor amplitude changesin asignal at afixed frequency.
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Digital spectrum analyzers (most modern analyzers are digital) allow video averaging, where each
displayed point is averaged in with the previously averaged data:

Aavg = [(n-1)/n]Aprior avg + (1/n)An

where Agayg = new average value
Aprior avg = average from prior sweep
Anp = measured value on current sweep
n = number of current sweep

The noise-figure of a spectrum analyzer relates the signal-to-noise ratio at the input to that at the
output. We simplify this by noting that the output signal level (indicated on the display) is made to
be equal to the input signal level, then the noise figure becomes

F = No/Ni

We know that the input noise level for room temperature, for a 1 Hz bandwidth, and with the input
terminated in 50Q is

Nj = kTB =-174 dBm
The noise figure is then the measured noise converted to a 1 Hz bandwidth (the measured noise will

be for the RBW), minus the input noise (measurements in dBm). Typically, the noise figure may be
24 dB. A preamplifier may be used to improve the system noise figure.
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The discussion so far has been for an analyzer of relatively low frequency range, perhaps afew GHz.
If we wish to measure higher frequency signals, we must remove the low-pass filter at the input and
we may switch to adifferent IF, this time lower in frequency than the tuning range of interest. If we
limit the span, and apply bandpass filtering where necessary, frequencies up to tens of GHz may be

anayzed:

2.7-22 GHz
o ~o
[ 54
o = ~ 21.4 MHz
(e &4 L %4
0-2.9 GHz

3.6214 GHz 321.4 MHz

300 MHz

_/\_ F—————%To CRT

3.3 GHz \

3-6.5 GHz
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Network analyzers

Network analysistells us how a system responds to a given input. Network analyzers measure the
amplitude and phase (for vector network analyzers) of the response of a system to sinusoidal input
signas. In some ways the network analyzer may be thought of as a spectrum analyzer with a
tracking generator, but thisis not strictly true. The basic functions of a vector network analyzer are
to measure the magnitude and phase of signals transmitted through and reflected from a device, with
respect to the source signal. A scalar network analyzer isless complicated and does not allow phase
information to be discerned.

SOURCE

TRANSMITTED
@ . ﬁ} our [I———

| REFLECTED

v v v
;5] (’% el &)ﬁ

INCIDENT | | REFLECTED TRANSMITTED

v v v
DETECTOR
v
L RECEIVER/ DISPLAYj

Two signals are used, both variable in frequency (swept or stepped), but locked to each other by a
phase-locked-loop (PLL), such that their difference frequency is kept constant at some IF.

DUAL DIRECTIONAL

s % COUPLER
-ll—@——c
1 l QUT
/F /F 3 IF
7 2
£10 REFERENCE REFLECTIO TRANSMISSION

Zo
O
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After mixing, the IF contains the full phase and amplitude information of the RF signal to be
measured. The signal source may be a sweep oscillator or a synthesized sweeper, providing a signal
which may be swept over arange of frequencies of interest. A synthesized sweep oscillator alows
the production of very accurate synthesized CW signals which may be stepped to provide the desired
frequency span. The IF of mixer 1 givesasignal to a PLL which maintains the local oscillator at the
required frequency difference from the RF signal (fs in the above diagram).

The IF signals are amplified and mixed down to 100 kHz where they are detected. A phase sensitive
detector is used to measure the phase against a 100 kHz reference oscillator. The phase and
amplitude signals are digitized and sent to the CRT display.

The basic network analyzer has an RF output port and three input ports; the reference (R), port 1
signa (A), and port 2 signal (B). The analyzer controls the frequency of the RF signal and detection
electronics, and displays the data. Modern analyzers have onboard computers which allow
manipulation of the data and can display in various formats, including SWR, return loss, phase,
group delay, impedance, Smith chart etc. Using a dual-reflectometer, or S-parameter test set, input
and output reflection coefficients, as well as the forward and reverse transmission coefficients, can
be measured without disconnecting the device under test.

20 MHz 160 kHz
1sT IF 2ND IF
S11, S21)
: S11, $12)
X
Ref. ?
Device Pgn IF det. | — Sampie
- under L amp and
Port test and hold
1 input
1 Test selector T X AD
-l 1ESU 1y | conv.
det. |—
N ]
e FWD
\_‘_@ RF (521, S22) ! !
REV source ) Ref.
l_> Computer
S, S processing
(522. 512 19.9 and error
Harmonic MHz correction
generator v 2
Phase Panel .
lock control Display

F— RF source and test set -———}<— IF processing “—i
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Factors affecting accuracy are similar to those discussed for the spectrum analyzer, in particular

concerns over |F bandwidth and sweep time. Another control to improve accuracy of measurements
isthe power output of the analyzer RF signal.

Network analysis measurements contain systematic errors that can be measured and corrected for. A
measurement is the vector sum of the actual device response plus all error terms. These errors are
due to the finite directivity of the couplersin the test-set, impedance mismatch at the RF source,
impedance mismatch at the load (port 2), finite isolation of signal paths within the analyzer
(crosstalk), and frequency response of all devicesin the forward and reverse signal paths (tracking).
By connecting known terminations at each port (open circuit, short circuit, and matched load), and
by connecting the two ports together directly, these 12 (6 in each direction) systematic error terms
can be calculated and in a calibration routine, and correction applied to the measured signals. The
full 2-port, 12 point calibration routine requires all S-parameters to be measured to determine the
correction for any one S-parameter. Simpler correction routines are used for 1-port measurements.
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Calibration kits consisting of open, short, load, through are available for standard coaxial lines, but
other techniques are available using different reference measurements, and which may find
application in measurements with non-standard transmission lines.

Another means of removing some unwanted effects, such as multiple reflections, is to use the FFT
capabilities of modern analyzers, transforming into time domain, applying atime gate to remove
reflections, and then transforming back into frequency domain.

It is also possible to generate "synthetic pulses' by shaping the frequency domain signal and
transforming to time domain.
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Sampling oscilloscopes

Real-time oscilloscopes have bandwidths limited to = 1 GHz. In order to see faster signals on
repetitive waveforms sampling 'scopes are used. The equivalent time sampling technique samples
the input waveform at least once in it's repetitive period, then the time of the next sampleis delayed
dightly, and so on, and generates awaveform similar to the input waveform by ordering the
measured samples appropriately.

100 ps

SIGNAL
EQUIVALENT TIME
SAMPLED SIGNAL

SAMPLE
POINTS

I
I¢— 100 ps —.i

The sampling heads must have very short measurement time to avoid averaging the signal. Step-
recovery diodes, which change their conductivity very rapidly between the conducting and non-
conducting state, are used to generate the sampling pulse. The actual sampling switch is a Schottky
diode which becomes conductive during the sampling pulse and allows the input signal to charge a
capacitor. The capacitor forms part of a sample-and-hold circuit, the output of which isread and
formsthe vertical displacement on the CRT display. Sampling head bandwidths of 50 GHz are
achievable with monolithic microwave integrated circuits.
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Time domain reflectometry

Time domain reflectometry (TDR) allows measurement of characteristic impedance, reflection
coefficient, and nature (resistive, inductive, capacitive) and value of complex impedances on coaxial
lines. It also alows the location in time (distance) of mismatches on the transmission line.

A voltage step is propagated down the transmission line under test, and the incident and reflected
voltages are monitored by an oscilloscope. A sampling oscilloscope is used, since the step rise time
istypically 25 ps and cannot be resolved by real time 'scopes.
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GENERATOR I
|

BRIDGING
TEE L

Once the incident and reflected voltages are measured on the oscilloscope, the reflection coefficient
and impedance of the mismatch may be calculated.

— 0
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4

Z,FZ, l
o —0 D » {
TRANSMISSION LINE LOAD

Pp=E/E = (2L - Zo)/(ZL + Zo)
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The location of an impedance mismatch may be found by timing the arrival of the pulse reflected
from the mismatch (E;). The distance from the reference plane to the mismatch is

d=v T/2=(clNe) T/2
where v isthe velocity of the wave on the transmission line, T is the measured time interval, and &,
the relative dielectric constant of the material of the coaxial line. The time measured is from the
arrival of the incident pulse at the reference plane, to it's return from the discontinuity, and so is

twice the time of travel to the discontinuity itself.

The spatial resolution may be related to the step risetime by assuming that two discontinuities are
indistinguishable if separated by less than the risetime. Then

dmin = (C/Ver) Trisel4

TDR displaysfor resistive loads:
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TDR displays for complex loads
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Note that theideal waveforms of the previous page are smeared out as aresult of the finite
bandwidth of the system, which is less than the time constant of the reactive circuit for small enough
reactances.
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Microwave Devices and components

Transmission lines

Transmission lines are used to carry microwave signalsin an efficient manner, allowing the
incorporation or connection to other microwave devices. In order to choose an appropriate
transmission line for a given application, several factors have to be considered:

signa frequency

signal bandwidth

power handling capability
attenuation of signal

size of transmission line
ease of fabrication

Generally atransmission line is chosen with a compromise between these requirements.

Three basic, common, types of transmission line are shown here:

Waveguide

(c) Rectangular waveguide (d) Circular waveguide

Waveguides are low-loss and have high power handling capability, but limited bandwidth (low
frequency cut-off and multi-mode propagation at high frequencies). Large size at low frequencies.
Generally the height of the waveguide is approximately half the width, and the type of waveguide
used is determined by the requirement that only the TE1g mode propagates within the frequency
band of the signal.
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The TE>g mode has the next lowest cut-off, and to avoid propagation of higher-order-modes the
waveguide width must be chosen such that the wavelength at the upper operating frequency isless
than the guide width. For this reason the bandwidth is generaly alittle less than an octave.
Circular waveguides may be used in applications where less attenuation is required than can be
achieved with rectangular guide, but overmoding is more problematic.
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Coaxidl lines

(b) Coaxial line

Coaxial lines accommodate TEM waves and have broad bandwidth and small size. Attenuation is
relatively high and power handling capability isless than waveguide. Note that Teflon may be
incorporated in some coaxia cable types, and such cables may not be suitable for high radiation
environments around accelerators. Most cables are 50 Q characteristic impedance, although other
values are used, notably 75 Q for TV and video use. The dominant waveguide mode on a coaxial
lineisthe TE11 mode, and the approximate cut-off frequency for this mode is given by

fc = cl(n(a+h))

Coaxial connectors can be found in various designs, usually in male/female threaded pairs.

N-type In common usage, recommended upper operating frequency about
11 GHz, precision versions up to 18 GHz.

SMA Smaller and lighter than the N-type, cheap, re-connection not reliable after
severa applications, can be used up to 18 GHz, some versions up to
25 GHz.

APC-3.5 Similar to SMA but has no solid dielectric filling and can be used up to
34 GHz, with high repeatability. Expensive. Can mate with SMA.

APC-7 Precision sexless connector, used up to 18 GHz with high repeatability.

BNC L ow freguency connector, quick-release, usually used up to = 1 GHz.
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Stripline

Ground v
planes

H____

ANER
§e8 ¥ =

Stripline may be thought of as a"flattened out coax", and lends itself well to photolithographic
fabrication techniques. Since stripline contains two conductors and a homogeneous dielectric, it can
support TEM waves. Higher order TM and TE modes may be generated for frequencies where the
spacing between the ground planes is greater than a half-wavelength.

Microstrip

=¥

ANNNNNN

Microstrip is another very common planar transmission line, which is easily manufactured and
integrates well with other microwave devices. Microstrip does not support pure TEM waves,
attenuation is high and power handling capabilities are low.
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Slotline

@ ————e E-field s 7

————— H-field

Ad 2 \
Substrats: SRR
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1//4 !u/ 77 /'// = Substrate: €
/
2 e Me=Fevs

Similar to microstrip but with athin ot in the ground plane on one side of the dielectric.

Ridged waveguide

Ridges on the top and/or bottom of a waveguide lower the frequency of the dominant mode,
increasing bandwidth. Often used in impedance matching transitions since the impedance is easily
controlled by the ridge dimensions.
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Filters

Filters are frequency-sel ective devices which pass only frequencies within adesired band, and reject
signals at other frequencies. Typically four types of filter passband characteristics are used:

L owpass Highpass

db
db

STOP
BAND

ATTENUATION
ATTENUATION

[<— PASS BAND PASS BAND —3

° LOW—PASS FILTER f 0 HIGH-PASS FILTER t
Bandpass Bandstop
s 3
z . sToP
5 sToP 2 BANe
7 o
E 4 -
2 BAND® <
pu z
w PASS PASS
-
< E BAND 8anp > )
o} ’ f T T
BAND ~PASS FILTER (4] [

BAND~STOP FILTER
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Important specifications for filters are:

Cut-off frequency (lowpass and highpass filters)
Center frequency (bandpass filters)
Bandwidth (bandpass filters)

L ower stopband frequency
Upper stopband frequency
Out-of-band rejection
Insertion loss
Return loss
Passband ripple
| Ripple bandwidth
Insertion
L
pa?s‘);/lf;n d, Center frequency Ea%zgn d loss Passband
edge edge ripple
\ l
— g — Y oy . t " O S mam
A > l ¢ .
] \S 2
\ / ‘f
\ 3dB /
Lower frequency i
stopband Return | Upper
attenuation loss \ stopband
\ ! attenuation
[ I
\ I
\
] Y
Ly ‘ Cl ’
!
TIRTALHAY)
\. TR
Y 'I 1] ¢!
AN T
o hoon
nohopnon
!
pe— >
Lower Upper
stopband stopband
frequency frequency
l-(——————%-l<——>‘i
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The required filter response determines the mathematical description used in the design of the filter,
and several types are in common usage including:

Maximally flat (or binomial or Butterworth)
Chebyshev (or equal-ripple)
Linear phase

Once the mathematical description is selected, the order of the transfer function necessary to achieve
the required specifications can be computed.

0
| Linear phase
N=5 1.25F
10 r
P~ - - Maximally flat 2 1.0 .
% r +~ N=5 E Equal-ripple
= F >
§ = /
'.5 20+ _g 0.75
§ - Equal-ripple g‘
< I N=5 3 S 05
L Maximally flat
30+
L 0.25
aol v oo N T e e
0 1.0 2.0 3.0 4.0 0 1.0 2.0 3.0 4.0

Frequency (GHz) Frequency (GHz)

Transfer function for Butterworth lowpass filters of order n:

0.1B
0

IH(f)| ss
i
=
t

20+
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Power dividers, power couplers

Power dividers are used to split asignal from one transmission line into other lines, or to combine
power from two or more lines. Typically, a power divider is athree-port network and the divisionis
into two equal lines each -3 dB less in power than the incident line, but the split may be into more
lines or different power ratios.

A simple T-junction allows lossless transmission of power into two arms, with the power ratio
determined by the characteristic impedance of each arm. While the input impedance may be
matched, the impedance into the coupled armsis not. Also, the ports of this splitter are not isolated.

Resistive dividers allow matching of all three ports, but introduce a 3 dB loss in total power, and no
isolation between ports.
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The Wilkinson power divider allows matching of all ports and isolation between the output ports.
The input and output lines are connected by lines V2 Z,, and aresistor of 2 Z, between the output
lines. Thisresistor does not introduce loss in the power-splitting since the two output arms are in

phase and there is not voltage across the resistor, but it does attenuate power coupled into the arms
out-of -phase and provides isolation between the output arms.

The symmetry of the Wilkinson divider allows a simple analysis using the even-odd mode
technique. We normalize all impedances to the characteristic impedance Zo, add voltage generators
at the output ports, and draw the circuit below:

We can define two modes of excitation:
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the even mode, where Vg =Vg3=2V
the odd mode, where Vg = - Vg3=2V

By superposition of the two modes we have Vg =4V, and Vg3 = 0.
For the even mode Vg = Vg3 = 2V, and V2 = V3, thereis no current flow through the resistorsr/2,

or through the short circuit at port 1. Bisecting the network with open circuits at the center line,
looking into port 2 we see aA/4 line, and the input impedance at port 2 isthat of a quarter-wave

2
transformer Z5¥®" = RZ—;
load

Port 2

+V / 1
ort 1 2

P
VA

- 0.C. 0.C. -

2
zgen=2

Thus port 2 will be matched if Z = V2, and all power goesto port 1.

To find S12 we use the transmission line equations. The voltage onthelineis(x =0 at port 2 and x =
A4 at port 1):

Vy = V"L(e'jBX + rejBX)
Vo=V (1+T)=V,=V

AT -1
Vi=Vg =iV (r-1)_1vﬁ
. Zin-Z
using M = £in~ 20 we have
9 T Zin+ 20
r_z-ﬁ
2+42
and
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V]_:'jVﬁ
Vi
STV, V2

By symmetry S13 = -j/v2, and S33 =0
Now for the odd mode Vg = -V g3 =2V, and V2 = -V 3, the circuit can be grounded along the center
line:

Port 2

Looking into port 2 we see an impedance of r/2, the port is matched (Sp2 = 0) if r = 2. In this mode
al power is delivered to the resistors and none gets to port 1.

For the input match S11 we terminate ports 2 and 3 in matched loads and the resulting circuit is
similar to the even mode:

No current flows through the resistor, so it can be removed in the analysis, and we have two quarter-
wave transformersin parallel. The input impedance is then matched
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We now have al of the S parameters:

S11=S2=S533=0
S12=S01=S13=S31 =-j/V2
Sp3=S532=0

When the outputs are matched, the divider islossless and power from ports 2 or 3 is dissipated in the
resistor.
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Directional couplers

Directional couplers are 4-port devices which sample power traveling in one direction down a
transmission line.

Input ® ® Through
—_— - —_—
PrEEEE— O —
Isolated (@) ® Coupled

Input @ @ Through
. X
Isolated ®@ ® Coupled

If the 4-port deviceisreciproca and matched at all portsthe [S] matrix has the form

0 Sio S13 Si14
512 0 S23 524
S13 Sy3 0 S34
Sia S S 0

[SI=

and for alossless network the matrix is unitary (energy conservation). Then we have for the dot
products of rowsl and 2, and rows 3 and 4:

S13Sx3+ 514524 =0
S14S13+ S24S3=0

from which we find

. 2 2
S14( Si3| - S24‘ ) =0
€Y
Similarly for rows 1 and 3, and rows 4 and 2:
S15S23+ S1453, =0
S14S12+ S3S23=0
and
. 2 2
st( Sio| - S34‘ ) =0
(b)
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(a) and (b) may be satisfied if S14 = Spz = 0, which resultsin adirectional coupler. Then the self-
products of [S] give:

S1d2 +[S142 =1
S1d2 +[S24% =11
S1d? +[S34? =1
Sod? +S34? =1
implying that |S13| = |Sz4], and [S12| = [Sza4.
We may choose the reference phases such that S12 = Sz4 = o, S13 = Be®, Sp4 = Bel®. Note that:

Taking the dot product of rows 2 and 3 we have:

S12S13+ S24S31 =0

from which
0+ @=T11£ 2nM

and we find two common choices;

For the symmetrical coupler 6 = @ =172, and

I o B 0 |
0
g= O 0 iB
. 0 «a
B o o 0
-0 iB i

For the antisymmetrical coupler 8 =0, @ =11, and

0 a B o0
§= a 0 0 -B
0O a
B o L0
0 B |

Power supplied to port 1 is coupled to port 3 with a coupling factor |S13[2 = B2. The coupling factor
isthe fraction of the input power which is coupled to the output port:
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Coupling (dB) = C =101log (P1/P3) =-201log 3
the remainder is delivered to port 2 |So2=02=1- 2.

In anideal coupler no power arrives at port 4 (the isolated port),and the isolation measures the
fraction of the incident power to the power at the isolated port:

Isolation (dB) =1 = 10 log (P1/P4) = -20 log|S14]|
The directivity is a measure of the coupled power to the power at the isolated port:
Directivity (dB) = D = 10 log (P3/P4) = 20 log(B/[S14])
The isolation, directivity, and coupling are related by
|=D+C (dB)

Idedlly, both isolation and directivity are infinite.

Couplers are readily made in many different forms. In waveguide they are often found as single-
hole, multi-hole, and branch-line couplers. In stripline and microstrip they are often found as branch-
line and coupled-line configurations.

The operation of multihole waveguide couplers can be understood from the following diagram.

(@ (solated) (Coupled) (@)

/< -~ A

O]

" @ ' (Input) (Through)

Apertures between the waveguide broad walls are spaced by A/4, most of the power input at port 1
travelsto port 2 but some power is coupled through the apertures. As the wave travels along the
through-guide it excites forward and backward waves at each aperture. If the reference phase at the
first holeis 0°, the phase of the incident wave at the second aperture is -90°. The forward waves are
in phase, but the backward waves are 180° out-of-phase and cancel, thus port 4 isisolated from port
1 and port 3 is coupled by afactor dependent on the dimensions and spacing of the apertures.
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Coupling through the apertures may be described by small-hole (or Bethe) coupling in terms of
electric and magnetic polarizabilities. Clearly the isolation and directivity are sensitive to frequency,
but the coupling isless sensitive.
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If we assume that the coupling is small and the incident wave is the same amplitude at each aperture,
then the amplitude of the forward and backward waves can be written

N
= AelpNdy f,
n=0

N
B=A z bpe2iBnd

where f, is the forward coupling coefficient of the nth aperture, and by, is the backward coupling
coefficient of the nth aperture. These coupling coefficients are proportional to the polarizabilities of
the apertures, and are functions of frequency.

B F

LB FoA BIA F1A BoA FaA B3A F3A ByA FyA L"%Uéj
‘wr’ ‘wr’ o i | o [

e

A

The coupling and directivity are:

N

>

n=0

C=-20log |F/A|= 20log

N
2
D =20 log |F/B| =20 lo NL
Z be-2fnd
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A common component in network analyzersis the reflectometer, which uses adirectional coupler to
separate samples of forward and reflected signals.

oo Xl =

For a unit incident wave from the source, and aload reflection coefficient of I" the "incident” port
will receive asignal of amplitude

:[3+Ere'9

and the "reflected" port will receive

Vr:E+BFd‘P

where (3 isthe (linear) coupling factor and d = [3/|Sy14| the (linear) directivity, 8 and @ unknown phase
delays through the coupler. The maximum and minimum values of F and R are then

v -t
ol |r|

min

leading to an uncertainty of approximately +(1 +| I'[)/d. Thusit can be seen that good directivity is
required for accurate measurements, preferably d > 100 (D > 40 dB)
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Hybrids

Hybrids are 3 dB directional couplers with a phase difference between the output arms of either 90°
(quadrature hybrid) or 180°. Hybrids are also useful as signal combiners.

A typica 90° hybrid is the branch-line design shown here, although other types of couplers can be
used as quadrature hybrids.

puy) T 4 T oy Qutpuy)

(Isolated) (3) T — N T . = (3) (Outpur)

The [§] matrix has the form

0 j 1
j 0 o0

s=7 !

201 0 o |

o 1 i 0

and power input at port 1 is evenly divided between ports 2 and 3, with a 90° phase shift between
these ports. Note the symmetrical properties of the devices, and the isolation between the output
ports.

The 180° hybrid has an [S] matrix of the form

0 1 1 0

_ 1 0 0o -1
Sl =

S V2| 1 0 0 1

0o -1 1 0

and can also be operated so that the outputs are in phase. A signal input at port 1 will be evenly split
into two in-phase components at ports 2 and 3, port 4 isisolated. Applying the input signal to port 4
yields two equal components 180° out of phase at ports 3 and 2, and port 1 isisolated.
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Applying two input signalsto ports 2 and 3 yields the sum of the signals at port 1, and the difference
at port 4. For this reason ports 1 and 4 are referred to as the sum and difference ports respectively. A

common type of 180° hybrid isthe ring or rat-race hybrid shown. Waveguide magic-T junctions are
also 180° hybrids.

Ring hybrid
Port 4
V2 24
Port 3
Waveguide magic-T
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Port 4

Port 3

k""'/.
Port 2
YYv y

St
i N R

Port 3
Port 2

Diode detectors

The DC voltage-current characteristic of a diode may be written:

1(v) = IdeaV - 1)
where |sisthe reverse saturation current, a = % and n istheideality factor (closeto unity),
suchthat o = /25 mv-1,
1 i ()
A A
I, |
Iy - i
‘ L E———":—-V ___________________ ——>
T Yo | t
L v 1=1, (o~ 1)

V=Vy+ A cos ot

-
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If V=V + v, wherevisasmall AC voltage and v<<V g, then a Taylor series expansion about V
may be written:

_ dl) 41,2 d
V)=1lo +V(dV)vo+ 5V (dVZ 5

+ ..

where lg = (V) isthe DC bias current. The first derivativeis.

d = Vo = = -1
(dV)vo alse®Vo=a(lp + Is) = Gq R

R; is the diode junction resistance and G the dynamic conductance of the diode. The second
derivativeis:

dzl) —(AGd =02 eNVo=qalg+ 1) =aGy=G,
(d\/zvo (d\/)vo N 2(0 s) d d

The expansion in I (V) may be written

2
I(V)=I0+i=I0+de+V76d+...

If the diode voltage consists of a DC bias and a small RF voltage

V= VO + VOCOS (l)ot

then taking the first three terms of the expansionin |
1(V) = I g + VgGyCos txt + Vz‘z)G'd COS2 tupt
using 2cos?x = cos2x + 1 we get
(V)=1lg+ VA‘fZ)G'd + VoGycos wyt + Vj)G'd oS 2wyt
2

Vo
7Gd

lo isthe DC bias current, and 4 isthe DC rectified current. Note that the output also contains
AC signals at the original frequency and higher harmonics. These may be filtered out with alow-
pass filter.

When used as a detector, the nonlinearity of the diode is used to demodulate and RF carrier. The
diode voltage can be written as:

t = Vo(1 + m cos wmt)cos uxt
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where m is the modulation index, wp, is the modulation frequency and wm << wp. The diode current
isthen:

2
it) = vOG{(l + M COS Wnt)cos wyot + V—ZOGo(l + M COS W t)2cos? ooot}

i(t) = voG{cos wot + %si N (Wo+wmt + %si n (u)o-u)m)q
1+ m72+ 2m CoS Wt + m720052wmt + COS 20mt

+v3Gy4 + M sin(20p+ W)t + M sin (2g-em)t + m72 cos 2wyt

+ mTZ sin 2(wp+wm)t + mTZ Sin 2(wo-m)t

The output current terms contain components which are linear in diode voltage, occurring at
frequencies wp and wo £ wm, and components at other frequencies including the modulation

frequency wm which are proportional to the square of the input signal. This squar e-law region isthe
usual operating condition for detector diodes.

Detected current level

PO ———

} 1'1 41 14 .
o £ £ < S~ —_~
s 8 g 8 & 3 3 s 3
5 t | s o+
© S § 8 g 8
(q\] o
Mixers

A mixer uses the non-linearity of adiode (or diodes) to generate output at the sum and difference
frequencies of two input signals. In heter odyne receiver applications the mixer translates the
incoming RF signal to alower intermediate frequency, where gain can be implemented with alow-
noise amplifier before detection occurs. This scheme improves receiver sensitivity and noise
characteristics compared to the direct detection with adiode. A mixer may also be used to offset a
signal, for example in atransmitter.

The desired mixer output signals are the sum and difference frequency terms of the diodes
(generaly one term isrequired, the other isfiltered out)

Vout = K VsignaVLo[COS(WLO - Wsignal)t - COS(tL.0 + Wsignal)t]
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RF

input N fRE R

JRE £ fio

Sir = R — fLo

— >

RF AMP.
(optional)

SR = fio + AiF

-

Yy

Y >

IF AMP. LP filter

Local

oscillator
(a)
*
fro * fir R L Jfuo Local
” oscillator

Sideband
filter
(optional)

oscillator
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Mixer design involves the matching of the three ports, which is complicated by having to work over
severa frequencies and their harmonics. An important figure of merit for amixer isthe conversion
loss, Lc:

available RF input power

Le=10log |F output power

(dB)

L isgeneraly between 4 and 7 dB. Other important characteristics include isolation between the
ports, input power levels, and harmonic distortion.

The ssimplest mixer is the single-ended mixer, which uses one diode and provides reasonable
performance:

DC
bias

v; cos (w, — wg) t
R
w,, Wy D

w, *

DC = “0 7 P filter
LO return

v €OS o !

Combiner

RF

- - - Matching
( network

Vv, COS Wt

A single-balanced mixer improves input SWR and isolation between RF and LO:

Lo Pt
ZPRE

A commonly used design is the double-balanced mixer, which suppresses even harmonics of the LO
and RF signals, leading to avery low conversion loss. It has excellent isolation but the input SWR is
poor.




Beam Signals
General Approach

Consider a beam pickup modeled as a simple circuit

a)

_ib@

i g
] anght _
t

£

The response of the circuit to a current | is the convolution of the
current with impulse response of the circuit.

V() = f dti(t)W, (t -t)

In the frequency domain, the convolution becomes a product

V(W)= (0)Z (w)

1 Zp‘left —

Strategy: derive the beam signal in time and frequency domain and
either convolve or multiply with PU response.
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Single Particle Current

Consider a point particle going around a storage with revolution period T and rotation
frequency fo=1/To. The current at a fixed point in the ring is given by

Nn=+oo .
i)=e 2 d(t-nT,) =e 000% glinoot

= ef,+2ef, 2. cos(nwgt)

The FT of this given by
I(w)=e wog S(w-kay)

The spectrum is a comb with signal only at the rotation harmonics

2

Current

1

0
0 1 2 3 4 5 0 1 2 3 4 5

Time/To Frequency/fo

(Negative frequency components can be folded onto positive frequency. AC components
are 2X DC component.)

Allow the particle to make synchrotron oscillations with angular frequency ws of
amplitude (in time) of tg
i(t)=e 2 3(t-nTo+T,c08(wyt))

The FT of thissignal is given by
I(oo):e UJOZ @-inuy(t+T,coswgt)
n
—_ —m
=e wo; j Jm(wTS)E S(w+mwe—Kawy)

where the relation
ejxcosezg jme(x)ejme

has been used.
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The comb spectrum has added FM sidebands which are contained within Bessel function

envelopes.
1.0
r\ JU
08 .................. Jl ~
\ ......... i
0.6 \ ...... I e I B |-
04 - ’,_,,.»' . _"__i"«_’__'\ “‘—_\:‘_"_\‘_‘ _— - _

0.2 .

00k ae T o m o227 \

-0.2

Jm(X)

-0.4

0 1 2 3 4 5

X
Rotation harmonics follow Jy, first order sidebands follow Ji, etc.

12F

N B | i
T e

0.6

Current

04 m=1_ R | T

wT
Note that the rotation harmonics disappear at the zeros of Jo(wT).
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Single Particle Dipole Signal

The dipole signal at afixed point isthe d(t)=x(t)*i(t)

For an offset X and betatron oscillation amplitude xg, the dipole signal is (no synch

oscillations)
d(t)=e(Xq+xp cOS(wgt)) 2 &(t-nTo)

where wg=QpuY is the betatron angular frequency.
The frequency spectrum is given by
D(w)=e o)oxog S(w-kwy) +e oooxB% S(w-(0gtkay))

The result is a comb spectrum at rotation harmonics with betatron sidebands. (Negative
frequencies fold over to become lower sidebands in thisform.)

D(®)

D(w)

| | | | | | | | |
0 1 2 3 4 5 6 7 8

Frequency/fo
The integer part Qg of cannot be determined from this measurement.
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Allow the particle to also make synchrotron oscillations
Nn=+oo

d(t)=e(Xy+Xpcos(wgt)+ndsin(wgt)) . Z_m 6(t—nTo+Tscos(wSt))

where the additional AM comes from dispersion (n) at the measurement point and PM
from the longitudinal oscillations.

The contribution to the frequency spectrum of thissignal is similar to the current signal
andis

Dcoe(w):e (*)0”6; j_m‘]m(wrs)% 6((o+mws—kw0)

The contribution from the energy oscillationsis given by

D5(co):e woxo; j_m‘]m((w_(*)s)l-s)g 6((’L)"'m(")s_(k"':I-)(“-)O)
_% j_m‘]m((wws)rs)% é(wmws—(k—l)wo)

The spectrum becomes a combination of AM and PM sidebands. These signals are visible
at much lower frequency compared to PM signals.

wT, << |

| | NWws ToW, I |

| ! 2a | |

| o

i .

| | | |

| ||
S [ S & R
_1* = |

L1 [ I

Nw, (n+1)w, @
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Chromaticity complicates the signal even further. The betatron tune is given by
Qp=Qpo(1+£9)
where the chromaticity is defined as
_dQ/Q
&= dE/E
The rate of change of the betatron phaseis given by

dyg 1+ LVt (1+) oA
gt~ Qpo(1+E0)00(1-T)=wpo(1+T)+ut

(6(t):%f(t) and W;=Wpo&/0 s called the chromatic frequency.)

The instantaneous betatron phase is given by
Wa=0got+(Wr—0p0) TCOS(,t)

The dipole signal is given by (ignoring c.o.e. and dispersion)
d(t):echos(qJB)g d(t-NTy+T,cos(wit))

The FT of thissignal is

Dg(w)=e woxsg j‘me((oo—wB+wE)Ts)% S(w-(Kwy+odg—mawy))

This gives the betatron sidebands synchrotron sidebands follwing a Bessel function envelope.

w~0 wte~2.4
0(w) w < g
1kl = 0,..,3
(a)
=0 Qs
| I 1] ——
0 1 | n | | n+l
. o
o !
! -
D (w) L qp=0.38 :
. Q. = 0.03 |
(b) o I
! '
| I '
“ ’ll m }H
11T
v 7 T w/wy
0 | n n+l
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(a)

D(w)

(b)

D(w)
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Multibunch Signals

For the case of multiple bunchesin a storage ring, the current at a given point isjust the
single particle current summed over many bunches

ih=e > S (t-nTo-T) eSS einaginarT,
m=1 m=1n
where T, isthe arrival time of bunch m.
For the case of a symmetric fill pattern (equal bunch charges with equal spacing), the

signal is aperiodic delta function with a repetition frequency of the bunch rate. All of the
signa goesinto the bunch harmonics.

Current

o] 1 3 4 5 0 1 4

2 2 3
Time/T Frequency/f

bunch bunch

The signal isidentical to the single bunch except the repetition period is To/Npunch and
thus the spacing of the comb spectrum is Npunchfo. All intermediate rotation harmonics

disappear. For every bucket filled, thisimplies that the first current harmonic appears at
the RF frequency and other harmonics at multiples of the RF frequency.
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For asymmetric fill patterns, (i.e. unequal bunch charges and/or unequal spacing), the
signa leaks into the rotation harmonics between bunch harmonics.

Example:
54.0% ;4)«» $0.09~ 4 STOP
]
;A,AJ\JKJKJ\JLJLJ "
BRI N S R N N N
P |18 BUNCHES N|
SPEC TRUN
" A:REF B:REF 4 MKR 51 375 080.008 Hz

25.08m -10.088 4MAG -5.69594nm v
\ 1 4MAG

]

e

(

»
(.l i
‘.L“ A h.h Allaa | Al
BTM - DIV CENTER ©50 008 0BB8.008 H:z
0.800 10.008 SPAN 150 080 000.8DA Hz
- RBW:300 KHz ST:1.1d sec RANGE:R=-10,T=~ OdBm
REF =_2.50000E -82

Asymmetric fill pattern at ADONE. The upper plot shows the time domain signal of the
fill pattern of 18 bunches. The lower plot is the frequency spectrum which shows
intermediate rotation harmonics reflecting the time domain bunch pattern. (Courtesy of
M. Serio.)
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Beam I nduced Signals

Given a particular fill pattern or bunch spectrum, how do we cal culate the signal induced
in a RF cavity or a pickup? If the cavity or pickup represent a beam impedance Z||(w),
(with a corresponding impul se response W(t)), the total signal out is a convolution of the
input with the response. In the frequency domain, thisisjust a multiplication of the beam
spectrum with the impedance.

— impedance\;’: I
B beam spectrum/ 7

Frequency
The beam induced voltage is given by

V(w)=I(w)Z | (w)
or in the time domain
V(t):%[ngo I(Nw)Z | (Nwyg)elnest

The power dissipated in the impedanceis
2 00
P:(%T) ZO [ 1(ncy) \ZZ| 1 (Nwy)

This approach can be applied to any impedance: cavity fundamental or HOM, pickup,
etc.
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Coupled Bunch Oscillations

Wakefields which last from bunch to bunch can couple the oscillations of the the
bunches. Under certain conditions, the coupled oscillation can resonate with the cavity
mode and grow exponentially and destroy the beam quality (or even the beam!) Coupled
bunch (CB) oscillations also have distinct signals in the frequency domain which can be
useful for diagnosis.

RF cavity

A coherent coupled bunch oscillation created by coupled
through and RF cavity.

For the case of a symmetric bunch pattern, the normal modes of oscillation can be
described by the relative phase of oscillation of the individual bunches. For N bunches,
the relative phase of consecutive bunchesin mode | is given by

Acp:ZWT[I

For example, the case of 3 bunchesis shown below. The figure illustrates a snapshot
picture of the relative phase of the three bunches for each normal mode.
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a) mode =0

1 2 3 1
" b) mode I=1 ! !
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''¢) mode 1=2

PN

Oscillation Amplitude

N
~__~

|
0.0

|
0.5

|
1.0

Fractional Distance Around Storage Ring

The signal observed at asingle point in the ring for each bunch is shown below. Although
each bunch oscillates at the synchrotron frequency, the frequency of the mode is much
higher.

o signal sampled
at detector

bunch 3

bunch 1
//

/
bunch 2

b) mode | =2

Oscillation Amplitude (arbitrary units)

bunch 3 bunch 2

0 2 4 6 8 10
Time (in units of revolution period)
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The signal for the coupled bunch oscillations in the frequency domain appears as
sidebands of rotation harmonics as shown below.

5

Frequency/f,

Below is some raw spectra of aBPM sum signal from the AL S showing coupled bunch
oscillations. The measurement was made with 328 bunches (all RF buckets) filled as
equally as possible. The number of rotation harmonics from the RF frequency isgivenin

each graph. The upper graph was measured at 20 mA and the lower at 95 mA.

-20

! —
n=95

-40
-60
-80
-100

n=124

Amplitude (dBm)

100 L& )

499.64 499.66 542.30 542.32 644.36 644.38 688.54

Frequency (MHz)

The relatively small signals at the intermediate rotation harmonics come from a small
variation in the individua bunch charges. The amplitude of each CB mode is found from
the ratio of the sideband to the bunch harmonic and not the intermediate rotation

harmonics.
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Single Bunch Spectra

So far the bunch has been treated as a point particle. Real bunches have alongitudinal
distribution of charge, p(t). The frequency spectrum of a stored bunch is given by the
convolution of the bunch distribution with the signal from a point particle. This givesthe
frequency spectrum as the product of the FTs of the distribution and and the point particle
signal.

1(09)=e wpP(e)X. B(co-key)

=< e square pulse
SR e Gaussian pulse

Ip@)]°

, <
N
,
’ \\
4 N
L \ ,
L\ , N
\) N\ 1 \
N R \
‘v N
1 1
A 1
N
' 1
| | KR Al | |

0 1 2 3 4 5 6

Frequency (1/0)

Below are some examples of broadband measurements on the ALS. The actual spectrais
not Gaussian because of the frequency response of the button BPM used. The bunch has
lengthened significantly at 55 mA shown by a narrowing of the frequency spectrum.

0 ,JVM —
¢ 2mA
. ( 55mA
[an] {’
S 104 | L
(]
e
3 (
=y
€ [
< -20— L
3 |
(o]
N
T
E
(=] - — L
> 30
I I I I
0 5 10 15

Frequency (GHz)
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Single Bunch Oscillations

Longitudinal

So far the bunch has been treated as either a point particle or arigid distribution of
charge. However, short range wakefields generated by bunches with aot of charge can
have a significant effect on the stability of motion within the bunch. The standard
approach isto describe the intrabunch motion in terms of normal modes. Shown below is
arepresentation of the first three normal modes. The upper plot shows the relative phase
space distribution and the lower shows the corresponding line density.

| B S NS R
D v Ol
A

N LA

3
Representation of first three longitudinal bunch modes. a)
Phase space picture. b) Linear charge density. c) Deviation of
linear charge density from stationary charge density.

From the symmetry of the phase space distribution, it can be seen that each mode appears
to oscillate in time with a frequency of mfs and appear as upper and lower sidebands of

rotation harmonics.
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Frequency Spectra of Bunch Motion

From the difference signal seen in part c) of the previous figure, the frequency spectrum
of the signal from each mode peaks at ~1/wavelength of the signal, given by
fpeak=(m+1)/21|, where 1) is the bunch length. The signal extends over a bandwidth of

211 .

For a Gaussian bunch, small perturbations to the distribution have been shown to be
described by a series of Hermitian eigenmodes shown below.

1.0 H

0.5 —
S
E_ 0.0
N i Broadband resonator

-0.5 Z/n=1Q

\ H be = 1
fo,=3 GHz
-1.0 — o,=1lcm
| |
-20 -10 0 10 20

Frequency (GHz)

Envelope of the frequency spectrum of first three longitudinal
bunch modes (including the stationary distribution) for a
Gaussian bunch of rms length 1 cm. The mode spectra are
superimposed over an arbitrary broadband impedance to
illustrate the different overlap.
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Head Tail Oscillations

The transverse motion of the bunch is bit more complicated than the longitudinal motion
because the longitudinal position within the bunch can influence the transverse motion.

Consider a bunch of two particles.

o o
2 1

Over thefirst half the synchrotron period, the head drives the tail. During the second half,
the particles switch places and the former tail drivesthe former head. In this sense the
synchrotron oscillations provide a natural damping mechanism.

For real bunches, the motion is broken down in normal modes as shown below.

Asin thelongitudinal case, the higher modes of motion occur at increasingly higher
frequencies.

The situation is more complex with presence of chromaticity (dependence of the betatron
tune on energy.)
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Schottky Signals

Coasting Beam

A coasting beam is one in which no RF acceleration is applied. It usually has no RF
structure imposed on the beam and is somewhat uniformly spread around the ring.

For a perfectly uniform beam of N particles, the current signal would be a comb spaced
by Nfg because the phase of the signals from individual particles don't add coherently at
intermediate rotation harmonics. For large N, the frequency of the first harmonic would
be too large to observe with any reasonable detector and the only signal measureableis

the DC current (assuming you have a DC current monitor!)

However, real coasting beams are not perfectly uniform. The relative phases of the
signas are randomly distributed. Consider the signals of individual particles as stepsin a
random walk. The rms amplitude of the signal will be (on average) proportional to

VN
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I(t)

“time

‘time (10 x extended scale)

The pickup current from a coasting beam shows a DC component and an AC component
from the random fluctuationsin the current. (From D. Mohl, CERN 84-15)

The frequency spectrum of the signal is also strongly dependent on the energy spread of
the beam because of the energy dependence of the rotation frequency on the energy.

Stochastic cooling systems are simply feedback systems which try to reduce the random
fluctuations of the beam by dightly reorganizing the distribution of particles.
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Bunched Beam

The Schottky signals of a bunched beam are very similar to those of a coasting beam.
However, it is much more difficult in practice to observe the signals because of the large
coherent signal already present on the beam from the bunching. The presence of the
coherent signal requires electronics with alarge dynamic range while retaining low S/N.

Spectrum of Vertical Output

Longitudinal Signal at
Revolution Harmonics
(Due to Beam Being Off-Center)

/ ~ Betatron Lines \
(Frequency-Shifted by
} Betatron Tune)

Coherent
Signal

Pe = (13)-(x3)

Schottky

Relative Intensity (dB)

-90 (i

0 100
frequency (kHz)

Bunched beam Schottky spectrum taken at Fermilab using a
transverse cavity detector. (Courtesy D. Goldberg)
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Beam Transfer Functions

All of the beam signals we've mentioned so far are observed with a passive detector.
Another important class of beam signals are observed via a beam transfer function.

The ideaisto drive beam oscillations and measure the amplitude and phase response.
This setup istypically used for betatron tune measurements on a spectrum analyzer with a
tracking generator. The information in aBTF can also be measured by pinging the beam

(i.e. impulse response=transfer function.)

500 MHz
RF power

phase
shifter
or

feedback loop

HP Frequency
Synthesizer

amplitude phas_e or
modulator amplitude
. error
input
coupler probe
Y Y

/"’\_/’

Setup for a BTF measurement using phase modulation of the

RF cavity

LeCroy
Transient
Digitizer

or
HP35660A

pulse processing

RF cavity to drive longitudinal oscillations.

BTF measurements are useful for

eSensitive tune measurements
*beam impedance/instability measurements
*bunch length measurements
*FB system characterization
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Examples

6.=2.4 cm 3

(pex) aseyq

T
408 409 410
Frequency (kHz)

Longitudinal BTF measured at CESR at low bunch current. The
dashed curve is the calculated response for a bunch length of
2.4 cm.

Horizontal Difference Signal (10xmV)
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Longitudinal impulse response of a single bunch measured at

CESR. The FT transform of this signal is equivalent to the BTF
shown above.
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More Examples
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BTF measurement of the longitudinal coupled bunch mode
showing the effect of Robinson damping.
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RF Cavities

| ntroduction:

RF cavities are useful in accelerators for interacting with beams of
particles in order to supply energy for acceleration, extract
information (energy) in the form of a pick-up or modulate the energy
of particles as a kicker. These interactions are generally characterized
by coupling impedances in the longitudinal and transverse planes.

Simple equivalent circuit, transmission-line anal ogy:

The generalized transmission-line formulation shown in figure 1 describes
any guided transmission medium in terms of a capacitance and inductance per
unit length with a series resistance and shunt admittance to account for losses,

1(X) R'dx L'dx 1(x)+dI(x)/d(x).dx
V() Z“ZC'dx G'dx V(X)+dV/(x)/dx.dx

Figure 1. General transmission-line element
Waves in this medium have the general solution:
(x,t) = Vle-axei(wt-kx) + Vzeaxei(mt+kx)

which is a superposition of forward and backward traveling waves of
frequency w with attenuation a. Phase velocity, vp = w/k, group velocity, vg =
0w/ 0k and wavelength A=21/k.

Similarly for current:
(1) = Yig-axgi(wtkx) . V2 gaxgi(ut+k)
Zo Zo

where Zo is the characteristic impedance of the line:

7z =Vi_Va2_ /R'+iwl'
0 .
I P G'+iwC'

For the lossless case G' = R' =
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zozq/'c—: a=0k=w/L'C' A=

R |
» Vp=Vg=

wv VL'C'

V(x,t) = Vjeil@tk) + \,ei(@tko)

and

I(x,t) = 2Llei(wt-kx) Vo V2 gi(wt+kx)
Z0 ZO

Traveling wave on a transmission line

Field pattern moves in the direction of propagation, current in phase with

voltage.

IR I S p—

E

Reflection from a short circuit:

propagation

Superposition of forward and reflected waves gives pure standing wave.
Field pattern is stationary with time varying amplitude. Current and voltage are

out of phase by 90° (T//2 rad.)
I

T S
o
Vv YY A4AdAA |
Tttt 4 |
<—|> H

Standing wave between two shorts:

short

Resonant line between two short circuits is a pure standing wave with an

integer number of half-wavelengths.
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|I 1 Ail

+ +++ +
shorted line standing wave surface currents
Shorted line can be represented by a lumped-element equivalent circuit:
Rseries
—_— — o,
I :CSLZ‘:L
equivalent circuit series circuit parallel circuit (R=shunt impedance)

Properties of parallel resonant circuit and real cavity:

[o,

. A b O.
Zin CZ= - 3R L —»—E
> shunt ——
(e, ®H
parallel resonant circuit cavity

The input impedance of the equivalent circuit can be expressed as:
=L 4+ 1 4iwc -1
" (R joL C)
= R = R
. _ oy A
HP D) 14 Qz(%’)

where w,=—L_ and O= RCor = R (see homework problem #1).
=L and Q=w, & ¢ p )

For a cavity the shunt impedance , R, is defined in terms of the voltage
produced in the cavity for a given power dissipation, R=V2/2P, where the
voltage is considered as the integral of the electric field along the flight path of a
particle, V=[E.dl. N.b.: In some physics texts the shunt impedance is defined as
R=V2/P and may or may not include the transit-time factor.

The quality factor Q of the cavity or equivalent circuit is a measure of the
sharpness of the resonance and also of the enhancement of the voltage and
current compared to a simple traveling wave. The Q is defined as the ratio
between the stored energy and the power dissipation per radian or Q=wU/P

The ratio R/Q is a figure of merit for the shape of the cavity and is
independent of the material and it can be shown also that

—=¢& Tac
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which gives a clue as to how to optimize the cavity shape once the field
distributions are known (see section on “real cavities”).

If the time taken for a particle to cross the cavity is a significant fraction of
the RF period then the effective voltage seen or induced by the particle is
reduced because of the cos(wt) time dependence of the fields. The factor by
which it is reduced is called the transit-time factor, T, and is defined as the ratio
of the energy actually received to that which would be received if the field were
constant at the maximum value. The longitudinal beam impedance Zjj
(sometimes Rjp is the product of the shunt impedance and the square of the
transit-time factor,

Z|| = RT2
(note: this is different from the impedance of the cavity as a pick-up which is
RT2/4).
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Magnitude and phase of parallel circuit and cavity:

[e,

. A > O.
Zin CZ= - 3R L —»—E
> shunt ——
O ®H
parallel resonant circuit cavity

The resonant nature of the circuit is clearly seen by looking at the
magnitude and phase of the impedance as a function of frequency.

Note that at resonance the impedance is purely resistive and equal to the
shunt impedance. Below resonance the impedance is inductive and above
resonance it is capacitive. In the cavity there will be other modes with higher
resonant frequencies and the impedance will become inductive, resistive and
capacitive again for each in turn as the frequency increases.

3] S— ’ "half-power" (-3.01dB)
mag. squared

> (W

Transmission (S21) measurement:

The impedance response can be measured by the transmission between
two probes coupled to the cavity. If the probes are weakly coupled then the Q is
not changed significantly, otherwise the coupling factor of the probes must be
measured and taken into account.

The Q can be measured from the resonance curve by taking the
bandwidth at the half-power (1/V2 voltage, or -3.01dB) points.

- W
20w
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Coupling to matched source/load:

To supply energy to the cavity from an external source or extract signal
power induced by the beam requires a means of coupling the cavity fields to an
external circuit. This can be represented in the equivalent circuit by an idealized
transformer of turns ratio 1:n linking the cavity voltage to a transmission line
which is matched to an ideal current source representing the generator.

1:n
Q@ []zo TC 3R 8L
matched ideal
generator transformer

This circuit can be used to transform the cavity impedance into the
transmission line to observe the load presented to the generator (fig a) or to
transform the generator current and source impedance into the cavity so that the
total cavity voltage from generator- and beam-induced currents can be calculated

(fig. b).

A |
A1 > R L 1 1 > !
2 <SR g s
|gé H‘:IZO TnC 5 = ”é [:]nZZO —=c =R éL S b
1

AN
AAAA

fig. a cavity referred to input fig. b source referred to cavity

The coupling factor (3 is defined as the ratio of the power loss in the
external circuit to that in the cavity. A loaded Q , Q., can be defined as the ratio
of the stored energy to the total loss per radian, and an external Q, Qext, can be
defined as the ratio of the stored energy to the loss in the external circuit per
radian. It can thus be shown that:

_powerlossinext.cct _ Qo _ R 1_-1, 1

~ power lossin cavity — Qe n2Z, QA Qo Qext

,and Qo = (1+B)Qu
When the cavity is matched to the source at resonance (without beam):

= - Qo 2-R
B=1,Q = 2,andn 7

Reflection coefficient looking toward cavity at resonance:

Away from resonance most of the power incident on the cavity is reflected
but close to resonance the response may come closer to or go through a matched
condition, depending on the coupling. At resonance the resistive impedance R is
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transformed in to the external circuit so the reflection coefficent is simple to
calculate:

Ig@ Zo n—RZ

cavity impedance at resonance referred to input

5l g1
Reflection coefficent r=n =
Riz, g+1
n2
while vewr = M
1]

SO 0<B<1 (under-coupled) @ VSWR =1/3
B=1(matched) VSWR =1
3>1(over-coupled) VSWR =3

M easur ement of cavity propertiesfrom Si1:

Provided the losses in the coupler can be neglected”, the coupling factor 3,
and the loaded and unloaded Q’s can be calculated from an accurate
measurement of S;1 looking towards the cavity. As described above, the
coupling factor can be determined from the reflection coefficient at resonance. If
the coupling can be adjusted it is often a simple matter to determine whether the
system is under- or over- coupled. If the VSWR dips towards unity through the
range of adjustment but a match is never achieved then the system is
undercoupled (and Bmax = 1/VSWRnin). If the VSWR goes to 1 then rises to a
local maximum the system is overcoupled (and Bmax = local max. VSWR). With
the phase information available on the network analyzer the complex impedance
can be plotted on a Smith chart and it is easily determined whether the system is
under- or over-coupled. Once the coupling factor is known the value of S1; or the
VSWR at the loaded or unloaded half-power points can be calculated, or these
points can be found on the Smith chart (once the electrical delay has been
adjusted to refer the impedance to the detuned-short position)

For the unloaded half-power points (Qo):

2. ) ik
2_ +B°+V 4+
1S14l = | 556-25+1 VSWR:2 P+Va+p
S2-2S,+5 2B

* the coupler loss and self-inductance are not represented in this simple equivalent circuit
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For the loaded half-power points (Q):

Su= /51 SWR = 1+B+B2+<1B+BW 1+°

Impedonce ™ _
locus

half-power
! points

Identification of the half-power
points from the Smith chart.

Qo locusisgiven by X=R; Q by
X=R+1, Qext by X=1

VSWR close to resonance

" Pillbox" cavity modes

The “pillbox” is a simple closed shape for which analytical solutions can
be derived for the field and current distributions of the resonant modes. Such a
shape could in fact be used as an accelerating structure, however more efficient
shapes are usually used in practice. Study of the modes of the pillbox is
instructive however and provides much of the nomenclature that is used to
describe modes in other axis-symetric structures.

<—I>

(¢ z

pillbox cavity
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As presented above in the transmission-line analogy, cavity modes can be
thought of as resonances between two short circuit planes in a waveguide. In the
case of the pillbox this is a length of circular waveguide guide with a short-circuit
boundary condition at each end, so the solutions are standing-waves of the TE
and TM circular waveguide modes with an integer number of half-wavelengths
between the end-plates. The boundary conditions also allow for TM modes with
zero variation in the z axis, which are of particular interest for accelerator
cavities. The waveguide modes (TE/Mmpn) are denoted by two subscripts, the
first is the number of full periods in @ and the second is the number of radial
zeros in the field. For cavity modes a third subscript is added which is the
number of half-period variations in the z direction.

TE1L
‘ L La L]
Fa
"I"T""TE"I """ T

TMO1 H H

First two modes in circular waveguide

The following chart shows the cut-off frequencies for modes in circular
waveguide, normalized to that of the lowest mode (TE11).

TE,, TMo, TE,,

# — T SR ]

I TE, 2
™, TE,
TEq TE4, TM,, TMo,
P S

|
! - ! Koren = 1841
31 TE
TEs, szz T‘I:A?: )\CTE]_]_ = 3418.

[ e, 4 feren :70'213
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TM,, TE, ™2, Mos
VSR G 1) |
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TE,, TE,s ™,
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The figures below show plots of the E and H fields for the first thirty
modes [Lee et.al., IEEE Trans. MTT, vol. MTT-33, No. 3, March 1985, p 274].

M5

Only those modes with a component of electric field in the direction of
motion of the particle can interact with the beam (Panofsky-Wenzel). For the
pillbox this means only the TM modes are of interest. The transverse variations
of the longitudinal field are solutions of Maxwell’s equations within a circular
boundary condition and are Bessel functions of the first kind.

2(r,@) = EgJm(Kmnr)cosme
where: Jm are the first order Bessel functions
Kmn =Xmn/T is the transverse wave number
Xmn are the roots of the Bessel functions Jm

For modes with E;(z) = constant (kz = 0), w= ckmn

For modes with E,(z) [ cos(kz.z) ,where k; is the axial wave number:

5 =kin+ ks or wo=cVkin+kZ
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For TMmnz modes the fields are thus:

A1,2,4,6) = EoJn(* )8 wicos(mg)cos(k,2)
Hy(r,z,t,@) = H OJ'm(X%r)e' wtcos(me)cos(k,2)

1.0

0.5

-0.5}

Low-order Bessel functions of the first kind

ZEROS AND ASSOCIATED VALUES OF BESSEL FUNCTIONS AND THEIR DERIVATIVES
Jo,s J"0(jo, s) Jls J1(ji1, ) J2,e J'2(j2,5)

s

1 2.40482 55577 -0,51914 74973 3,831 -0, 40276 5.13562 -0. 33967
2 5.52007 81103 +0. 34026 48065 7. 01559 +0, 30012 8.41724 +0. 27138
3 8.65372 79129 -0,27145 22999 10.17347 -0, 24970 11.61984 -0.23244
4 11. 79153 44391 +0. 23245 98314 13, 32369 +0. 21836 14, 79595 +0. 20654
5 14,93091 77086 -0.20654 54331 16. 47063 ~0.19647 17.95982 -0.18773
s J3,8 J'3(j3,4) Ja, s J’4(Js,s) Js,8 J'5(Js,s)
1 6. 38016 -0, 29827 7.58834 ~-0. 26836 8.77148 -0.24543
2 9. 76102 +0. 24942 11, 06471 +0, 23188 12, 33860 +0. 21743
3 13, 01520 -0, 21828 14,37254 -0, 20636 15, 70017 -0.19615
4 16. 22347 +0.19644 17,61597 +0, 18766 18.98013 +0.17993
5 19, 40942 -0.18005 20, B2693 -0,17323 22,21780 -0.16712

Monopole modes (m=0):

Modes which have no azimuthal variation are labelled “monopole” modes
and TM modes of this type have longitudinal electric field on axis and thus can
interact strongly with the beam. The radial distribution of Ez follows Jg, where
the zeros satisfy the boundary condition that Ez = 0 at the conducting wall at
radius a. Similarly Hpand Er (if present) follow J'o and are zero in the center and
have a finite value at the wall.
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For TMgoni modes:
E; = EgJo(Konr)cos(k;z) where kon = Xon/a and kz = it/length (i = 0)

Hy,=H (poJ'o(konr)cos(kzz) Xo1 = 2.405
E; = Erodo(Kont)sin(k,2) Xo2 = 5.520
Xo3 = 8.654
H® ® ® O] ®
< ;J/‘E'VK\L,
E - Ez
: ol ffo
000 a HO
HO 9 ©) o
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Dipole modes (m=1):

Dipole modes have one full period of variation around the azimuth. For
TM modes this means there is no longitudinal field on axis and that the field
strength grows linearly with radius close to the center, with opposite sign either
side of the axis. This transverse gradient to the longitudinal field gives rise to a
transverse voltage kick which is proportional to the beam current and the beam
offset. This can be expressed through a transverse impedance Zp:
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Y/
Zo[Qmrl] = Jﬁ

where Ip(0)Xo is the dipole moment of the beam. It can be shown that Z is
related to Z| | by

Zy(n
Z[Qm-1] = S
domy =10
where Z||(r) is the longitudinal impedance evaluated at radius r
J;(x)
0.4 —
0.2 J %
l/ \
0.0 . .
/ \
0.2 _X A
-0.4 —
|
-10 10

For TM1ni modes:
E; = EoJi(kun)cos(@)cos(kz2) where kin = x1n/a and kz = in/length (i 2 0)
H(p = H(poJll(klnr)COS((P)COS(kzZ) X11 = 3.383171

Hi = Hro 2 (ksan)sin(@)cos(kz2) X12 = 7.01559

X13 = 10.17347

e

)\ g ] | legs

H 000 . E

(&) et e e
TM110 TE111
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Higher-order modes (m>1):

For modes with higher azimuthal order (m=2, quadrupole, m=3,
sextupole etc.), the fields close to the beam axis become progressively weaker as
the stored energy is concentrated towards the outer edge of the cavity. Modes
with even m have no sign reversal across the axis so do not drive coupled-bunch
instabilities. Modes with odd m may couple weakly to transverse motion of the
beam but are generally not problematic.

For quadrupole modes E; goes as Jo(konr)cos(2¢g)cos(kzz) etc.

TM210
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Real cavities:

In practice the simple pillbox cavity shape can be improved upon to
maximize the shunt impedance for acceleration. The shape must also be
modified to allow passage of the beam and addition of one or more couplers

| L
» Zesi)
O O OH O O OH R R
» »
;»_/ C
- e l
» »
R R
R X R X
» 00/
| L
pillbox pillbox + beam pipes distributed

L,C, wall loss

For copper cavities it is desirable to maximize the shunt impedance to
make most efficient use of available power. From the equivalent circuit it is
known that R/Q=V/L/C so it is generally good to maximize L and minimize C,
while keeping the optimum interaction length (max. T), and maximum Q. The
“nose-cone” or re-entrant cavity does this by increasing the volume occupied by
the magnetic field and the surface area carrying the current and decreasing the
surface area in the capacitive region (nose tips). The limiting factors to achievable
gradient are wall-power dissipation and E-field strength at the nose-tips.

For superconducting cavities the smooth shape is determined by the need
to avoid field emission from the surface. R/Q is low but Q is very high.

coax feed

loop
| (magnetic)

antenna
(electric)
coupler

"nose-cone" copper cavity "bell-shaped" superconducting cavity
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Field measurement

Information about the field distribution and mode orientation can be
obtained by observing the coupling to E and H field components at various
places in the cavity. This can be done using E-field antennas or H-field loops or
by introducing perturbing objects of dielectric, ferrite or metal.

®®®®,
®®®®
® 8®)\®

T ]

antenna loop

[

mr

I
el

dielectric object

>§

>

[e1s

Ll

metal object

Introduction of a dielectric object in a region of electric field produces a
negative shift in the resonant frequency while introducing a metal object into a
region of magnetic field causes a positive frequency shift. If both fields are
present when a metal object is inserted the resulting frequency shift will depend
on the relative strengths of the E and H fields.

Small objects pulled through the cavity on a string can be used to map the
field distributions of the modes and determine the beam impedances.

Zz-motor

block ‘7€
and  Gevice under test kevlar /
tackle s, th
- I
e N
! Y
L_ _d
S W C—— bead 8
— pulley ——— = g
2 ) :
8 \ / q
2 ™ e -

schematic of a motorized bead-puller apparatus

Perturbation measurement:

It has been shown (by Slater and others), that the change in resonant
frequency upon introducing an object into the cavity field is proportional to the
relative change in stored energy:

137




perturbation of a uniform E-field by a dielectric bead

For the case of a small non-conducting sphere, radius r, where the
unperturbed field may be considered uniform over a region larger than the bead,
it can be shown that:

Aiw e AU g 3 8['7'1 2 ul’_l 2
w U U | 59g,+2-0 T Moy 155
and since U=PQ/w

Aw - AU — _ w13 &l Mol oo
w U %Eosr+2E° * Hop 420
so to calculate the absolute fields the Q and the input power must be

known, however to get R/Q from the longitudinal field distribution these are not
required.

Cases of special interest:
For a dielectric bead (uy = 1) the expression reduces to:

Aw — _ 103, &1 2J
w U 80sr+2EO

For a metal bead (& - oo, gy — 0):

A9 = - T8 ol - HoHg

A metallic bead can be used to measure the electric field if the magnetic
field is known to be zero (e.g.: on axis of a monopole mode), and gives a larger
frequency shift than common dielectric materials such as Teflon (€, = 2.08) or
Alumina (€ = 9.3). Shaped beads such as needles or disks can be used to enhance
the perturbation and give directional selectivity. The enhancement or “form
factor” can be calculated for ellipsoids or calibrated in a known field.
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Calculation of R, R/Q:
By mapping the longitudinal distribution of E; and integrating, the cavity

shunt impedance can be determined

(VT _E2)eedz

2
RT 2P 2P

where v is the velocity of the particles (usually = c¢), while

£2=. AwPQ(g+2)
WPTIr3e,(g-1)
SO

2
Q&+2) {I AO(;)(Z)(COS(’%ﬂsin(*éz)dz}

T2=- .
WTr3gy(g-1) 2

If the cavity is symmetric in z and t=0 at z=0 in the center,

Rgz nzf:;:ir {f\/i (2)(co )dz}

Values of Af/f can be measured at discrete intervals and the function

A/ Afi(z) (cos?M2)qz

can be tabulated, integrated numerically and multiplied by the constants
to obtain RT2/Q. If Q is measured at the same time then the beam impedance VAl
= RT?2 can be calculated. This process is often automated, using a computer to
move a motorized bead positioning apparatus, take frequency data from a
network analyzer and calculate the integrals. For modes with weak fields where
the frequency perturbation may be hard to measure it may be advantageous to
measure the phase shift with the source fixed at the unperturbed resonant
frequency. This is a more sensitive measurement and the phase data can be used
directly to calculate RT?2, eliminating the need to measure the Q.
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Pickups and kickers

A charged particle beam generates el ectromagnetic fields which in turn
interact with the beam's surroundings. With suitably designed sensing
electrodes, these fields can provide information on various properties of the
beam. Such electrodes are generally known as pickups.

Similarly, charged particle beams respond to the presence of externally
imposed electromagnetic fields. Devices used to generate such fields are
generally known as kickers.

We may represent the pickup or kicker schematically:

Longitudinal kicker Longitudinal pickup
v Ze v o
A Pa—@ ]
Beam in Beam Out
— — —_—
E E +AE | 8
Transverse kicker Transverse pickup
Zc Zo
e E— P

Baamy In -EEIH.I"I‘IDI..I'l. [E- +
—_— — *___. - =
P, DJ_+ ﬂul
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Thewall current, or image current, generated by the beam isfound from
Ampere's law applied to the TEM-like fields of the beam:

fH-dI :fJ-dS+afD-dS
S at S

or in differential form

DDH=J+67D
ot

tivistic beam at the center of acircular beampipe of

r Is generated by the beam are TEM-like.
E = 9 z-ct By = q Z-ct
" omer 6( ) " onecr 6( )

The second term on the right of the Maxwell equationsis zero since the
electric field must be normal to the inside surface of the conductor and hence
perpendicular to the vector of the plane we take the surface integral over, dS.
Thus,

DDH:\]beam

E=-c(zoB)

The image current must cancel the surface tangential magnetic field, the
image current density is:

. — H
For parallel plates Jmege =N 0 Haurtece separated in the y-direction by b,

and with a centered beam, we find the image current density

Thus the image currents in a vacuum chamber with height much less than
width is concentrated near the beam axis, above and below the beam.
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Pickup response functions

A prime (") symbol is used to indicate excitation in the transverse mode.

Transfer impedance:
Relates the pickup output voltage to the beam current. For the longitudinal
case, Z,isgiven by

="

For transverse pickups, the transfer impedance rel ates the output voltage to
the beam dipole moment. For a beam displacement of Ax, therelation is

Z, = Ve
| Ax

Kicker response functions

Kicker constant:
Relates the change in beam voltage to the kicker input voltage V. :

KIong.

For transverse kickers, we need the transverse equivalent of the beam
voltage. In the longitudinal case, we have the change in beam energy AE

AEjong. = BC APiong. = €Viong.
and by analogy for the transverse case

AEtrans. = BC APtrans. = €Vitrans.

So the transverse kicker constant is:
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Aptrans. BC

e - Virans.

Vv Vv

Kirans. =

Using the Panofsky-Wenzel theorem for the mode in which the deviceis
excited as a transverse kicker we find:

Kirans. = - J 1 DtK‘Iong.
b

Shunt impedance

The shunt impedance is avery useful figure of merit, since it relates the
beam voltage to the input power:

2
Rlong.T2 = V=

The transverse shunt impedance:

‘Aptrans. Bc?
Rtrans.T2 =€ '

Here we have explicitly incorporated the transit time factor T.
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Constant velocity approximations

F:d£

Ap = f Fadt
using ta dt = dz/Bc, then

b
Ap Bc:j Fdz

b
ApPiong. BC :f Fiong.dz

b b

then
AE = Ap|0ng BC

Reciprocity

L orentz reciprocity theorem
The Lorentz reciprocity theorem relates the performance of an electrode
structure as a pickup to it's performance as a kicker.

The theorem applies to avolume V bounded by a surface S, which encloses
the electrodes, feedthroughs, and field volume. We consider two distinct
modes of excitation of the device, as akicker (subscript k) and as a pickup
(subscript b). We assume no energy sources within the volume, asigna
cable of characteristic impedance Z,, and wall fileds and currents related by
J=0E.
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Using phasor description of the complex fields and currents we have:

f(EkD Hy - Ep O Hk)°dS:f(Eb°Jk-Ek°Jb)dV

\%

\%

f(EkD Hy - Ep O Hk)°dS:f(Eb°Jk-Ek°Jb)dV

Beam-excited mode:
J, comprises the beam current |, plus any currents in the volume which are

induced by the beam current
V, isthe voltage at the cable output induced by the beam current

Kicker mode:
J. comprises only those currents induced by the kicker voltage V,

8 Fieldsand currentsinduced by any beam present in the kicker are
negligible compared the those produced by V,
8 Any beam current present would be negligibly influenced by fields

induced by V,

The LHS of the equation reducesto

C

Vi V
Ex O Hp - Ep 0 Hy) e dS =2 Yk Vb
Jeon-aony



and the RHS:

f(Eb-Jk-Ek-Jb)dV:-f(Ek-Jb)dV

\%

then

_. Z
Vp=- 24c [ (Ex+ Jp) AV
b zkav( k b)

The beam voltage
The energy change is often expressed as the beam voltage:

b, tp
Vb:AqU:f E (zt)* dz

ta

In phasor notation, E,(z,t) = E,(z) €“%, and with t = z/v we have:

b
Vb:f EZ éka dZ

The exponential factor in the integrand results from expressing t in the time-
dependent phasor as a function of position along the path. Both E and V will
generally depend on the transverse coordinates. E will also generally depend
on the longitudinal coordinate but VV cannot.
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Panofsky-Wenzel theorem

If we differentiate the momentum kick experienced by a charge q with
respect to time, we obtain

th

0Ap _ oE G(VXB)
a—t—q (atdt+ 3 at

ta

dAp OE 0B v

th
ot :qf (atdt+v><atdt+ Bxatdt)

For relativistic particles, of constant velocity

dz=v dt
we have

th b
0Ap _ oE B
at_qf at d”f dz x5

Using Maxwell’ s equation

0B _
o UxE

and the identity

0E
0z

dzxOxE=0(dz- E)-(dz- O)E=0(dz- E)- %= dz

then we find

th b
0Ap _ 0E . g OE
at—qf P dt j (D(dz E) 37 dz)

a

28p _
ot

The transverse components are

f (O(dz - E) + 2dE)

;(Apa) = qj - Orfdz- E)+ 2dE ]|
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and noting that

b
AEqu dz-E

we find

c‘?t(ApD) =- DD(AE) + ZC[ED(b) - ED(a)J

The bracketed term we choose to extend over the region that the entry
and exit fields E[y(a), E[j(b), are zero. Then for fields with sinusoidal time

variation we have the Panofsky-Wenzel theorem:

wgpﬂ =. % OdaE) = - Opv

This theorem tells us that the transverse kick can be described purely in
terms of the longitudinal electric field. There must be alongitudinal electric
field component in order to produce a transverse momentum changein a
particle traveling through a structure. The frequency dependence shows that
the higher the frequency at which the deflecting fields are encountered, the
less of akick they impart.

Relations between pickup and kicker characteristics

L ongitudinal:
Using our result from the Lorentz reciprocity theorem Vp = - Zc f (Ex» Jp) AV
\%

k
in the longitudinal transfer impedance gives:

_. Z
Zp=-—%c [ (Ex+J) AV
b 2Vk|bfv( k b)

For a beam moving in the positive z-direction with velocity 3c, the z-
dependenceis €', and we write

f (Ek . Jb) dXdy =Ex - Ilp elkz
beam area
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and
2 Vi
beam path

We can see that the integral differsfrom the definition of the longitudinal
kicker constant only by the sense of direction in beam motion. Thisleads to
an important result for electrode systems that exhibit directional behavior
(such as striplines):

The direction in which the beam passes when the device operates as a
pickup must be opposite that which it does when the device acts as a kicker.

and

Zp= Ze Kiong.
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ngitudinal Transverse

Kickers
V=K) Vg Ap Pcle=K, Vg
=-1lv, K
K, 7 VL K
Pg=|VP [2R\T? Py= lApJ_ﬁc/eF/ZRJ_T2
RT2=Z. KPP - | R T2=ZK,P
Relations Between Pickups and Kickers
z, =%zc Ky Z,',=——:12—ijcK_|_
Z,= NZ R T2 Z,=kgp NZ R, T2
Pickups .
ZP = Vp/[B ZP' = VP'/IB Ax
P, ={I) R T4 P,=(1# x2) k3 R, T4

aAs noted in Appendix 1, some authors define the transverse beam voltage as simply cAp | , omitting the
factor of B. Using this convention, one would simply need to replace all the kp appearing in the above
formulas by the free-space wave-number k = @/c. The effect of this change will be to re-define the
transverse kicker constant and shunt impedance, but to leave the calculated physical quantities of input
power and transverse momentum kick unchanged.

Green'sreciprocation theorem

Greens reciprocation theorem relates charges and fields in two different
modes of excitation. It describes areciprocity relation for electrostatics
problems, but is aso applicable to electromagnetic excitation.

Assume a set of n conductors under two distinct modes of excitation:

Mode 1: Electrodes have charges and are at potentials
Q v
Mode 2: Electrodes have charges and are at potentials

o %
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Y QIvi=y Qv

The application isin calculating the coverage factor g which represents the
fraction of the image current an electrode intercepts.

For an array of n electrodes, connected to ground so that charges may flow,

what isthe fraction of charge |, onelectrodei duetoacharge | ata
point P within the array? Q Q

8 With Qb at P, ground all but the i" electrode. Assume the distribution
of the QP remains the same (pickup mode)

§ Placeavoltage vk on the i" electrode, and ground the remaining

electrodes. Thenthevoltageat Pis  « (kicker mode)
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Types of Pickups
Capacitive button pickups

Capacitive plates at the beampipe walls allow sampling of the beam-induced
image currents. Since the small button essentially behaves as a capacitance,
it cannot act as a matched load and has limited utility as a kicker.

——d——
&

sl
TTTE
¥ + + + :>ln

The image charge on a plate of effective length | is

:_g”b
9=
_0q _.

lc="5, =iod

The charging current is

And the current flows through the series combination of C and R, resulting
in avoltage across R
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V=-w R =il wl R
9% Fjwre ™9 Bc 14 jwRe

Then we find the transfer impedance:

VA
Zp=-P=jglky-— R
P, 19 L eRe

At high frequencies (wRC >>1), this becomes

Zy - aq
BcC
For an electrode of area A at distance afrom the beam, we

can approximate gl by A/2ma, giving:

A
2maf3cC
Beam position may be derived from the ratio of voltage generated on each of
four buttons located in the vacuum chamber.

Zp—)

Fidd Lines and Equpolentials

¥y
=
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The following exampleisfor a button of radius 7.5mm, beampipe radius 4.4
cm, bunch charge 8x108 electrons, Gaussian bunch s 1 cm, bunch rate 238

MHz, 50 Q coaxia output (PEP-II).
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Stripline electrodes

2

Frequency (GHz)

4

A stripline electrode isa TEM mode transmission line with the ground plane
formed by the vacuum chamber wall. We generally match the impedance of
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the stripline to the connecting cable characteristic impedance in the mode of
operation (which will in general be a different characteristic impedance for
transverse operation than longitudinal).

Schematic of striplinesin pickup mode

1
——— gy I _E" E __E
o = e | B
l -~
| X |_1 4 | \ ]
1., 2
Sum mode Difference mode

When the beam reaches the upstream end of the electrode, it repels charges
into the output line and along the stripline. With the stripline matched into
the output line, asigna V isinduced in the output line and the stripline

Thesignal propagatesalong ¥ = LgitZL the ar pline at the speed of
light, and arrives at the downstream end at timel/c
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later. Also at timel/c |ater, the beam arrives at the downstream gap and
induces negative pulsesin the output line and stripline. The stripline pulse
then propagates in the upstream direction. The output in time domain at the
upstream end of astriplineis:

In the frequency domain, the output is

Vo= 91p2,(1 - eiole) = gi,z, él ') sinkgl
so that the transfer impedanceis

Zp =gz, el %) sinkl

The single-plate coverage factor g is transverse-position sensitive. If we sum
the output of the two plates, the resulting longitudinal signal isto first order
independent of transverse position
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In the transverse case

Z,, = 7, Yrans. o7~ kol) gl
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Kicker behavior

In the gaps at the ends of the stripline, at the beampipe radius h/2, and if the
gap is short (T=1), then

z+0z
2

Integrating along the stripline incorporating the gaps, we find

V2 = Vi (1- e124) = 2v, &5 4) sin ki

We use Green's reciprocation theorem to get the beam voltage at the beam
location (y=0), using the coverage factor g:

Viy=0) = g(0)V(y=h/2)
Then

Vily=0) = 29V (" ¥ sin ki

the kicker constant is

K =2gd(" ¥ sinki

the transfer impedance is, (note that Z, = Z, here)
K=2gd" ¥ snk
and the shunt impedanceis:
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Transverse kicker behavior

] Fi Z, JW
.' - e ‘-h"'-;-E‘
R E— —,

Z.
Eyrans =g 2V g0t +12) -
E =cB
Beam z = 3ct

F()_ (Etrans"'BCBtrans)
At} = eg 2V (1+ ) glot+ k)

0

Virans = Aptgansc feF()dt cgzr\]/(l+8)f g1+ B gy
1 2

“Be Bc

1tB
Virans. =Cg 2\/.1(1‘ B kl)
h jw

1 B
Vians =29 V€ ‘2 Sm(l +[3B kl)
. 1+B =
Vt =4 g e'J sino 203 ;
rans. Kirans, = Virans. — Vtrans =1/ 2 ZL 29 1 eiogno
Vlnput 2 R V R
Power P Z

pP= ‘Vtzrans.‘ =92 V2
2R 27
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Rtrans. -

Transverse Shunt Impedance (Q)

Longitudinal Shunt Impedance (Q)

A (Vtrans.)2 =27, (2 g sin @)2

ALS transverse kicker, single electrode excited
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