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Microwaves and beam interactions

Some definitions and Maxwell equations

The sources of electromagnetic fields are charge and current, and we usually
use the charge and current densities when describing their effects:

  ρ =
d q
dV

  J =
d I
dS

  J = σE conduction current

  J = ρv free charge current

These obey the continuity equation:

The Maxwell equations in differential form are

Where E is the electric field strength, B is the magnetic flux density, D is the
electric displacement or electric flux density, H is the magnetic field intensity

∇• B = 0

∇• D = ρ

D = εE = ε ε E
B = µH = µrµ0H

∇• J + ∂ρ
∂t

 = 0

∇  ✕  H = J + ∂D
∂t

∇  ✕  E  = - ∂B
∂t
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The Maxwell equations in integral form are

Gauss law

     Faraday law

Ampere law

The energy densities in the fields are:

   dUE

dV
=

1
2

ε E 2

   dUM

dV
=

1
2

µ H 2

D•dS
S

 = ρ dV
V

B• dS
S

 = 0

E• dl = - ∂ 
∂t

 B• dS
S

H• dl = J• dS
S

 + ∂ 
∂t

 D• dS
S
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The wave equation

take the curl of one of the Maxwell equations in a charge-free, homogenous,
linear, and isotropic medium:

then for regions with no free charge or conduction current

This is the homogeneous wave equation, and a similar equation can be
derived for B.

Solutions of the wave equation demonstrate propagation of the function with
a velocity

The energy flow associated with the wave is given by the Poynting vector:

   d P
dS

=
d
dt

d U
dS

= E ✕✕ H

∇  ✕  ∇  ✕  E  = - ∂
∂t

 ∇  ✕  B

-∇ 2E + ∇  ∇• E  = - ∂
∂t

 µJ + µε∂E
∂t

 

∇ 2E  - ∇ ρ
ε  = µσ ∂

∂t
E + µε∂2E

∂t2

∇ 2E  - µε∂2E

∂t2
 = 0

v = 1
µε
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Phasor notation

We may use the convention that sinusoidaly time-varying vectors may be
written with the time-varying factor ejωt suppressed:

Re(ejωt) = in-phase component

Im (ejωt) = (90°) out-of-phase component

  v t = v0e
jωt

  dv
dt

= jωv

e.g. for a series LRC circuit we have

L 
d IL t

dt
 + RIR t  + 1

C
 IC t  dt = V cos ωt

 in phasor notation (and in frequency domain) this becomes:
  

jωLIL ω + RIR ω +
IC ω
jωC

= V ω

E x,y,z,t  = Re E x,y,z ejωt

ejωt

φ = ωt
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In phasor notation then, the Maxwell equations are easily written as:

and the average power is given again by the Poynting vector as:

   P =
1
2

Re E ✕✕ H*

The wave equation in phasor notation becomes the three-dimensional
Helmholtz equation:

and

where

∇• D = ρ

∇• B = 0

∇  ✕  E  = - jωB

∇  ✕  H = J + jωD

∇ 2E  = - ω2µεE = - k2E

∇ 2B  = - ω2µεB = - k2B

k2 = ω2µε
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Now break the equation into parts using:

And consider a time- harmonic wave with time and
distance variations described by ) ej(ωt - βz), (propagation in the z direction
with velocity vz) we have

and

where β is the propagation constant
  β =

ω
vz

k is the wavenumber
  k =

ω
v

= ω εµ

∇ 2E  = ∇ t
2E + ∂

2E
∂z2

∂2E
∂z2

 = - β2E

∇ t
2E  = β2 - k2  E
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We commonly classify the solutions to the wave equation in the following
types:

1) TEM modes
Waves that contain neither electric nor magnetic field in the direction
of propagation. The name transverse electromagnetic mode arises
from the fact that all of the fields lie entirely in the transverse plane.
They are the usual transmission line waves along a multiconductor
guide.

2) TM modes
Waves that contain electric field but no magnetic field in the direction
of propagation. Also known as E, or electric, waves.

3) TE modes
Waves that contain magnetic field but no electric field in the direction
of propagation. Also known as H, or magnetic, waves.

4) Hybrid modes
Boundary conditions require all field components, may often be
considered a coupling of TE and TM modes by the boundary
conditions. Common in structures with "complex" 3-dimensional
geometry.
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TEM modes

Re-write the three-dimensional curl equations explicitly:

and with Ez = Hz = 0 we can find

 
From the Helmholtz equation for Ex

substituting for e- jβz dependence

then

similarly for Ey, and we find

A similar equation may be derived for H, and we find that
the electric field can be expressed as the gradient of a
scalar potential, as in the electrostatic case

∇  ✕  H = jωεE

∂Hy

∂x
 - ∂Hx

∂y
 = j ωεEz

∇  ✕  E  = - jωµH

∂Ey

∂x
 - ∂Ex

∂y
 = - j ωµHz

∂2 
∂x2

 + ∂2 
∂y2

 + ∂
2 

∂z2
 Ex = - k2 Ex

∂2 
∂x2

 + ∂2 
∂y2

 Ex = 0

∇ t
2E t = 0

Et  = - ∇ tΦt

β = ω εµ = k

∂2 
∂z2

 Ex = - β2 Ex = - k2 Ex

∂Ez

∂y
 + jβEy = - j ωµHx

- ∂Ez

∂x
 - jβEx = - jωµHy

∂Hz

∂y
 + jβHy = - j ωεEx

- ∂Hz

∂x
 - j βHx = jωεEy
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The propagation constant for TEM modes βTEM must be

and in a vacuum the wave travels at the speed of light

  
Hy = ±

ε
µ Ex

 
By = ±

Ex

c

TEM modes are the transmission mode of choice when sending information,
since there is no frequency cut-off in their operation, and all frequencies
travel at the same speed, the speed of light.

Examples:
Plane light
Radio waves
Coaxial lines
Striplines

c = 1
ε0µ0

βTEM = ±jk
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TM modes

First solve for the field components, given the curl relationships shown in
the section on TEM modes

and with , Ez ≠ 0 ,  Hz = 0 we can find

Ex = - 1
k2 - β2

 jβ ∂Ez

∂x
 + jωµ∂Hz

∂y

Ey = 1
k2 - β2

 - jβ ∂Ez

∂y
 + jωµ∂Hz

∂x

Hx = 1
k2 - β2

 jωε ∂Ez

∂y
 - jβ∂Hz

∂x

Hy = - 1
k2 - β2

 jωε ∂Ez

∂x
 + jβ∂Hz

∂y

k2 - β2  = kc
2

Ey = - j

k2
 β ∂Ez

∂y
 

Ex = - j

k2
 β ∂Ez

∂x

Hx = 1
k2

 jωε ∂Ez

∂y

Hy = - 1
k2

 jωε ∂Ez

∂x
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From the Helmholtz equation for Ez

and again substituting for e- jβz dependence

then

or

We write

then

and the eigenvalue kc determines the cut-off frequency (ωc =  kc/√(µε))
below which the mode cannot propagate.

The axial propagation number β is generally combined into a complex
number γ which allows attenuation constant α:

In this discussion, we have set α = 0.

The phase velocity for each mode is

∂2 
∂x2

 + ∂2 
∂y2

 + ∂
2 

∂z2
 Ez = - k2 Ez

vz = ω
k2 - kc

2
 = c

1 - ωc
ω

2

∂2 
∂z2

 Ez = - β2 Ez

∂2 
∂x2

 + ∂2 
∂y2

 + k2 - β2  Ez = 0

k2 - β2  = kc
2

γ = α  + jβ

∇ t
2Ez + k2 - β2  Ez = 0

∇ t
2Ez +  kc

2 Ez = 0
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The equation
   ∇∇ t
2Ez + k c

2 Ez = 0

has general solutions

where

This must be solved subject to the boundary conditions of the specific
problem. Let's look at a rectangular waveguide as an example. A perfectly
conducting boundary at x=0 and y = 0 requires B' = 0 and D' = 0. We write
A'C' = A, and have:

Boundary conditions of Ez = 0 at x = a and
y = b result in the requirement

where m, n = 1,2,3,….

From

and this gives us our attenuation
constant below cut-off frequency, and propagation constant above cut-off:

Ez = A'sin kxx + B'cos kxx C'sin kyy + D'cos kyy

kx
2 + ky

2 = kc
2

k a = mπ

Ez = A sin kxx sin kyy

kyb = nπ

kx
2 + ky

2 = kc
2

ωcm,n = 
kcm,n

µε
 = 1

µε
 mπ

a
2 + nπ

b
2

α = kcm,n 1 - ω
ωcm,n

2

β = k 1 - 
ωcm,n

ω
2

ω < ωcm,n

ω > ωcm,n

vp = ω
β

 = ω
k2 - kc

2
 = c

1 - ωc
ω

2
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Phase velocity

Group velocity

Energy propagates at the group velocity, and signals become distorted when
vg is not constant over the frequency band of the signal. This effect is known
as dispersion.

vg = dω
dβ

  = c 1 - ωc
ω

2
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The other field components are derived by substitution of Ez into previous
equations, e.g.

 gives

similarly

Ey = - j

k2
 β ∂Ez

∂y
 Ex = - jβkx

kcm,n
2

 Acos kxx sin kyy

Ey = - 
jβky

kcm,n
2

 Asin kxx cos kyy

Hx = 
jωεky

kcm,n
2

 Asin kxx cos kyy

Hy = - jωεkx

kcm,n
2

 Acos kxx sin kyy
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TE modes

The roles of E and H interchange in relation to the TM case, but with a
different boundary condition at the conducting wall

The transverse fields are described by:

Again the solution for a given case is found by applying the appropriate
boundary conditions, and for the rectangular waveguide we find:

   Hz = H0cos
nπx

a
cos

mπx
a

e±jβz

   
k c = π n

a

2

+
m
b

2

The TE mode is most commonly used for low-loss power transmission.
Waveguide is quite dispersive, resulting in signal degradation over long
lengths. At frequencies substantially above the cut-off of the TE mode (say a
factor of two higher), other modes may propagate in the waveguide, with
different group velocities and coupling to input/output systems, causing
more severe signal degradation.

n•∇ tHz =  0

Ht e±jβz= -j β
k2

 ∇ tHz e±jβz

Et e±jβz= ± ε0
µ0

k
k2

 z x Ht e±jβz
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Standing waves

Counter-propagating waves of equal amplitude combine to give a standing
pattern with E and H in both time-quadrature and spatial-quadrature. A
useful application is in resonant fields in cavities.

Consider the cylindrical cavity
shown. The mode may be
considered a TM01 wave in
circular waveguide at the cut-
off frequency.

Our Helmholtz equation

in polar coordinates
(appropriate for a cylindrical
system) becomes:

with solution:

The boundary condition Ez = 0
at r=a requires

then

The field components are simple:

Er = ± 
β
k

 ε0
µ0

 Hφ = -j E0 
β
kc

 Jn
' kcr  ej nφ ± βz

Eφ = ± 
β
k

 ε0
µ0

 Hr = E0 
β
k2

 nr  Jn kcr  ej nφ ± βz

∇ t
2Ez + k2 - β2  Ez = 0

1
r
 ∂
∂r

 r 
∂Ez

∂r
 + 1

r 2
 ∂

2Ez

∂φ2
 + kc

2 Ez = 0

Ez  = E0 Jn kcr  ej nφ±kz z

kca = ρn,m  = mth zero of Jn

Jn kca  = 0
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where

kc = ρ01 = 2.405
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Since the energy flowing into a resonator reflects from a boundary, forming
a standing wave, we can picture how power builds up in the cavity from
multiple reflections. Input power is dissipated in the cavity walls, and in any
external "load" that is coupled to the cavity. The ratio of the stored energy to
the dissipated power gives the "Q":

  
Q =

ωU
P

Standing waves may also form on transmission lines, as a result of waves
reflecting at discontinuities in the line - i.e. a change in line impedance. Such
standing waves may lead to nodes where the voltage / current is large /
small.
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Open circuit

 Short circuit
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Charged particle beams

Relativistic kinematics
  γrelativistic =

1

1 - β2
  β relativistic =

v
c

In the classical limit, β << 1 and γ → 1
In the relativistic limit, β → 1 and γ is proportional to energy

Quantity Non-relativistic Relativistic

Energy E 1/2 mv2 + m0c
2 γm0c

2

Momentum p mv γm0v = γm0βc
Force F m dv/dt = ma m/β dγ/dt

It proves convenient to use units of

energy MeV
momentum MeV/ c
mass MeV/ c2

then the kinematic equations may be written without factors of "c":

The fields of ultra-relativistic particles resemble
plane waves - E and B are transverse to each other
and lie in a disk transverse to the particle velocity.

E = p2 + m2 = γ m0

E = K.E. + m

K.E. = E - m0 = m0 γ-1

p = γ m0 v

v = p
E

 = p

p2 + m2
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The opening angle of the radial E-field is of the order 1/γ.

We have only radial E field and azimuthal H field, confined to a disk
perpendicular to the direction of motion of the charge, producing a δ-
function distribution in the direction of motion.

The situation remains the same for charges moving along the axis of an
infinitely conducting smooth cylindrical pipe. The electric field lines are
then terminated with surface charges on the inside wall.

For non-relativistic particles the situation is more complex. For low-γ beams
the space-charge force which cancels out with the magnetic forces of ultra-
relativistic charges cannot be neglected, and the fields associated with a
charge are not so well confined to a disk around the charge.

Here, we will deal mainly with the simpler case of ultra-relativistic charges,
and ignore these latter complications.

§ Charged particle beams may be sensed via the electromagnetic fields they
create.

§ They may respond to external electric and magnetic fields.

§ They can also interact with the fields they create.
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Time domain and frequency domain

We have a tendency to experience events as they happen in time, but we are
also sensitive to identifying in frequency, for example the color of objects.

In electrodynamics we measure and understand signals and behavior in two
dominant modes, time-domain and frequency-domain.

Time domain signals may be, for example, the measured current induced by
a passing electric charge. We may see an impulse as the charge passes, then
another as the next charge passes, and so on. Understanding signals in this
way is very important.

Sometimes the time-domain information does not clearly explain all
behavior, and we find that looking at the frequency spectrum of a signal can
give a more complete understanding and insight into a problem.

Some problems are best analyzed in time-domain, others in frequency-
domain.
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To convert signals from one domain to the other, we use the Fourier
transform:

  
x t =

1
2π X ω ejωt dω

-∞

∞

  
X ω = x t e- jωt dt

-∞

∞
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Beam signals

For real beams we may have 109 or more particles in a bunch, and the bunch
has some longitudinal profile, often Gaussian. For such a Gaussian
distribution, the wall currents induced by the passage of an ultra-relativistic
beam may be written:

where σ is the bunch length, q the charge, and bunches are spaced by time
interval τ.

In frequency domain, the spectrum is

In this expression there are positive and negative frequency components:

A spectrum analyzer shows positive components, with the negative part
"folded" over at d.c. :

i t  = q

2π σ
 e- t

2  σ

2

 * δ t - nτ∑
n = - ∞

∞

I f  = I0 e- 2 π σ f 2

δ f - n f0∑
n = - ∞

∞
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Single-passage

Repetitive-passages
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For a 500 MHz RF system, typical values might be

σ ≈ 10 ps
τ ≈ 2 ns

then we can see that the beam current spectrum e-folding frequency is
1/√2πσ or about 20 GHz.

If we wish to perturb a single bunch, we must have a system that will
generate fields before the arrival of the bunch and dissipate them afterwards,
such that no other bunches experience the fields. This gives a bandwidth
requirement of the order of 500 MHz in this case.

Much information on beam parameters may be gained by measuring
electromagnetic signals in the RF to microwave ranges for typical beams.

Higher frequencies and larger bandwidths are required to "see" more detail
and shorter timescales.

Similarly, to operate on typical beams requires devices and power sources
with RF to µwave frequency response.

In the future, for very compact beams with femtosecond timescales, lasers
may replace microwave systems for diagnostics and manipulation of beams.
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Image current

The beam induces in the enclosing vacuum chamber walls an equal and
opposite image current in order to match the boundary conditions at the
walls. The beam may be considered a perfect current source for most
calculations.

This wall current may be sensed by electrodes mounted inside the vacuum
chamber, and signals derived from the beam-induced wall current provide
valuable information on beam properties, for example beam position:

iwall t  = - ibeam t

Iwall ω  = - Ibeam ω
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Interaction of beams with electromagnetic fields

The force on a particle of charge q in an electromagnetic field is

A charged particle passing from point a to point b with velocity v = ßc will
receive a momentum change (kick):

The longitudinal electric field gives an
energy change

For ultra-relativistic particles ß ≈ 1 and

 then

f = q E + v ✕  B

∆p = q E + v ✕  B
a, ta

b, tb

 dt

∆U = q E
a, ta

b, tb

•ds

ds = dz = ßc dt

∆U = ∆p•β c
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The beam voltage

The energy change is often expressed as the beam voltage:

In phasor notation, Es(s,t) = Es(s) ejωt, and with t = s/v we have:

where kb is the beam wavenumber. The factor leads us to the transit-
time factor T:

or

For resonant cavities, we often find symmetry in the longitudinal direction,
and a cosine or sine term will apply here for the transit time, depending on
the symmetry of the mode about it's center point.

The variation of the beam voltage with transverse position is not an arbitrary
function, an done can show that Vb is a two-dimensional scalar solution of
the Laplace equation for highly relativistic particles:

   
∇∇ t

2Vb +
1

βγc 2

∂2Vb

∂t2
= 0

or in phasor notation:

Vb = ∆U
q

 = E s,t  • ds
a, ta

b, tb

Vb = Es ejkbs ds
a

b

jkbs

Vb = T Es ds
a

b

T = ejkbs ds
a

b
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∇∇ t

2Vb +
k b

2

γ2
Vb = 0

§ Solving for Vb reduces to a simple electrostatics problem

§ The problem of calculating the spatial variation of a device's effect across
it's aperture can be reduced to a two-dimensional boundary-value
problem
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Beam impedance

The various accelerator components, such as RF cavities, bellows, injection
septa, dielectric walls, and even a smooth pipe of finite conductivity result in
scattering or trapping of the beam-induced fields. These fields can last for
long enough to be experienced by a charge following the exciting charge,
causing perturbations to the energy or angle of the following particle's orbit.

In the time-domain the beam-
induced electromagnetic field
in an accelerator component
may be described by wake
function; in the frequency-
domain by the beam
impedance (sometimes known
as the coupling impedance).

The beam impedance is a
complex quantity: the real part
is associated with extraction of
energy from the beam; the
imaginary part with
deformation of the beam
profile.

The wake function and
impedance are equivalent, in
the sense that the impedance is
the Fourier transform of the
wake function.

Computer modeling

We have seen here analytical
expressions for

electrodynamic parameters for charged particle beams in electromagnetic
fields. Many components in particle accelerators are too complex and/or
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devoid of symmetry to allow simple calculation, and we resort to computer
modeling.

Many techniques exist for calculation of electrodynamic quantities, e.g.

Finite element
Finite difference
Boundary element
Mode matching
etc…

One example is the MAFIA code which uses a finite difference technique to
rigorously solve the Maxwell equations on a rectangular grid. Models may
be created in full 3-D, and solved in time-domain and/or frequency-domain.

Waveguide load
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Signal Analysis
•Time and Frequency description of signals.

-Fourier transform
-Laplace transform
-Discrete Fourier and Z transforms and aliasing
-impulse response and transfer function

•Modulation/Demodulation.
-AM
-FM and PM
-Transmission through linear system (AM/PM conversion)

•Noise Considerations
-noise sources
-thermal noise
-signal/noise ratio
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Time and Frequency Domain

Any time domain signal can be expressed as a sum of sinewaves. This is known as a
Fourier transform.

  
f(t)= 1

2π F(ω)ejωtdω
–∞

+∞

The Fourier transform is defined here as (caution: some texts use different definitions.)
  

F(ω)= f(t)e–jωtdt
–∞

+∞

For periodic signals
  V(t)=

a0
2 + ancos(nω0t)+bnsin(nω0t)Σ

n = 1

∞

where the coefficients an are given by
  

an= 2
T0

V(t)cos(nω0t)dt
T0

bn= 2
T0

V(t)sin(nω0t)dt
T0

This known as a Fourier series

Useful Properties of Fourier Transforms
  ax1(t)+bx2(t)⇔aX1(ω)+bX2(ω) Linearity
  x(t–t0)⇔e–jωt0X(ω) Time shifting
  dx(t)
dt ⇔jωX(ω) Differentiation

  
x(t)dt

–∞

τ

⇔ 1
jωX(ω)+πX(0)δ(ω) Integration

  x(at)⇔ 1
|a|X(ωa ) Time scaling

  
f(t) 2dt

–∞

+∞

= 1
2π F(ω) 2dω

–∞

+∞

Parseval's Thm

  
Im(X(ω))=1

π dω’Re(X(ω))
ω’–ω∞

∞

for x(t)=0 for t<0
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Signal Bandwidth and Time Response

For signals with time length T, the frequency bandwidth is BW~1/2T.
This is independent of the frequency of the signal.
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Impulse Response and Transfer Function

Consider a system with a response to an impulse given by h(t).
The FT of the impulse response is defined as the transfer function H(ω).

A common application of this in accelerators is wakefields and impedance. Consider a
point charge passing through an RF cavity. It excites a wakefield (e.g. on axis) that
decays with some time constant.

Im
pe

da
nc

e 
(Ω

)

Frequency

W
ak

e 
V

ol
ta

ge

Time

Often it is more practical or relevant to measure the step response of a system. The step
response of a system is just the integral of the impulse response. Therefore a one can get
the impulse response from the derivative of the step response measurement.
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Convolutions
The response of a system to an arbitrary input is given by the convolution of the input
with the response of the system.

  
y(t)= x(τ)h(t–τ)dτ

–∞

+∞

where x(t) is the input to the system, h(t) is the impulse  response, and y(t) is the output.

Convolutions can be thought of as summing up the impulse response from a series of
delta functions of varying amplitude.

Impulse response System input

Convolutions are most easily evaluated in the frequency domain. The FT of a convolution
is just the product of the FT of x(t) and h(t)

  Y(ω)=X(ω)H(ω)
Once the FT transform of the output is found, the result can be FT'ed back to the time
domain.

A common occurrence of convolutions in accelerators is the response of an RF cavity to
an arbitrary drive (such as beam current). In this case, the voltage is given by

  
V(t)= i(τ)W||(t–τ)dτ

–∞

+∞

where W||(t) is the wake voltage (i.e. impulse response) of the RF cavity and i(t) is the
driving beam current. The voltage in the frequency domain is

  V(ω)=I(ω)Z||(ω)
where Z||(ω) is the impedance.
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Laplace Transform

We can generalize the FT to a class of signals with complex frequency s=σ+jω. This
form of transform is called the Laplace Transform and is defined by

  
F(s)= f(t)e–stdt

–∞

+∞

The inverse LT is given by
  

f(t)= 1
2πj F(s)estds

–∞

+∞

The LT is useful for analyzing linear systems (particularly linear systems with feedback)
because it reduces differential equations to algebraic equations.

Example: Consider a simple L-R circuit. The differential equation for the current is given
by

 Ldi
dt+Ri=V(t)

where V(t) is an arbitrary input voltage to the circuit. Taking the LT of both sides yields
  sI(s)+(1/τ)I(s)=V(s)/L

Solving for I(s)
  

I(s)= V(s)
s+1/τ

If we know the LT for V(t) we can find i(t).
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Other Transforms

Discrete time signals have transforms which are very similar to those of continuous
signals called discrete Fourier transforms (DFTs). These signals are most commonly
encountered in systems with digital sampling.

  
x[n]= akejk(2π/N)nΣ

k = 1

N

where
  ak= 1

N x[n]e–jk((2π/N)nΣ
n = 1

∞

The most common form of the DFT is the fast Fourier transform (FFT) which is a

common algorithm for finding the DFT of 2n points. The DFT is also useful in describing
bunched beam signals since they often are periodic pulses.

For discrete time data, the equivalent to the Laplace transform is the Z-transform given
by

  X(z)= x[n]z–nΣn = –∞

∞

The inverse ZT is
  x[n]= 1

2πj X(z)zn–1dz

Hilbert Transforms
  

H(t)=1
π

f(τ)
t–τ dτ

∞

∞

Used for analyzing transmission through linear systems. Generates only positive
frequency signals.
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Amplitude Modulation/Demodulation

Simple amplitude modulation can be written mathematically as
  Vs(t)=Vmcos(ωmt+φm)Vccos(ωct+φc)

=
VmVc

2 cos((ωm–ωc)t+(φm–φc))+cos((ωm+ωc)t+(φm+φc))

AM modulation including the carrier is usually written as
  Vs(t)=Vccos(ωct+φc) 1+m cos(ωmt+φm)

The ratio of the sideband to the carrier ism/2.

Consider the above case where a signal has been modulated onto a carrier. How do we
demodulate the the result in order to recover the original modulation signal? One
technique is to multiply the signal by the carrier resulting in two sets of frequencies, ωm

and 2*ωc ±ωm. If the signal is low-pass filtered, we can recover the original modulation.
This is sometimes referred to as demodulating or mixing a signal down to baseband.
Another common technique illustrated below is a diode or envelope detector.
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Phase and Frequency Modulation

The phase of a signal can also be modulated
  Vs(t)=Vccos(φ(t))

where
  φ(t)=ωct+φsin(ωmt)

Frequency modulation is just a special case of phase modulation. The instantaneous
angular frequency is given by

  ω(t)=
dφ
dt

=ωc+φωmcos(ωmt)=ωc+2π∆fcos(ωmt)

where ∆f is the peak frequency deviation from the carrier. The peak phase deviation and
frequency deviation are related by

  φ=∆f
fm

Using the Fourier expansions
  cos(xsinθ)=J0(x)+2J2(x)cos2θ+2J4(x)cos4θ+...

sin(xsinθ)=2J1(x)cosθ+2J3(x)cos3θ+...

where Jn are the Bessel functions, the PM signal can be written as
  

Vs(t)=J0(φ)cos(ωct)–J1(φ)(cos(ωc–ωm)t–cos(ωc+ωm)t)
+J2(φ)(cos(ωc–2ωm)t+cos(ωc+2ωm)t)
–J3(φ)(cos(ωc–3ωm)t–cos(ωc+3ωm)t)
+......

The signal becomes an infinite sum of harmonics of the modulation frequency, each
proportional to the Bessel function corresponding to that harmonic.
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A phasor representation of the signal is shown below.

The frequency spectrum is shown below. Note that the relative phase of the upper and
lower sidebands is different. The relative phase does not appear on the spectrum analyzer
because phase information is lost.
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AM/PM Conversion

Consider a modulated signal
  V(t)=Re V (1+acos(ω t))ej(ωct+φsin(ωpmt))

For small amplitude modulations this can be written as
  

V(t)≈VcRe ejωct 1+a
2(ejωamt+e–jωamt)+

φ
2(ejωamt–e–jωamt)

We can compare amplitude and frequency modulation using a phasor representation
shown below.

In the frequency domain representation is shown below.

When the modulated signal passes through a filter (e.g. an RF cavity), AM can become
FM  and vice versa. Shown below is an FM signal. When the cavity is tuned to the
carrier, the upper and lower sidebands have the same response. When tuned away, the
asymmetry in the response doesn't allow cancellation of the FM phasors and an AM

occurs. 
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Noise

External to detector
•environmental noise (i.e. EMI,atmospheric, etc.)
•beam noise (Schottky noise)
•propagating modes in the vacuum chamber

Internal to detector
•magnetic noise (Barkhausen effect)
•shot noise (quantized electron current flow)
•1/f noise (flicker noise)
•thermal electronic noise (Johnson noise)

  
Vn

2 =4kT R(f)df
f1

f2

=4kTR∆f
where

k=Boltzmann's constant=1.38x10-23 Joules/deg-K
T=absolute temperature of source resistance R in degrees-K
∆f=system bandwidth in Hz
R=source resistance in Ω

(note that this is an approximation valid up to ~1x1013 Hz.)

If a matched load is connected to the noise source (i.e. load impedance=R), the maximum
power transferred to the load is

  Pn=kT∆f

The noise power density is just kT.

Signal/noise ratio is defined either as the ratio of the signal power to the noise power or
signal voltage to noise voltage.

The noise figure of a device is defined to the ratio of the S/N at the device input to the
S/N at the output.  This can be written as

  
F=

NDUT+kT∆fGDUT

kT∆fGDUT

where GDUT and NDUT are the gain and noise of the device under test. The noise figure
of an a device is usually defined at room temperature (290 K).
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Microwave Instruments

Spectrum analyzers

Spectrum analyzers allow us to examine signals in the frequency domain, that is, to determine the
frequency spectrum of signals that in everyday life are experienced as time-varying phenomena that
can be viewed for example on an oscilloscope. From Fourier analysis we know that a time-varying
signal may be constructed from a collection of sine waves of different frequencies and amplitudes. A
spectrum analyzer will allow measurement of the sinusoidal frequency components of a time varying
input signal. The spectrum is a graphical display of the amplitude and frequency of a signal's sine
wave components.

The need for spectral analysis of signals arises in many applications, where a frequency domain
approach is more instructive than analyzing complex time-domain waveforms. With an analyzer it is
possible to observe:

an oscillator frequency
carrier frequency
amount and frequency of amplitude and frequency modulation
unexpected modulation
...
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Spectrum analyzers fall into two categories: (a) sweeping or superheterodyne analyzers, and (b) fast
Fourier transform (FFT) or dynamic signal analyzers. FFT analyzers measure signals in the time
domain and apply a Fast Fourier Transform to obtain frequency domain information on the stored
signal. Spectrum analyzers may also be equipped with tracking generators, and signal analyzers are
often equipped with noise generators, allowing the measurement of frequency response of devices
such as filters, amplifiers, and particle beams. Although signal analyzers have advantages in some
measurement applications, current technology limits the frequency range, sensitivity, and dynamic
range of FFT analyzers, and we will discuss the sweeping analyzer here.

Sweeping or superheterodyne analyzer

The sweeping analyzer is basically a tuned receiver whose center frequency can be swept
electronically. It has adjustable bandwidth, and detects the rms amplitude of the input spectrum over
it's passband. Heterodyne means to mix (translate frequency), and super refers to super-audio
frequencies.

The simplified diagram above shows the basic operation of the analyzer. The input signal is low-pass
filtered (why), mixed with a signal from a local oscillator, and the mixing products bandpass filtered.
Any signals within the bandpass of this intermediate frequency filter will be rectified, amplified and
digitized, and used to provide a vertical displacement on the cathode ray tube. A ramp generator
tunes the local oscillator in proportion to the ramp voltage, and also provides horizontal
displacement of the CRT.

In addition to the low pass filter at the input, we will find an attenuator to maintain the required
signal level at the mixer:
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It is very important that the total signal level - at any frequency - is below the level that would cause
damage to the analyzer components. DC current may also damage a spectrum analyzer.

The local oscillator frequency and the bandpass filter center frequency are chosen to allow detection
of the mixer product

fIF = fLO - fsignal

The IF frequency (filter) is fixed, and ramping the LO frequency brings successive signal
frequencies through the bandpass filter to the detector. The example below shows the signal just
below the passband of the filter; increasing the LO frequency will bring the mixing product into the
IF passband and a signal will be seen on the display. The horizontal axis of the CRT display can be
calibrated in terms of the input frequency. Typical frequencies are 3.6 GHz < fLO < 6.5 GHz, fIF =
3.6 GHz, for an analyzer that tunes up to 2.9 GHz.
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The purpose of the low-pass filter at the analyzer input is to reject input signals at which the mixer
product fIF = fsignal - fLO would result in a detected signal after the IF filter. Also, the low pass filter
must reject input signals at the IF frequency itself, which are present in the mixer output.

The resolution of an analyzer is a function of the bandwidth (resolution bandwidth, RBW) of the
IF bandpass filter. The shape of a signal on the spectrum analyzer is a combination of the shape of
the signal and the IF filter. In order to separate two equal sinusoids closely spaced in frequency, the
filter must have a 3dB bandwidth equal or less than the signal separation.

The resolution is defined as the frequency separation of two signals which merge with a 3 dB notch:

If we are dealing with signals that are not equal in amplitude, the smaller signal may be lost in the
skirts of the filter response. To characterize this, another specification, the selectivity or shape factor,
is used in defining the bandpass filters. The selectivity is the ratio of bandwidth at 60 dB down from
maximum, to the bandwidth at 3 dB (or 6 dB) down from maximum. Typical selectivity of filters for
high performance analyzers might be 11:1 (60:3 dB ratio).

Narrow IF bandwidths, perhaps into the range of 10's of Hz, are difficult to achieve at high
frequencies. In order to obtain high resolution, several mixing stages are employed:

The required resolution bandwidth is a function of both the resolution and selectivity of the IF filter,
and the separation and amplitudes of the signals we wish to resolve.
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Some spectrum analyzers also contain a digital filter to achieve the highest resolution (lowest
resolution bandwidth). In this case the signal is mixed down to low frequency, passed through a
narrowband analog filter, amplified, sampled and digitized. The signal is acquired in the time-
domain and put through a Fast Fourier Transform algorithm which filters the data with a highly
selective filter. The analyzer then steps to the next frequency in the span (by changing the LO
frequency), and another time-domain sample is taken and analyzed and then displayed.

Another factor affecting the resolution is the stability of the local oscillator. Modulation of the local
oscillator frequency will result in products from the mixer which are not present in the input signal.
Residual FM of the local oscillator signal may limit the resolution of low-cost analyzers (with simple
YIG-tuned oscillators as the LO source). Phase noise is present on all spectrum analyzer LO
systems, and manifests itself as a broad skirt around a signal when displayed above the noise-floor of
the analyzer. Note that the noise-floor varies with RBW since the noise power is proportional to
bandwidth.

The resolution bandwidth of the analyzer imposes significant restrictions on the sweep time. The
sweep rate must be slow enough that the filters can respond and reach peak amplitude in the time
that a signal is within the filter passband. The time in the passband is

Tpassband = RBW/(span/sweep time)

and the rise time of the filter is

Tfilter ≈ 0.3/RBW

then if we equate these times the sweep time is related to the resolution bandwidth by

sweep time ≈ 0.3 (span)/(RBW)2

and this is an lower limit on the sweep time for CW signals. Selection of RBW is particularly
important in measurements of pulsed signals, where the time duration of the input signal must be
accounted for also.

The IF filter output is converted to a video signal by an envelope detector. The detector will put out a
dc voltage for a CW sinusoidal input that gets through the IF filter, the voltage dependent on the
amplitude of the signal. The video signal contains the information on the input signal, and also noise
introduced by the analyzer itself. This signal may be low-pass filtered to reduce noise. When the
video filter has a passband less than the IF filter, the video system cannot follow the rapidly
changing variation of the envelope detector, resulting in averaging or smoothing of the displayed
signal. The video bandwidth (VBW) should be used with caution, if set below the RBW it may
affect the amplitude of the signals if the sweep rate is not adjusted to allow the filter signal to
maximize. The VBW is usually set equal to the RBW as a default.

The spectrum analyzer may also be used in CW mode, where the LO is fixed. The video output then
may be used to monitor amplitude changes in a signal at a fixed frequency.
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Digital spectrum analyzers (most modern analyzers are digital) allow video averaging, where each
displayed point is averaged in with the previously averaged data:

Aavg = [(n-1)/n]Aprior avg + (1/n)An

where Aavg = new average value
Aprior avg = average from prior sweep
An = measured value on current sweep
n = number of current sweep

The noise-figure of a spectrum analyzer relates the signal-to-noise ratio at the input to that at the
output. We simplify this by noting that the output signal level (indicated on the display) is made to
be equal to the input signal level, then the noise figure becomes

F = No/Ni

We know that the input noise level for room temperature, for a 1 Hz bandwidth, and with the input
terminated in 50Ω is

Ni = kTB = -174 dBm

The noise figure is then the measured noise converted to a 1 Hz bandwidth (the measured noise will
be for the RBW), minus the input noise (measurements in dBm). Typically, the noise figure may be
24 dB. A preamplifier may be used to improve the system noise figure.
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The discussion so far has been for an analyzer of relatively low frequency range, perhaps a few GHz.
If we wish to measure higher frequency signals, we must remove the low-pass filter at the input and
we may switch to a different IF, this time lower in frequency than the tuning range of interest. If we
limit the span, and apply bandpass filtering where necessary, frequencies up to tens of GHz may be
analyzed:
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Network analyzers

Network analysis tells us how a system responds to a given input. Network analyzers measure the
amplitude and phase (for vector network analyzers) of the response of a system to sinusoidal input
signals. In some ways the network analyzer may be thought of as a spectrum analyzer with a
tracking generator, but this is not strictly true. The basic functions of a vector network analyzer are
to measure the magnitude and phase of signals transmitted through and reflected from a device, with
respect to the source signal. A scalar network analyzer is less complicated and does not allow phase
information to be discerned.

Two signals are used, both variable in frequency (swept or stepped), but locked to each other by a
phase-locked-loop (PLL), such that their difference frequency is kept constant at some IF.
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After mixing, the IF contains the full phase and amplitude information of the RF signal to be
measured. The signal source may be a sweep oscillator or a synthesized sweeper, providing a signal
which may be swept over a range of frequencies of interest. A synthesized sweep oscillator allows
the production of very accurate synthesized CW signals which may be stepped to provide the desired
frequency span. The IF of mixer 1 gives a signal to a PLL which maintains the local oscillator at the
required frequency difference from the RF signal (fs in the above diagram).
The IF signals are amplified and mixed down to 100 kHz where they are detected. A phase sensitive
detector is used to measure the phase against a 100 kHz reference oscillator. The phase and
amplitude signals are digitized and sent to the CRT display.

The basic network analyzer has an RF output port and three input ports; the reference (R), port 1
signal (A), and port 2 signal (B). The analyzer controls the frequency of the RF signal and detection
electronics, and displays the data. Modern analyzers have onboard computers which allow
manipulation of the data and can display in various formats, including SWR, return loss, phase,
group delay, impedance, Smith chart etc. Using a dual-reflectometer, or S-parameter test set, input
and output reflection coefficients, as well as the forward and reverse transmission coefficients, can
be measured without disconnecting the device under test.
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Factors affecting accuracy are similar to those discussed for the spectrum analyzer, in particular
concerns over IF bandwidth and sweep time. Another control to improve accuracy of measurements
is the power output of the analyzer RF signal.

Network analysis measurements contain systematic errors that can be measured and corrected for. A
measurement is the vector sum of the actual device response plus all error terms. These errors are
due to the finite directivity of the couplers in the test-set, impedance mismatch at the RF source,
impedance mismatch at the load (port 2), finite isolation of signal paths within the analyzer
(crosstalk), and frequency response of all devices in the forward and reverse signal paths (tracking).
By connecting known terminations at each port (open circuit, short circuit, and matched load), and
by connecting the two ports together directly, these 12 (6 in each direction) systematic error terms
can be calculated and in a calibration routine, and correction applied to the measured signals. The
full 2-port, 12 point calibration routine requires all S-parameters to be measured to determine the
correction for any one S-parameter. Simpler correction routines are used for 1-port measurements.
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Calibration kits consisting of open, short, load, through are available for standard coaxial lines, but
other techniques are available using different reference measurements, and which may find
application in measurements with non-standard transmission lines.

Another means of removing some unwanted effects, such as multiple reflections, is to use the FFT
capabilities of modern analyzers, transforming into time domain, applying a time gate to remove
reflections, and then transforming back into frequency domain.

It is also possible to generate "synthetic pulses" by shaping the frequency domain signal and
transforming to time domain.
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Sampling oscilloscopes

Real-time oscilloscopes have bandwidths limited to ≈ 1 GHz. In order to see faster signals on
repetitive waveforms sampling 'scopes are used. The equivalent time sampling technique samples
the input waveform at least once in it's repetitive period, then the time of the next sample is delayed
slightly, and so on, and generates a waveform similar to the input waveform by ordering the
measured samples appropriately.

The sampling heads must have very short measurement time to avoid averaging the signal. Step-
recovery diodes, which change their conductivity very rapidly between the conducting and non-
conducting state, are used to generate the sampling pulse. The actual sampling switch is a Schottky
diode which becomes conductive during the sampling pulse and allows the input signal to charge a
capacitor. The capacitor forms part of a sample-and-hold circuit, the output of which is read and
forms the vertical displacement on the CRT display. Sampling head bandwidths of 50 GHz are
achievable with monolithic microwave integrated circuits.
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Time domain reflectometry

Time domain reflectometry (TDR) allows measurement of characteristic impedance, reflection
coefficient, and nature (resistive, inductive, capacitive) and value of complex impedances on coaxial
lines. It also allows the location in time (distance) of mismatches on the transmission line.

A voltage step is propagated down the transmission line under test, and the incident and reflected
voltages are monitored by an oscilloscope. A sampling oscilloscope is used, since the step rise time
is typically 25 ps and cannot be resolved by real time 'scopes.

Once the incident and reflected voltages are measured on the oscilloscope, the reflection coefficient
and impedance of the mismatch may be calculated.

ρ = Er/Er = (ZL - Zo)/(ZL + Zo)
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The location of an impedance mismatch may be found by timing the arrival of the pulse reflected
from the mismatch (Er). The distance from the reference  plane to the mismatch is

d = v T/2 = (c/√εr) T/2

where v is the velocity of the wave on the transmission line, T is the measured time interval, and εr
the relative dielectric constant of the material of the coaxial line. The time measured is from the
arrival of the incident pulse at the reference plane, to it's return from the discontinuity, and so is
twice the time of travel to the discontinuity itself.

The spatial resolution may be related to the step risetime by assuming that two discontinuities are
indistinguishable if separated by less than the risetime. Then

dmin = (c/√εr) Trise/4

TDR displays for resistive loads:
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TDR displays for complex loads
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Note that  the ideal waveforms of the previous page are smeared out as a result of the finite
bandwidth of the system, which is less than the time constant of the reactive circuit for small enough
reactances.
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Microwave Devices and components

Transmission lines

Transmission lines are used to carry microwave signals in an efficient manner, allowing the
incorporation or connection to other microwave devices. In order to choose an appropriate
transmission line for a given application, several factors have to be considered:

signal frequency
signal bandwidth
power handling capability
attenuation of signal
size of transmission line
ease of fabrication

Generally a transmission line is chosen with a compromise between these requirements.

Three basic, common, types of transmission line are shown here:

Waveguide

Waveguides are low-loss and have high power handling capability, but limited bandwidth (low
frequency cut-off and multi-mode propagation at high frequencies). Large size at low frequencies.
Generally the height of the waveguide is approximately half the width, and the type of waveguide
used is determined by the requirement that only the TE10 mode propagates within the frequency
band of the signal.
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The TE20 mode has the next lowest cut-off, and to avoid propagation of higher-order-modes the
waveguide width must be chosen such that the wavelength at the upper operating frequency is less
than the guide width. For this reason the bandwidth is generally a little less than an octave.
Circular waveguides may be used in applications where less attenuation is required than can be
achieved with rectangular guide, but overmoding is more problematic.
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Coaxial lines

Coaxial lines accommodate TEM waves and have broad bandwidth and small size. Attenuation is
relatively high and power handling capability is less than waveguide. Note that Teflon may be
incorporated in some coaxial cable types, and such cables may not be suitable for high radiation
environments around accelerators. Most cables are 50 Ω characteristic impedance, although other
values are used, notably 75 Ω for TV and video use. The dominant waveguide mode on a coaxial
line is the TE11 mode, and the approximate cut-off frequency for this mode is given by

fc ≈ c/(π(a+b))

Coaxial connectors can be found in various designs, usually in male/female threaded pairs.

N-type In common usage, recommended upper operating frequency about
11 GHz, precision versions up to 18 GHz.

SMA Smaller and lighter than the N-type, cheap, re-connection not reliable after 
several applications, can be used up to 18 GHz, some versions up to

25 GHz.

APC-3.5 Similar to SMA but has no solid dielectric filling and can be used up to
34 GHz, with high repeatability. Expensive. Can mate with SMA.

APC-7 Precision sexless connector, used up to 18 GHz with high repeatability.

BNC Low frequency connector, quick-release, usually used up to ≈ 1 GHz.
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Stripline

Stripline may be thought of as a "flattened out coax", and lends itself well to photolithographic
fabrication techniques. Since stripline contains two conductors and a homogeneous dielectric, it can
support TEM waves. Higher order TM and TE modes may be generated for frequencies where the
spacing between the ground planes is greater than a half-wavelength.

Microstrip

Microstrip is another very common planar transmission line, which is easily manufactured and
integrates well with other microwave devices. Microstrip does not support pure TEM waves,
attenuation is high and power handling capabilities are low.
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Slotline

Similar to microstrip but with a thin slot in the ground plane on one side of the dielectric.

Ridged waveguide

Ridges on the top and/or bottom of a waveguide lower the frequency of the dominant mode,
increasing bandwidth. Often used in impedance matching transitions since the impedance is easily
controlled by the ridge dimensions.
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Filters

Filters are frequency-selective devices which pass only frequencies within a desired band, and reject
signals at other frequencies. Typically four types of filter passband characteristics are used:

Lowpass Highpass

Bandpass Bandstop
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Important specifications for filters are:

Cut-off frequency (lowpass and highpass filters)
Center frequency (bandpass filters)
Bandwidth (bandpass filters)
Lower stopband frequency
Upper stopband frequency
Out-of-band rejection
Insertion loss
Return loss
Passband ripple
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The required filter response determines the mathematical description used in the design of the filter,
and several types are in common usage including:

Maximally flat (or binomial or Butterworth)
Chebyshev (or equal-ripple)
Linear phase

Once the mathematical description is selected, the order of the transfer function necessary to achieve
the required specifications can be computed.

          

Transfer function for Butterworth lowpass filters of order n:
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Power dividers, power couplers

Power dividers are used to split a signal from one transmission line into other lines, or to combine
power from two or more lines. Typically, a power divider is a three-port network and the division is
into two equal lines each -3 dB less in power than the incident line, but the split may be into more
lines or different power ratios.

A simple T-junction allows lossless transmission of power into two arms, with the power ratio
determined by the characteristic impedance of each arm. While the input impedance may be
matched, the impedance into the coupled arms is not. Also, the ports of this splitter are not isolated.

Resistive dividers allow matching of all three ports, but introduce a 3 dB loss in total power, and no
isolation between ports.
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The Wilkinson power divider allows matching of all ports and isolation between the output ports.
The input and output lines are connected by lines √2 Zo, and a resistor of 2 Zo between the output
lines. This resistor does not introduce loss in the power-splitting since the two output arms are in
phase and there is not voltage across the resistor, but it does attenuate power coupled into the arms
out-of-phase and provides isolation between the output arms.

The symmetry of the Wilkinson divider allows a simple analysis using the even-odd mode
technique. We normalize all impedances to the characteristic impedance Zo, add voltage generators
at the output ports, and draw the circuit below:

We can define two modes of excitation:
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the even mode, where Vg2 = Vg3= 2 V
the odd mode, where Vg2 = - Vg3= 2 V

By superposition of the two modes we have Vg2 = 4 V, and Vg3 = 0.
For the even mode Vg2 = Vg3 = 2V, and V2 = V3, there is no current flow through the resistors r/2,
or through the short circuit at port 1. Bisecting the network with open circuits at the center line,
looking into port 2 we see a λ/4 line, and the input impedance at port 2 is that of a quarter-wave

transformer Zin
even = Z2

Rload
;

Zin
even = Z

2

2

Thus port 2 will be matched if Z = √2, and all power goes to port 1.

To find S12 we use the transmission line equations. The voltage on the line is (x = 0 at port 2 and x =
λ/4 at port 1):

  Vx = V+ e-jβx + Γejβx

  V0 = V+ 1 + Γ = V2 = V

  
V1 = V

λ
4

= jV
+

Γ - 1 = jV
Γ - 1
Γ + 1

using Γ = Zin - Z0
Zin + Z0

 we have

  Γ =
2 - 2

2 + 2

and
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 V1 = -jV
1

2

 
S12 =

V1

V2
=

-j

2

By symmetry S13 = -j/√2, and S33 = 0
Now for the odd mode Vg2 = -Vg3 = 2V, and V2 = -V3, the circuit can be grounded along the center
line:

Looking into port 2 we see an impedance of r/2, the port is matched (S22 = 0) if r = 2. In this mode
all power is delivered to the resistors and none gets to port 1.

For the input match S11 we terminate ports 2 and 3 in matched loads and the resulting circuit is
similar to the even mode:

No current flows through the resistor, so it can be removed in the analysis, and we have two quarter-
wave transformers in parallel. The input impedance is then matched
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Zin =

1
2

2
2

1
= 1

We now have all of the S parameters:

S11 = S22 = S33 = 0
S12 = S21 = S13 = S31 = -j/√2
S23 = S32 = 0

When the outputs are matched, the divider is lossless and power from ports 2 or 3 is dissipated in the
resistor.
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Directional couplers

Directional couplers are 4-port devices which sample power traveling in one direction down a
transmission line.

If the 4-port device is reciprocal and matched at all ports the [S] matrix has the form

S  = 

0
S12
S13
S14

S12
0

S23
S

S13
S23

0
S

S14
S24
S34
0

and for a lossless network the matrix is unitary (energy conservation). Then we have for the dot
products of rows1 and 2, and rows 3 and 4:

 S13
* S23 + S14

* S24 = 0

 S14
* S13 + S24

* S23 = 0

from which we find
 S14

* S13
2

- S24
2

= 0
(a)

Similarly for rows 1 and 3, and rows 4 and 2:

 S12
* S23 + S14

* S34 = 0

 S14
* S12 + S34

* S23 = 0

and
 S23

* S12
2

- S34
2

= 0
(b)
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(a) and (b) may be satisfied if S14 = S23 = 0, which results in a directional coupler. Then the self-
products of [S] give:

S12
2 + S13

2 = 1
S12

2 + S24
2 = 1

S13
2 + S34

2 = 1
S24

2 + S34
2 = 1

implying that  |S13| = |S24|, and |S12| = |S34|.

We may choose the reference phases such that S12 = S34 = α, S13 = βejθ, S24 = βejφ. Note that:

α2 + β2 = 1

Taking the dot product of rows 2 and 3 we have:

 S12
* S13 + S24

* S34 = 0

from which
θ + φ = π ± 2nπ

and we find two common choices:

For the symmetrical coupler θ = φ = π/2, and

S  = 

0
α

jβ

0

α
0

0

jβ

jβ

0

0
α

0

jβ

α
0

For the antisymmetrical coupler θ = 0, φ = π, and

S  = 

0
α

β

0

α
0

0

-β

β

0

0
α

0

-β

α
0

Power supplied to port 1 is coupled to port 3 with a coupling factor |S13|2 = β2. The coupling factor
is the fraction of the input power which is coupled to the output port:
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Coupling (dB) = C = 10 log (P1/P3) = -20 log β 
the remainder is delivered to port 2  |S12|2 = α2 = 1 - β2.

In an ideal coupler no power arrives at port 4 (the isolated port),and the isolation measures the
fraction of the incident power to the power at the isolated port:

Isolation (dB) = I = 10 log (P1/P4) = -20 log|S14|

The directivity is a measure of the coupled power to the power at the isolated port:

Directivity (dB) = D = 10 log (P3/P4) = 20 log(β/|S14|)

The isolation, directivity, and coupling are related by

I = D + C   (dB)

Ideally, both isolation and directivity are infinite.

Couplers are readily made in many different forms. In waveguide they are often found as single-
hole, multi-hole, and branch-line couplers. In stripline and microstrip they are often found as branch-
line and coupled-line configurations.

The operation of multihole waveguide couplers can be understood from the following diagram.

Apertures between the waveguide broad walls are spaced by λ/4, most of the power input at port 1
travels to port 2 but some power is coupled through the apertures. As the wave travels along the
through-guide it excites forward and backward waves at each aperture. If the reference phase at the
first hole is 0°, the phase of the incident wave at the second aperture is -90°. The forward waves are
in phase, but the backward waves are 180° out-of-phase and cancel, thus port 4 is isolated from port
1 and port 3 is coupled by a factor dependent on the dimensions and spacing of the apertures.
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Coupling through the apertures may be described by small-hole (or Bethe) coupling in terms of
electric and magnetic polarizabilities. Clearly the isolation and directivity are sensitive to frequency,
but the coupling is less sensitive.
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If we assume that the coupling is small and the incident wave is the same amplitude at each aperture,
then the amplitude of the forward and backward waves can be written

 = Ae-jβNd fn∑
n=0

N

B = A bne-2jβnd∑
n=0

N

where fn is the forward coupling coefficient of the nth aperture, and bn is the backward coupling
coefficient of the nth aperture. These coupling coefficients are proportional to the polarizabilities of
the apertures, and are functions of frequency.

The coupling and directivity are:

C = -20 log |F/A| = 20 log fn∑
n=0

N

D = 20 log |F/B| = 20 log

fn∑
n=0

N

bne-2jβnd∑
N
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A common component in network analyzers is the reflectometer, which uses a directional coupler to
separate samples of forward and reflected signals.

For a unit incident wave from the source, and a load reflection coefficient of Γ the "incident" port
will receive a signal of amplitude

Vi = β + 
β

 Γ ejθ

and the "reflected" port will receive

Vr = 
β

 + β Γ ejφ

where β is the (linear) coupling factor and d = β/|S14| the (linear) directivity, θ and φ unknown phase
delays through the coupler. The maximum and minimum values of F and R are then

Vr
Vi max

min

 = 
Γ  ± 1

d

1 -+ 
Γ
d

leading to an uncertainty of approximately ±(1 +| Γ|)/d. Thus it can be seen that good directivity is
required for accurate measurements, preferably d > 100 (D > 40 dB)
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Hybrids

Hybrids are 3 dB directional couplers with a phase difference between the output arms of either 90°
(quadrature hybrid) or 180°. Hybrids are also useful as signal combiners.

A typical 90° hybrid is the branch-line design shown here, although other types of couplers can be
used as quadrature hybrids.

The [S] matrix has the form

S  = -1
2

 

0
j

1
0

j
0
0
1

1
0

0
j

0
1
j
0

and power input at port 1 is evenly divided between ports 2 and 3, with a 90° phase shift between
these ports. Note the symmetrical properties of the devices, and the isolation between the output
ports.

The 180° hybrid has an [S] matrix of the form

S  = 
-j
2

 

0
1
1
0

1
0
0
-1

1
0
0
1

0
-1
1
0

and can also be operated so that the outputs are in phase. A signal input at port 1 will be evenly split
into two in-phase components at ports 2 and 3, port 4 is isolated. Applying the input signal to port 4
yields two equal components 180° out of phase at ports 3 and 2, and port 1 is isolated.
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Applying two input signals to ports 2 and 3 yields the sum of the signals at port 1, and the difference
at port 4. For this reason ports 1 and 4 are referred to as the sum and difference ports respectively. A
common type of 180° hybrid is the ring or rat-race hybrid shown. Waveguide magic-T junctions are
also 180° hybrids.

Ring hybrid

Waveguide magic-T
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Diode detectors

The DC voltage-current characteristic of a diode may be written:

I(v) = Is eαV - 1

where Is is the reverse saturation current, α  = 
qelectron

nkT
, and n is the ideality factor (close to unity),

such that α ≈ 1/25 mV-1.
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If V = V0 + v, where v is a small AC voltage and v<<V0, then a Taylor series expansion about V0
may be written:

(V) = I0 + v dI
dV V0

 + 1
2

v2 d2I
dV2

V0

 + ...

where I0 = I(V0) is the DC bias current. The first derivative is:

dI
dV V0

 = αIseαV0 = α I0 + Is  = Gd = 1
Rj

Rj is the diode junction resistance and Gd the dynamic conductance of the diode. The second
derivative is:

d2I
dV2

V0

 = dGd
dV V0

 = α2IseαV0 = α2 I0 + Is  = αGd = Gd
'

The expansion in I(V) may be written

 
I(V) = I0 + i = I0 + vGd +

v2

2
Gd

' + ...

If the diode voltage consists of a DC bias and a small RF voltage

  V = V0 + v0cos ω0t

then taking the first three terms of the expansion in I

I(V) = I0 + v0Gdcos ω0t + 
v0

2

2
Gd

'  cos2 ω0t

using 2cos2x = cos2x + 1 we get

(V) = I0 + 
v0

2

4
Gd

'  + v0Gdcos ω0t + 
v0

2

4
Gd

'  cos 2ω0t 

I0 is the DC bias current, and 

 v0
2

4
Gd

'

 is the DC rectified current. Note that the output also contains
AC signals at the original frequency and higher harmonics. These may be filtered out with a low-
pass filter.

When used as a detector, the nonlinearity of the diode is used to demodulate and RF carrier. The
diode voltage can be written as:

t = v0 1 + m cos ωmt cos ω0t 
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where m is the modulation index, ωm is the modulation frequency and ωm << ω0. The diode current
is then:

i(t) = v0Gd 1 + m cos ωmt cos ω0t + 
v0

2

2
Gd

' 1 + m cos ωmt 2cos2 ω0t

i(t) = v0Gd cos ω0t + m
2

sin ω0+ωm t + m
2

sin ω0-ωm t

+ v0
2Gd

'

1 + m
2

2
 + 2m cos ωmt + m

2

2
 cos 2ωmt + cos 2ωmt

+ m sin 2ω0+ωm t + m sin 2ω0-ωm t + m
2

2
 cos 2ω0t

+ m
2

4
 sin 2 ω0+ωm t + m

2

4
 sin 2 ω0-ωm t

The output current terms contain components which are linear in diode voltage, occurring at
frequencies ω0 and ω0 ± ωm, and components at other frequencies including the modulation
frequency ωm which are proportional to the square of the input signal. This square-law region is the
usual operating condition for detector diodes.

Mixers

A mixer uses the non-linearity of a diode (or diodes) to generate output at the sum and difference
frequencies of two input signals. In heterodyne receiver applications the mixer translates the
incoming RF signal to a lower intermediate frequency, where gain can be implemented with a low-
noise amplifier before detection occurs. This scheme improves receiver sensitivity and noise
characteristics compared to the direct detection with a diode. A mixer may also be used to offset a
signal, for example in a transmitter.

The desired mixer output  signals are the sum and difference frequency terms of the diodes
(generally one term is required, the other is filtered out)

Vout ≈ k VsignalVLO[cos(ωLO - ωsignal)t - cos(ωLO + ωsignal)t]
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Mixer design involves the matching of the three ports, which is complicated by having to work over
several frequencies and their harmonics. An important figure of merit for a mixer is the conversion
loss, Lc:

Lc = 10 log 
available RF input power

IF output power
  (dB)

Lc is generally between 4 and 7 dB. Other important characteristics include isolation between the
ports, input power levels, and harmonic distortion.

The simplest mixer is the single-ended mixer, which uses one diode and provides reasonable
performance:

A single-balanced mixer improves input SWR and isolation between RF and LO:

A commonly used design is the double-balanced mixer, which suppresses even harmonics of the LO
and RF signals, leading to a very low conversion loss. It has excellent isolation but the input SWR is
poor.
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Beam Signals

General Approach

Consider a beam pickup modeled as a simple circuit

Z-i pb

a)

Z p,le
ftleft-iZ p,ri
ght

-i righ
t

righ
t

-i -

b)

=

The response of the circuit to a current I is the convolution of the
current with impulse response of the circuit.

   
V(t) = dt 'i(t ')Wp(t –t ')

– ∞

∞

In the frequency domain, the convolution becomes a product

   V(ω)= i (ω)Z p(ω)

Strategy: derive the beam signal in time and frequency domain and
either convolve or multiply with PU response.
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Single Particle Current

Consider a point particle going around a storage with revolution period T0 and rotation
frequency f0=1/T0. The current at a fixed point in the ring is given by

  
i(t)= e δ(t–nT0)Σn = –∞

n=+∞
=e ω0 ejnω0tΣn

= ef0+2ef0 cos(nω0t)Σ
∞

The FT of this given by
  I(ω)=e ω0 δ(ω–kω0)Σ

k

The spectrum is a comb with signal only at the rotation harmonics

543210

Time/T0

2

1

0

Cu
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nt

543210

Frequency/f0

(Negative frequency components can be folded onto positive frequency. AC components
are 2X DC component.)

Allow the particle to make synchrotron oscillations with angular frequency ωs of
amplitude (in time) of τs

  i(t)=e δ(t–nT0+τscos(ωst))Σn
The FT of this signal is given by

  I(ω)=e ω0 e–jnω0(t+τscosωst)Σn
=e ω0 j–mJm(ωτs)Σm δ(ω+mωs–kω0)Σ

k

where the relation
  ejxcosθ= jmJm(x)ejmθΣm

has been used.
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The comb spectrum has added FM sidebands which are contained within Bessel function
envelopes.
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Rotation harmonics follow J0, first order sidebands follow J1, etc.
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Note that the rotation harmonics disappear at the zeros of J0(ωτ).
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Single Particle Dipole Signal

The dipole signal at a fixed point is the d(t)=x(t)*i(t)

For an offset X0 and betatron oscillation amplitude xβ, the dipole signal is (no synch
oscillations)

  d(t)=e(X0+xβ cos(ωβt)) δ(t–nT0)Σn
where ωβ=Qβω0 is the betatron angular frequency.

The frequency spectrum is given by
  D(ω)=e ω0X0 δ(ω–kω0)Σ

k
+e ω0xβ δ(ω–(ωβ+kω0))Σ

k

The result is a comb spectrum at rotation harmonics with betatron sidebands. (Negative
frequencies fold over to become lower sidebands in this form.)

D
(ω

)

876543210-1-2-3-4-5-6-7-8

Frequency/f0

D
(ω

)

876543210

Frequency/f0

The integer part Qβ of cannot be determined from this measurement.
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Allow the particle to also make synchrotron oscillations
  

d(t)=e(X0+xβcos(ωβt)+ηδsin(ωst)) δ(t–nT0+τscos(ωst))Σn = –∞

n=+∞

where the additional AM comes from dispersion (η) at the measurement point and PM
from the longitudinal oscillations.

The contribution to the frequency spectrum of this signal is similar to the current signal
and is

  Dcoe(ω)=e ω0ηδ j–mJm(ωτs)Σm δ(ω+mωs–kω0)Σ
k

The contribution from the energy oscillations is given by
  Dδ(ω)=e ω0X0 j–mJm((ω–ωs)τs)Σm δ(ω+mωs–(k+1)ω0)Σ

k

– j–mJm((ω+ωs)τs)Σm δ(ω+mωs–(k–1)ω0)Σ
k

The spectrum becomes a combination of AM and PM sidebands. These signals are visible
at much lower frequency compared to PM signals.
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Chromaticity complicates the signal even further.   The betatron tune is given by
  Qβ=Qβ0(1+ξδ)

where the chromaticity is defined as
  

ξ=dQ/Q
dE/E

The rate of change of the betatron phase is given by
  dψβ

dt =Qβ0(1+ξδ)ω0(1–τ)≈ωβ0(1+τ)+ωξτ

(
  δ(t)= 1

α τ(t)  and   ωξ≡ωβ0ξ/α is called the chromatic frequency.)

The instantaneous betatron phase is given by
  ψβ=ωβ0t+(ωξ–ωβ0)τscos(ωst)

The dipole signal is given by (ignoring c.o.e. and dispersion)
  d(t)=exβcos(ψβ) δ(t–nT0+τscos(ωst))Σn

The FT of this signal is
  Dξ(ω)=e ω0xβ j–mJm((ω–ωβ+ωξ)τs)Σm δ(ω–(kω0+ωβ–mωs))Σ

k

This gives the betatron sidebands synchrotron sidebands follwing a Bessel function envelope.
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Multibunch Signals

For the case of multiple bunches in a storage ring, the current at a given point is just the
single particle current summed over many bunches

  
i(t)= e Σ

m = 1

m=N
δ(t–nT0–Ti)Σn =e Σ

m = 1

m=N
ejnω0tejnω0TmΣn

where Tm is the arrival time of bunch m.

For the case of a symmetric fill pattern (equal bunch charges with equal spacing), the
signal is a periodic delta function with a repetition frequency of the bunch rate. All of the
signal goes into the bunch harmonics.

543210
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The signal is identical to the single bunch except the repetition period is T0/Nbunch and
thus the spacing of the comb spectrum is Nbunchf0. All intermediate rotation harmonics
disappear. For every bucket filled, this implies that the first current harmonic appears at
the RF frequency and other harmonics at multiples of the RF frequency.
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For asymmetric fill patterns, (i.e. unequal bunch charges and/or unequal spacing), the
signal leaks into the rotation harmonics between bunch harmonics.

Example:

Asymmetric fill pattern at ADONE. The upper plot shows the time domain signal of the
fill pattern of 18 bunches. The lower plot is the frequency spectrum which shows
intermediate rotation harmonics reflecting the time domain bunch pattern. (Courtesy of
M. Serio.)
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Beam Induced Signals

Given a particular fill pattern or bunch spectrum, how do we calculate the signal induced
in a RF cavity or a pickup? If the cavity or pickup represent a beam impedance Z||(w),
(with a corresponding impulse response W(t)), the total signal out is a convolution of the
input with the response. In the frequency domain, this is just a multiplication of the beam
spectrum with the impedance.

Frequency

impedance

beam spectrum

The beam induced voltage is given by
  V(ω)=I(ω)Z||(ω)

or in the time domain
  V(t)= 1

2π I(nω0)Z||(nω0)ejnω0tΣ
n = 0

∞

The power dissipated in the impedance is
  

P= 1
2π

2
I(nω0) 2Z||(nω0)Σ

0

∞

This approach can be applied to any impedance: cavity fundamental or HOM, pickup,
etc.
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Coupled Bunch Oscillations

Wakefields which last from bunch to bunch can couple the oscillations of the the
bunches. Under certain conditions, the coupled oscillation can resonate with the cavity
mode and grow exponentially and destroy the beam quality (or even the beam!) Coupled
bunch (CB) oscillations also have distinct signals in the frequency domain which can be
useful for diagnosis.

RF cavity

A coherent coupled bunch oscillation created by coupled
through and RF cavity.

For the case of a symmetric bunch pattern, the normal modes of oscillation can be
described by the relative phase of oscillation of the individual bunches. For N bunches,
the relative phase of consecutive bunches in mode l is given by

  ∆φ=2π
N l

For example, the case of 3 bunches is shown below. The figure illustrates a snapshot
picture of the relative phase of the three bunches for each normal mode.
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The signal observed at a single point in the ring for each bunch is shown below. Although
each bunch oscillates at the synchrotron frequency, the frequency of the mode is much

higher.
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The signal for the coupled bunch oscillations in the frequency domain appears as
sidebands of rotation harmonics as shown below.

 
Below is some raw spectra of a BPM sum signal from the ALS showing coupled bunch
oscillations. The measurement was made with 328 bunches (all RF buckets) filled as
equally as possible. The number of rotation harmonics from the RF frequency is given in
each graph. The upper graph was measured at 20 mA and the lower at 95 mA.
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The relatively small signals at the intermediate rotation harmonics come from a small
variation in the individual bunch charges. The amplitude of each CB mode is found from
the ratio of the sideband to the bunch harmonic and not the intermediate rotation
harmonics.



111

Single Bunch Spectra

So far the bunch has been treated as a point particle. Real bunches have a longitudinal
distribution of charge, ρ(t). The frequency spectrum of a stored bunch is given by the
convolution of the bunch distribution with the signal from a point particle. This gives the
frequency spectrum as the product of the FTs of the distribution and and the point particle
signal.

  I(ω)=e ω0ρ(ω) δ(ω–kω0)Σ
k

|
ρ(

ω
) |

2

6543210

Frequency (1/σ)

 square pulse
 Gaussian pulse

Below are some examples of broadband measurements on the ALS.  The actual spectra is
not Gaussian because of the frequency response of the button BPM used. The bunch has
lengthened significantly at 55 mA shown by a narrowing of the frequency spectrum.
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Single Bunch Oscillations

Longitudinal

So far the bunch has been treated as either a point particle or a rigid distribution of
charge. However, short range wakefields generated by bunches with alot of charge can
have a significant effect on the stability of motion within the bunch. The standard
approach is to describe the intrabunch motion in terms of normal modes. Shown below is
a representation of the first three normal modes. The upper plot shows the relative phase
space distribution and the lower shows the corresponding line density.

Representation of first three longitudinal bunch modes. a)
Phase space picture. b) Linear charge density. c) Deviation of
linear charge density from stationary charge density.

From the symmetry of the phase space distribution, it can be seen that each mode appears
to oscillate in time with a frequency of mfs and appear as upper and lower sidebands of
rotation harmonics.
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Frequency Spectra of Bunch Motion

From the difference signal seen in part c) of the previous figure, the frequency spectrum
of the signal from each mode peaks at ~1/wavelength of the signal, given by
fpeak=(m+1)/2τl, where τl is the bunch length. The signal extends over a bandwidth of
2π/τl .

For a Gaussian bunch, small perturbations to the distribution have been shown to be
described by a series of Hermitian eigenmodes shown below.
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Envelope of the frequency spectrum of first three longitudinal
bunch modes (including the stationary distribution) for a
Gaussian bunch of rms length 1 cm. The mode spectra are
superimposed over an arbitrary broadband impedance to
illustrate the different overlap.
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Head Tail Oscillations

The transverse motion of the bunch is bit more complicated than the longitudinal motion
because the longitudinal position within the bunch can influence the transverse motion.

Consider a bunch of two particles.

12
Over the first half the synchrotron period, the head drives the tail. During the second half,
the particles switch places and the former tail drives the former head. In this sense the
synchrotron oscillations provide a natural damping mechanism.

For real bunches, the motion is broken down in normal modes as shown below.

As in the longitudinal case, the higher modes of motion occur at increasingly higher
frequencies.

The situation is more complex with presence of chromaticity (dependence of the betatron
tune on energy.)

\
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Schottky Signals

Coasting Beam

A coasting beam is one in which no RF acceleration is applied. It usually has no RF
structure imposed on the beam and is somewhat uniformly spread around the ring.

For a perfectly uniform beam of N particles , the current signal would be a comb spaced
by Nf0 because the phase of the signals from individual particles don't add coherently at
intermediate rotation harmonics. For large N, the frequency of the first harmonic would
be too large to observe with any reasonable detector and the only signal measureable is
the DC current (assuming you have a DC current monitor!)

However, real coasting beams are not perfectly uniform. The relative phases of the
signals are randomly distributed. Consider the signals of individual particles as steps in a
random walk. The rms amplitude of the signal will be (on average) proportional to

 N .
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The pickup current from a coasting beam shows a DC component and an AC component
from the random  fluctuations in the current. (From D. Mohl, CERN 84-15)

The frequency spectrum of the signal is also strongly dependent on the energy spread of
the beam because of the energy dependence of the rotation frequency on the energy.

Stochastic cooling systems are simply feedback systems which try to reduce the random
fluctuations of the beam by slightly reorganizing the distribution of particles.
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Bunched Beam

The Schottky signals of a bunched beam are very similar to those of a coasting beam.
However, it is much more difficult in practice to observe the signals because of the large
coherent signal already present on the beam from the bunching. The presence of the
coherent signal requires electronics with a large dynamic range while retaining low S/N.

Bunched beam Schottky spectrum taken at Fermilab using a
transverse cavity detector. (Courtesy D. Goldberg)
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Beam Transfer Functions

All of the beam signals we've mentioned so far are observed with a passive detector.
Another important class of beam signals are observed via a beam transfer function.

The idea is to drive beam oscillations and measure the amplitude and phase response.
This setup is typically used for betatron tune measurements on a spectrum analyzer with a
tracking generator. The information in a BTF can also be measured by pinging the beam
(i.e. impulse response=transfer function.)

input 
coupler

 phase or 
amplitude
error

probe

phase 
shifter

or
amplitude 
modulator

+
-

G

500 MHz 
RF power HP Frequency 

Synthesizer

LeCroy 
Transient
Digitizer

or 
HP35660A

feedback loop

RF cavity

pulse processing

Setup for a BTF measurement using phase modulation of the
RF cavity to drive longitudinal oscillations.

BTF measurements are useful for
•sensitive tune measurements
•beam impedance/instability measurements
•bunch length measurements
•FB system characterization
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Examples

Longitudinal BTF measured at CESR at low bunch current. The
dashed curve is the calculated response for a bunch length of
2.4 cm.

Longitudinal impulse response of a single bunch measured at
CESR. The FT transform of this signal is equivalent to the BTF
shown above.
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More Examples
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BTF measurement of the longitudinal coupled bunch mode
showing the effect of Robinson damping.



122

RF Cavities

Introduction:

RF cavities are useful in accelerators for interacting with beams of
particles in order to supply energy for acceleration, extract
information (energy) in the form of a pick-up or modulate the energy
of particles as a kicker. These interactions are generally characterized
by coupling impedances in the longitudinal and transverse planes.

Simple equivalent circuit, transmission-line analogy:

The generalized transmission-line formulation shown in figure 1 describes
any guided transmission medium in terms of a capacitance and inductance per
unit length with a series resistance and shunt admittance to account for losses,

V(x) C'dx G'dx

I(x) I(x)+dI(x)/d(x).dx

V(x)+dV(x)/dx.dx

L'dxR'dx

Figure 1: General transmission-line element

Waves in this medium have the general solution:

(x,t) = V1e-αxei(ωt-kx) + V2eαxei(ωt+kx)

which is a superposition of forward and backward traveling waves of
frequency ω with attenuation α. Phase velocity, vp = ω/k, group velocity, vg =
∂ω/∂k and wavelength λ=2π/k.

Similarly for current:

(x,t) = V1
Zo

e-αxei(ωt-kx) - V 2
Zo

eαxei(ωt+kx)

where Zo is the characteristic impedance of the line:

Zo = V1
I1

 = -V 2
I2

 = R'+iωL'
G'+iωC'

For the lossless case G' = R' = 0
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Zo = L'
C'

 , α = 0, k = ω L'C', λ  = 2π
ω L'C'

,  vp = vg = 1
L'C'

and
V(x,t) = V1ei(ωt-kx) + V2ei(ωt+kx)

I(x,t) = V1
Zo

ei(ωt-kx) - V 2
Zo

ei(ωt+kx)

Traveling wave on a transmission line
Field pattern moves in the direction of propagation, current in phase with

voltage.

- -- -- + + ++ +

+ + ++ + - -- --

E

H

V

I
propagation

Reflection from a short circuit:
Superposition of forward and reflected waves gives pure standing wave.

Field pattern is stationary with time varying amplitude. Current and voltage are
out of phase by 90° (π/2 rad.)

- -- -- + + ++ +

+ + ++ + - -- --

E

H

I

I

I

short

V

Standing wave between two shorts:
Resonant line between two short circuits is a pure standing wave with an

integer number of half-wavelengths.
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+ + ++ +

- -- --

E
HII

I
V

- --- -

shorted line standing wave surface currents
Shorted line can be represented by a lumped-element equivalent circuit:

C

Rseries

L

equivalent circuit series circuit parallel circuit

C LR

(R=shunt impedance)

Properties of parallel resonant circuit and real cavity:

C R L E
H

shunt

parallel resonant circuit cavity

Zin

The input impedance of the equivalent circuit can be expressed as:

in = (1
R

  + 1
jωL

 +jωC)
-1

= R

1+jQ( ω
ωo

 - ωo

ω
)
  ≈ R

1+jQ2(δω
ωo

)

where ωo= 1
LC

  and Q=ωoRC or Q= R
ωoL

 (see homework problem #1).

For a cavity the shunt impedance , R, is defined in terms of the voltage
produced in the cavity for a given power dissipation, R=V2/2P, where the
voltage is considered as the integral of the electric field along the flight path of a
particle, V=∫E.dl. N.b.: In some physics texts the shunt impedance is defined as
R=V2/P and may or may not include the transit-time factor.

The quality factor Q of the cavity or equivalent circuit is a measure of the
sharpness of the resonance and also of the enhancement of the voltage and
current compared to a simple traveling wave. The Q is defined as the ratio
between the stored energy and the power dissipation per radian or Q=ωU/P

The ratio R/Q is a figure of merit for the shape of the cavity and is
independent of the material and it can be shown also that

 = L
C

   = 1
ωC = ωL
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which gives a clue as to how to optimize the cavity shape once the field
distributions are known (see section on “real cavities”).

If the time taken for a particle to cross the cavity is a significant fraction of
the RF period then the effective voltage seen or induced by the particle is
reduced because of the cos(ωt) time dependence of the fields. The factor by
which it is reduced is called the transit-time factor, T, and is defined as the ratio
of the energy actually received to that which would be received if the field were
constant at the maximum value. The longitudinal beam impedance Z||
(sometimes R||) is the product of the shunt impedance and the square of the
transit-time factor,

Z|| = RT2

(note: this is different from the impedance of the cavity as a pick-up which is
RT2/4).
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Magnitude and phase of parallel circuit and cavity:

C R L E
H

shunt

parallel resonant circuit cavity

Zin

The resonant nature of the circuit is clearly seen by looking at the
magnitude and phase of the impedance as a function of frequency.

Note that at resonance the impedance is purely resistive and equal to the
shunt impedance. Below resonance the impedance is inductive and above
resonance it is capacitive. In the cavity there will be other modes with higher
resonant frequencies and the impedance will become inductive, resistive and
capacitive again for each in turn as the frequency increases.

"half-power" (-3.01dB)

phase

mag. squared

mag.
2δω

Transmission (S21) measurement:
The impedance response can be measured by the transmission between

two probes coupled to the cavity. If the probes are weakly coupled then the Q is
not changed significantly, otherwise the coupling factor of the probes must be
measured and taken into account.

The Q can be measured from the resonance curve by taking the
bandwidth at the half-power (1/√2 voltage, or -3.01dB) points.

Q = ωo

2δω
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Coupling to matched source/load:
To supply energy to the cavity from an external source or extract signal

power induced by the beam requires a means of coupling the cavity fields to an
external circuit. This can be represented in the equivalent circuit by an idealized
transformer of turns ratio 1:n linking the cavity voltage to a transmission line
which is matched to an ideal current source representing the generator.

Ig Zo

1 : n

C R L

      ideal 
transformer

 matched 
generator

This circuit can be used to transform the cavity impedance into the
transmission line to observe the load presented to the generator (fig a) or to
transform the generator current and source impedance into the cavity so that the
total cavity voltage from generator- and beam-induced currents can be calculated
(fig. b).

Ig Zo n2C
R
n2

L
n2

Ig Zon2

n
C R L Ib

fig. a cavity referred to input fig. b source referred to cavity

The coupling factor β is defined as the ratio of the power loss in the
external circuit to that in the cavity. A loaded Q , QL, can be defined as the ratio
of the stored energy to the total loss per radian, and an external Q, Qext, can be
defined as the ratio of the stored energy to the loss in the external circuit per
radian. It can thus be shown that:

β = 
power loss in ext. cct
power loss in cavity

 = 
Qo

Qext
 = R

n2Zo
   ,  1

QL
 = 1

Qo
 + 1

Qext
  , and Qo = (1+β)QL

When the cavity is matched to the source at resonance (without beam):

β = 1, QL = 
Qo

2
, and n2 = R

Z

Reflection coefficient looking toward cavity at resonance:
Away from resonance most of the power incident on the cavity is reflected

but close to resonance the response may come closer to or go through a matched
condition, depending on the coupling. At resonance the resistive impedance R is
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transformed in to the external circuit so the reflection coefficent is simple to
calculate:

 

Ig Zo R
n2

cavity impedance at resonance referred to input

Reflection coefficent Γ = 

R
n2

 - Zo

R
n2

 + Zo

 = 
β - 1

β + 1

while VSWR = 
1+|Γ|

1-|Γ|

so 0<β<1 (under-coupled) VSWR = 1/β
 β=1(matched) VSWR = 1
 β>1(over-coupled) VSWR = β

Measurement of cavity properties from S11:
Provided the losses in the coupler can be neglected*, the coupling factor β,

and the loaded and unloaded Q’s can be calculated from an accurate
measurement of S11 looking towards the cavity. As described above, the
coupling factor can be determined from the reflection coefficient at resonance. If
the coupling can be adjusted it is often a simple matter to determine whether the
system is under- or over- coupled. If the VSWR dips towards unity through the
range of adjustment but a match is never achieved then the system is
undercoupled (and βmax = 1/VSWRmin). If the VSWR goes to 1 then rises to a
local maximum the system is overcoupled (and βmax = local max. VSWR). With
the phase information available on the network analyzer the complex impedance
can be plotted on a Smith chart and it is easily determined whether the system is
under- or over-coupled. Once the coupling factor is known the value of S11 or the
VSWR at the loaded or unloaded half-power points can be calculated, or these
points can be found on the Smith chart (once the electrical delay has been
adjusted to refer the impedance to the detuned-short position)

For the unloaded half-power points (Qo):

S11 = 5So
2-2So+1

So
2-2So+5

VSWR = 
2+β2

+ 4+β4

2β

                                                  
* the coupler loss and self-inductance are not represented in this simple equivalent circuit
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For the loaded half-power points (QL):

S11 = So+1
2

SWR = 
1+β+β2

+(1+β) 1+β2

β

half-power
points

VSWR close to resonance
   

Identification of the half-power 
points from the Smith chart. 
Qo locus is given by X=R; QL by
X=R+1, Qext by X=1

"Pillbox" cavity modes
The “pillbox” is a simple closed shape for which analytical solutions can

be derived for the field and current distributions of the resonant modes. Such a
shape could in fact be used as an accelerating structure, however more efficient
shapes are usually used in practice. Study of the modes of the pillbox is
instructive however and provides much of the nomenclature that is used to
describe modes in other axis-symetric structures.

l

r

φ

z

pillbox cavity
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As presented above in the transmission-line analogy, cavity modes can be
thought of as resonances between two short circuit planes in a waveguide. In the
case of the pillbox this is a length of circular waveguide guide with a short-circuit
boundary condition at each end, so the solutions are standing-waves of the TE
and TM circular waveguide modes with an integer number of half-wavelengths
between the end-plates. The boundary conditions also allow for TM modes with
zero variation in the z axis, which are of particular interest for accelerator
cavities. The waveguide modes (TE/Mmn) are denoted by two subscripts, the
first is the number of full periods in φ and the second is the number of radial
zeros in the field. For cavity modes a third subscript is added which is the
number of half-period variations in the z direction.

E

H E

H

TE11

TM01

First two modes in circular waveguide

E E

H
H

H

The following chart shows the cut-off frequencies for modes in circular
waveguide, normalized to that of the lowest mode (TE11).

fcTE11 = 0.293
a µε

  

λcTE11 = 3.41a  

kcTE11 = 1.841
a
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The figures below show plots of the E and H fields for the first thirty
modes [Lee et.al., IEEE Trans. MTT, vol. MTT-33, No. 3, March 1985, p 274].

Only those modes with a component of electric field in the direction of
motion of the particle can interact with the beam (Panofsky-Wenzel). For the
pillbox this means only the TM modes are of interest. The transverse variations
of the longitudinal field are solutions of Maxwell’s equations within a circular
boundary condition and are Bessel functions of the first kind.

z(r,φ) = EoJm(kmnr)cosmφ

where: Jm are the first order Bessel functions
kmn =xmn/r is the transverse wave number
xmn are the roots of the Bessel functions Jm

For modes with Ez(z) = constant (kz = 0), ω = ckmn

For modes with Ez(z) ∝  cos(kz.z)  ,where kz is the axial wave number:

o
2 = kmn

2  + kz
2  or  ωo = c kmn

2  + kz
2
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For TMmnz modes the fields are thus:

z(r,z,t,φ) = EoJm(xmn
a r)ejωtcos(mφ)cos(kzz)

Hφ(r,z,t,φ) = HoJm
' (xmn

a r)ejωtcos(mφ)cos(kzz)

r

Low-order Bessel functions of the first kind

Monopole modes (m=0):
Modes which have no azimuthal variation are labelled “monopole” modes

and TM modes of this type have longitudinal electric field on axis and thus can
interact strongly with the beam. The radial distribution of Ez follows Jo, where
the zeros satisfy the boundary condition that Ez = 0 at the conducting wall at
radius a. Similarly Hφ and Er (if present) follow J’o and are zero in the center and
have a finite value at the wall.
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1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-10 -5 0 5 1 0

Jo(x)

J'o(x)

x0 1 x0 2

For TMoni modes:
Ez = EoJo(konr)cos(kzz) where kon = xon/a and kz = iπ/length (i ≥ 0)
Hφ = HφoJo

' (konr)cos(kzz) xo1 = 2.405
Er = EroJo

' (konr)sin(kzz) xo2 = 5.520
xo3 = 8.654

E E
H

H

Er

H

Ez
Er

TM010 TM011

E

H

E

H E
H

TM020 TE011

Dipole modes (m=1):
Dipole modes have one full period of variation around the azimuth. For

TM modes this means there is no longitudinal field on axis and that the field
strength grows linearly with radius close to the center, with opposite sign either
side of the axis. This transverse gradient to the longitudinal field gives rise to a
transverse voltage kick which is proportional to the beam current and the beam
offset. This can be expressed through a transverse impedance Z⊥ :
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Z⊥ [Ωm-1] = j -Vx
Ibxo

where Ib(0)xo is the dipole moment of the beam. It can be shown that Z⊥  is
related to Z|| by

Z⊥ [Ωm-1] = 
Z||(r)

kr2

where Z||(r) is the longitudinal impedance evaluated at radius r

-0.4

-0.2

0.0

0.2

0.4

-10 -5 0 5 1 0

J1(x)

x1 1

x1 2

J'1(x)

J1(x) /x

For TM1ni modes:
Ez = EoJ1(k1nr)cos(φ)cos(kzz) where k1n = x1n/a and kz = iπ/length (i ≥ 0)
Hφ = HφoJ1

' (k1nr)cos(φ)cos(kzz) x11 = 3.383171

Hr = Hro
J1

'

r (k1nr)sin(φ)cos(kzz) x12 = 7.01559

x13 = 10.17347

E
H

E

H E
E

H

H
TM110 TE111
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Higher-order modes (m>1):
For modes with higher azimuthal order (m=2, quadrupole, m=3,

sextupole etc.), the fields close to the beam axis become progressively weaker as
the stored energy is concentrated towards the outer edge of the cavity. Modes
with even m have no sign reversal across the axis so do not drive coupled-bunch
instabilities. Modes with odd m may couple weakly to transverse motion of the
beam but are generally not problematic.

For quadrupole modes Ez goes as J2(k2nr)cos(2φ)cos(kzz) etc.

0.4

0.2

0.0

-0.2

-10 -5 0 5 1 0

J'2(x)

J2(x)

x2 1
x2 2

E

H
TM210

For sextupole modes Ez goes as J3(k3nr)cos(3φ)cos(kzz) etc.

-0.4

-0.2

0.0

0.2

0.4

-10 -5 0 5 1 0

J3(x)

J'3(x)

x3 1 x3 2

E

H

TM310
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Real cavities:
In practice the simple pillbox cavity shape can be improved upon to

maximize the shunt impedance for acceleration. The shape must also be
modified to allow passage of the beam and addition of one or more couplers

E

H

E

H

I

I

C

L

L

R

R

R

R

pillbox pillbox + beam pipes   distributed 
L,C, wall loss

For copper cavities it is desirable to maximize the shunt impedance to
make most efficient use of available power. From the equivalent circuit it is
known that R/Q= L/C  so it is generally good to maximize L and minimize C,
while keeping the optimum interaction length (max. T), and maximum Q. The
“nose-cone” or re-entrant cavity does this by increasing the volume occupied by
the magnetic field and the surface area carrying the current and decreasing the
surface area in the capacitive region (nose tips). The limiting factors to achievable
gradient are wall-power dissipation and E-field strength at the nose-tips.

For superconducting cavities the smooth shape is determined by the need
to avoid field emission from the surface. R/Q is low but Q is very high.

E

H

E

H

"nose-cone" copper cavity "bell-shaped" superconducting cavity

loop
(magnetic)
coupler

antenna
(electric)
coupler

coax feed

coax
feed
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Field measurement
Information about the field distribution and mode orientation can be

obtained by observing the coupling to E and H field components at various
places in the cavity. This can be done using E-field antennas or H-field loops or
by introducing perturbing objects of dielectric, ferrite or metal.

E H E H

antenna loop dielectric object metal object

ε

m
etal

Introduction of a dielectric object in a region of electric field produces a
negative shift in the resonant frequency while introducing a metal object into a
region of magnetic field causes a positive frequency shift. If both fields are
present when a metal object is inserted the resulting frequency shift will depend
on the relative strengths of the E and H fields.

Small objects pulled through the cavity on a string can be used to map the
field distributions of the modes and determine the beam impedances.

device under test

bead
pulley

kevlar
thread

counterw
eight

z-motor
z-table

block
and

tackle

lead screw

schematic of a motorized bead-puller apparatus

Perturbation measurement:
It has been shown (by Slater and others), that the change in resonant

frequency upon introducing an object into the cavity field is proportional to the
relative change in stored energy:
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∆ω
ω

      =      ∆UM - ∆UE
U

      =     

µH2 - εE2  dV
∆V

µH2 + εE2  dV
V

Ep Eo

   

p = 3Eo
εr+2

perturbation of a uniform E-field by a dielectric bead

For the case of a small non-conducting sphere, radius r, where the
unperturbed field may be considered uniform over a region larger than the bead,
it can be shown that:

∆ω
ω

 = ∆U
U

 = - πr3

U
εo

εr-1
εr+2

Eo
2 + µo

µr-1
µr+2

Ho
2

and since U=PQ/ω
∆ω
ω

 = ∆U
U

 = - ωπr3

PQ
εo

εr-1
εr+2

Eo
2 + µo

µr-1
µr+2

Ho
2

so to calculate the absolute fields the Q and the input power must be
known, however to get R/Q from the longitudinal field distribution these are not
required.

Cases of special interest:
For a dielectric bead (µr = 1) the expression reduces to:

∆ω
ω

 = - πr3

U
εo

εr-1
εr+2

Eo
2

For a metal bead (εr → ∞ , µr  → 0):
∆ω
ω

 = - πr3

U
εoEo

2 - µo

2
Ho

2

A metallic bead can be used to measure the electric field if the magnetic
field is known to be zero (e.g.: on axis of a monopole mode), and gives a larger
frequency shift than common dielectric materials such as Teflon (εr = 2.08) or
Alumina (εr = 9.3). Shaped beads such as needles or disks can be used to enhance
the perturbation and give directional selectivity. The enhancement or “form
factor” can be calculated for ellipsoids or calibrated in a known field.
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Calculation of R, R/Q:
By mapping the longitudinal distribution of Ez and integrating, the cavity

shunt impedance can be determined

RT2 = 
(VT)2

2P
 = 

∫Ez(z)ejωz
v dz

2

2P

where v is the velocity of the particles (usually ≈ c), while

E2 = - 
∆ωPQ εr+2

ω2πr3εo εr-1
so

T2 = - 
Q εr+2

ωπr3εo εr-1
.

∫ ∆ω
ω

(z)(cosωz
c  + jsinωz

c )dz
2

2

If the cavity is symmetric in z and t=0 at z=0 in the center,

RT2

Q
 = - 

εr+2

4π2fr3εo εr-1
. ∫ ∆f

f
(z)(cos2πfz

c )dz
2

Values of ∆f/f can be measured at discrete intervals and the function
∆f
f

(z) (cos2πfz
c )dz

can be tabulated, integrated numerically and multiplied by the constants
to obtain RT2/Q. If Q is measured at the same time then the beam impedance Z||
= RT2 can be calculated. This process is often automated, using a computer to
move a motorized bead positioning apparatus, take frequency data from a
network analyzer and calculate the integrals. For modes with weak fields where
the frequency perturbation may be hard to measure it may be advantageous to
measure the phase shift with the source fixed at the unperturbed resonant
frequency. This is a more sensitive measurement and the phase data can be used
directly to calculate RT2, eliminating the need to measure the Q.
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Pickups and kickers

A charged particle beam generates electromagnetic fields which in turn
interact with the beam's surroundings. With suitably designed sensing
electrodes, these fields can provide information on various properties of the
beam. Such electrodes are generally known as pickups.

Similarly, charged particle beams respond to the presence of externally
imposed electromagnetic fields. Devices used to generate such fields are
generally known as kickers.

We may represent the pickup or kicker schematically:

Longitudinal kicker Longitudinal pickup

Transverse kicker Transverse pickup
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The wall current, or image current, generated by the beam is found from
Ampere's law applied to the TEM-like fields of the beam:

or in differential form

Imagine a highly-relativistic beam at the center of a circular beampipe of
radius b, and the fields generated by the beam are TEM-like.

The second term on the right of the Maxwell equations is zero since the
electric field must be normal to the inside surface of the conductor and hence
perpendicular to the vector of the plane we take the surface integral over, dS.
Thus,

The image current must cancel the surface tangential magnetic field, the
image current density is:

For parallel plates separated in the y-direction by b,
and with a centered beam, we find the image current density

Thus the image currents in a vacuum chamber with height much less than
width is concentrated near the beam axis, above and below the beam.

H• dl = J• dS
S

 + ∂ 
∂t

 D• dS
S

∇  ✕  H = J + ∂D
∂t

Er = q
2πε r

 δ z-ct Bφ = q
2πε cr

 δ z-ct

∇  ✕  H = Jbeam

E = -  c z ✕  B

Jimage = n ✕  Hsurface

dI
dx

 = I0

2b
 1
cosh πx
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Pickup response functions

A prime (') symbol is used to indicate excitation in the transverse mode.

Transfer impedance:
Relates the pickup output voltage to the beam current. For the longitudinal
case, Zp is given by

For transverse pickups, the transfer impedance relates the output voltage to
the beam dipole moment. For a beam displacement of ∆x, the relation is

Kicker response functions

Kicker constant:
Relates the change in beam voltage to the kicker input voltage Vk:

For transverse kickers, we need the transverse equivalent of the beam
voltage. In the longitudinal case, we have the change in beam energy ∆E

and by analogy for the transverse case

So the transverse kicker constant is:

Zp = 
Vp

I

Zp
'  = 

Vp
'

I  ∆x

Klong. = 
∆E
e

V
 = V

V

∆Elong. = βc ∆plong. = eVlong.

∆Etrans. = βc ∆ptrans. = eVltrans.
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Using the Panofsky-Wenzel theorem for the mode in which the device is
excited as a transverse kicker we find:

Shunt impedance

The shunt impedance is a very useful figure of merit, since it relates the
beam voltage to the input power:

The transverse shunt impedance:

Here we have explicitly incorporated the transit time factor T.

Ktrans. = 
∆ptrans. βc

e
V

 = Vtrans.

V

Ktrans. = - 1
jkb

 ∇ tKlong.
'

Rlong.T
2 = V2

Rtrans.T
2 = 

∆ptrans. βc
e

2
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Constant velocity approximations

using dt = dz/βc, then

then

Reciprocity

Lorentz reciprocity theorem
The Lorentz reciprocity theorem relates the performance of an electrode
structure as a pickup to it's performance as a kicker.

The theorem applies to a volume V bounded by a surface S, which encloses
the electrodes, feedthroughs, and field volume. We consider two distinct
modes of excitation of the device, as a kicker (subscript k) and as a pickup
(subscript b). We assume no energy sources within the volume, a signal
cable of characteristic impedance Zc, and wall fileds and currents related by
J = σ E.

F = dp

∆p = F
ta

tb

dt

∆E = ∆plong. βc

∆p βc = F
a

b

dz

∆plong. βc = Flong.

a

b

dz

∆E  = F
a

b

•dz = Flong.

a

b

dz
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Using phasor description of the complex fields and currents we have:

Beam-excited mode:
Jb comprises the beam current Ib plus any currents in the volume which are
induced by the beam current
Vb is the voltage at the cable output induced by the beam current

Kicker mode:
Jk comprises only those currents induced by the kicker voltage Vk

§ Fields and currents induced by any beam present in the kicker are
negligible compared the those produced by Vk

§ Any beam current present would be negligibly influenced by fields
induced by Vk

The LHS of the equation reduces to

Ek ✕  Hb - Eb ✕  Hk  • dS
S

 = Eb • Jk - Ek • Jb

V

 dV

Ek ✕  Hb - Eb ✕  Hk  • dS
S

 = Eb • Jk - Ek • Jb

V

 dV

Ek ✕  Hb - Eb ✕  Hk  • dS
S

 = 2 Vk Vb

Zc
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and the RHS:

then

The beam voltage

The energy change is often expressed as the beam voltage:

In phasor notation, Ez(z,t) = Ez(z) ejωz, and with t = z/v we have:

The exponential factor in the integrand results from expressing t in the time-
dependent phasor as a function of position along the path. Both E and V will
generally depend on the transverse coordinates. E will also generally depend
on the longitudinal coordinate but V cannot.

Eb • Jk - Ek • Jb

V

 dV = - Ek • Jb

V

 dV

Vb = - Zc

2Vk
 Ek • Jb

V

 dV

Vb = ∆U
q

 = E z,t  • dz
a, ta

b, tb

Vb = Ez ejkbz dz
a

b
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Panofsky-Wenzel theorem

If we differentiate the momentum kick experienced by a charge q with
respect to time, we obtain

∂∆p
∂t

 = q 
∂E
∂t

 dt + 
∂ v × B

∂t
 dt

ta

tb

∂∆p
∂t

 = q 
∂E
∂t

 dt + v × 
∂B
∂t

 dt +  B × 
∂v
∂t

 dt
ta

tb

For relativistic particles, of constant velocity

dz = v dt

we have

∂∆p
∂t

 = q 
∂E
∂t

 dt
ta

tb

 + dz × 
∂B
∂t

 dt
a

b

Using Maxwell’s equation

∂B
∂t

 = - ∇  × E

and the identity

dz × ∇  × E = ∇ dz • E  - dz • ∇ E = ∇ dz • E  - 
∂E
∂z

 dz

then we find

∂∆p
∂t

 = q 
∂E
∂t

 dt
ta

tb

 - ∇ dz • E  - 
∂E
∂z

 dz
a

b

∂∆p
∂t

 = q ∇ dz • E  + 2dE
a

b

The transverse components are

∂
∂t

 ∆p⊥  = q - ∇ ⊥ dz • E  + 2dE⊥
a

b
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and noting that

∆E = q dz • E
a

b

we find

∂
∂t

 ∆p⊥  = - ∇ ⊥ ∆E  + 2q E⊥ b  - E⊥ a

The bracketed term we choose to extend over the region that the entry
and exit fields E⊥ (a), E⊥ (b), are zero. Then for fields with sinusoidal time

variation we have the Panofsky-Wenzel theorem:

ω∆p⊥
q  = - 1q ∇ ⊥ ∆E  = - ∇ ⊥ V

This theorem tells us that the transverse kick can be described purely in
terms of the longitudinal electric field. There must be a longitudinal electric
field component in order to produce a transverse momentum change in a
particle traveling through a structure. The frequency dependence shows that
the higher the frequency at which the deflecting fields are encountered, the
less of a kick they impart.

Relations between pickup and kicker characteristics

Longitudinal:
Using our result from the Lorentz reciprocity theorem

in the longitudinal transfer impedance gives:

For a beam moving in the positive z-direction with velocity βc, the z-
dependence is e-jkz, and we write

Vb = - Zc

2Vk
 Ek • Jb

V

 dV

Zb = - Zc

2Vk Ib
 Ek • Jb

V

 dV

Ek • Jb

beam area

 dxdy = Ek • Ib e-jkz
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and

We can see that the integral differs from  the definition of the longitudinal
kicker constant only by the sense of direction in beam motion. This leads to
an important result for electrode systems that exhibit directional behavior
(such as striplines):

The direction in which the beam passes when the device operates as a
pickup must be opposite that which it does when the device acts as a kicker.

and

Zp = - Zc

2
 e-jkz

Vk
 Ek • dz

beam path

Zp = Zc Klong.
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Green's reciprocation theorem

Greens reciprocation theorem relates charges and fields in two different
modes of excitation. It describes a reciprocity relation for electrostatics
problems, but is also applicable to electromagnetic excitation.

Assume a set of n conductors under two distinct modes of excitation:

Mode 1: Electrodes have charges and are at potentials

Mode 2: Electrodes have charges and are at potentials

Qi
1 V1

V2Qi
2
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Qi
b Qb

Qb

Qi
b

Vk

k

Qi
1∑

n
 Vi

2 = Qi
2∑

n
 Vi

1 

The application is in calculating the coverage factor g which represents the
fraction of the image current an electrode intercepts.

For an array of n electrodes, connected to ground so that charges may flow,
what is the fraction of charge on electrode i  due to a charge at a
point P within the array?

§ With at P, ground all but the ih electrode. Assume the distribution

of the remains the same (pickup mode)

§ Place a voltage on the ih electrode, and ground the remaining

electrodes. Then the voltage at P is (kicker mode)

- Qi
b

Qb
 = V

k

Vi
k
 = gi
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Types of Pickups
Capacitive button pickups

Capacitive plates at the beampipe walls allow sampling of the beam-induced
image currents. Since the small button essentially behaves as a capacitance,
it cannot act as a matched load and has limited utility as a kicker.

The image charge on a plate of effective length l is

The charging current is

And the current flows through the series combination of C and R, resulting
in a voltage across R

q = - glIb

βc

Ic = ∂q
∂t

 = jωq
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Then we find the transfer impedance:

At high frequencies (ωRC >>1), this becomes

For an electrode of area A at distance a from the beam, we
can approximate gl by A/2πa, giving:

Beam position may be derived from the ratio of voltage generated on each of
four buttons located in the vacuum chamber.

V = - jωq R
1 + jωRC

 = jIbg ωl
βc

 R
1 + jωRC

Zp = 
Vp

Ib
 = jgl kb R

1 + jωRC

Zp →  gl
βcC

Zp →  A
2πa βcC
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The following example is for a button of radius 7.5mm, beampipe radius 4.4
cm, bunch charge 8x108 electrons, Gaussian bunch s 1 cm, bunch rate 238
MHz, 50 Ω coaxial output (PEP-II).

Stripline electrodes

A stripline electrode is a TEM mode transmission line with the ground plane
formed by the vacuum chamber wall. We generally match the impedance of
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the stripline to the connecting cable characteristic impedance in the mode of
operation (which will in general be a different characteristic impedance for
transverse operation than longitudinal).

Schematic of striplines in pickup mode

Sum mode Difference mode

When the beam reaches the upstream end of the electrode, it repels charges
into the output line and along the stripline. With the stripline matched into
the output line, a signal V is induced in the output line and the stripline

The signal propagates along the stripline at the speed of
light, and arrives at the downstream end at time l/c

V = 1gib t ZL
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later. Also at time l/c later, the beam arrives at the downstream gap and
induces negative pulses in the output line and stripline. The stripline pulse
then propagates in the upstream direction. The output in time domain at the
upstream end of a stripline is:

In the frequency domain, the output is

so that the transfer impedance is

The single-plate coverage factor g is transverse-position sensitive. If we sum
the output of the two plates, the resulting longitudinal signal is to first order
independent of transverse position

Vp = gIbZL 1 - e- jωlc  = gIbZLej π
2

 - k0 l  sink0l

Zp = g ZLej π
2

 - k0 l  sink0l
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In the transverse case

Zp
'  = Zl 

gtrans.  ej π
2

 - k0 l  sink0l
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Kicker behavior

In the gaps at the ends of the stripline, at the beampipe radius h/2, and if the
gap is short (T=1), then

Integrating along the stripline incorporating  the gaps, we find

We use Green's reciprocation theorem to get the beam voltage at the beam
location (y=0), using the coverage factor g:

Then

the kicker constant is

the transfer impedance is, (note that Zc = Zl here)

and the shunt impedance is:

Ez ejkz dz = Vk ejkz

z - ∆z
2

z + ∆z
2

Vb y=0  = g 0 V y=h/2

Vb h/2  = Vk 1 - e- j2kl  = 2Vk ej π
2

 - kl  sin kl

Vb y=0  = 2gVk ej π  - kl  sin kl

K = 2g ej π - kl  sin kl

K = Zl g ej π  - kl  sin kl

Rlong.T
2 = 2Zlg2 sin2 kl
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Transverse kicker behavior

Beam z = βct

Power P

Etrans. = g 2V ej ωt + kz

E  = c B

F t  = e Etrans. + βcBtrans.

Vtrans. = ∆ptrans.c
e

 = c
e

 F t  dt

- l
βc

0

 = c g 2V
h

 1 + β  ej 1 + β  ωtdt
- l

βc

0

F t  = e g 2V 1 + β  ej ωt + k βct

Vtrans. = c g 2V
h

 1
jω

 1 - e-j1 + β
β

 kl

Vtrans. = 2 g V  e-j1 + β
2β

 kl 2 sin 1 + β
2β

 kl

1 + β
2β

 kl = Θ
Vtrans. = 4 g V  e-jΘ sinΘ

Ktrans. = Vtrans.

Vinput
 = Vtrans.

2 R
Z

 V
 = 2 ZL

R
2 g 1

hk
 e-jΘ sinΘ

P = 
Vtrans.

2

2 R
 = 2 V2

2 Z
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Rtrans. = ZL Vtrans.
2
 = 2 ZL 2 g sin Θ 2
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