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Historical Overview



Perfect Conductivity

Unexpected result

Expectation was the opposite:  everything should become an isolator at 0T Æ

Kamerlingh Onnes and van der Waals in 
Leiden with the helium 'liquefactor' (1908) 



Perfect Conductivity 
Persistent current experiments on rings have measured
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Perfect conductivity is not superconductivity

Superconductivity is a phase transition

A perfect conductor has an infinite relaxation time L/R

Resistivity < 10-23 Ω.cm

Decay time > 105 years



Perfect Diamagnetism (Meissner & Ochsenfeld 1933)
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Penetration Depth in Thin Films

Very thin films

Very thick films



Critical Field (Type I)
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Superconductivity is destroyed by the application of a magnetic field

Type I or “soft” superconductors



Critical Field (Type II or “hard” superconductors)

Expulsion of the magnetic field is complete up to Hc1, and partial up to Hc2

Between Hc1 and Hc2 the field penetrates in the form if quantized vortices or 
fluxoids
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Thermodynamic Properties

Entropy Specific Heat

Energy Free Energy



Thermodynamic Properties

( ) 1

2

When  phase transition at  is of  order latent heat

At  transition is of  order  no latent heat
                                                          jump in specific heat

st
c c

nd
c

es

T T H H T

T T

C

< = fi

= fi

3

( ) 3 ( )

( )

( )

   electronic specific heat
  reasonable fit to experimental data

c en c

en

es

T C T

C T T

C T T

g
a

=

ª

∼



Thermodynamic Properties
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  superconducting state is more ordered than normal state

A better fit for the electron specific heat in superconducting state is
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Energy Difference Between Normal and 
Superconducting State
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The quadratic dependence of critical field on T is 
related to the cubic dependence of specific heat



Isotope Effect (Maxwell 1950)

The critical temperature and the critical field at 0K are dependent on 
the mass of the isotope
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Energy Gap (1950s)

At very low temperature the specific heat exhibits an exponential 
behavior

Electromagnetic absorption shows a threshold

Tunneling between 2 superconductors separated by a thin oxide film 
shows the presence of a gap
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Two Fundamental Lengths
• London penetration depth λ

– Distance over which magnetic fields decay in 
superconductors

• Pippard coherence length ξ
– Distance over which the superconducting state decays



Two Types of Superconductors

• London superconductors (Type II)
– λ>> ξ
– Impure metals
– Alloys
– Local electrodynamics

• Pippard superconductors (Type I)
– ξ >> λ
– Pure metals
– Nonlocal electrodynamics



Material Parameters for Some Superconductors



Phenomenological Models (1930s to 1950s)

Phenomenological model:
Purely descriptive
Everything behaves as though…..

A finite fraction of the electrons form some kind of condensate that 
behaves as a macroscopic system (similar to superfluidity)

At 0K, condensation is complete

At Tc the condensate disappears



Two Fluid Model – Gorter and Casimir
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Two Fluid Model – Gorter and Casimir
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Superconducting state:

Normal state:

Recall   difference in free energy between normal and 

superconducting state
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The Gorter-Casimir model is an “ad hoc” model (there is no physical basis for the 
assumed expression for the free energy) but provides a fairly accurate 
representation of experimental results



Model of F & H London (1935)

Proposed a 2-fluid model with a normal fluid and superfluid components

ns : density of the superfluid component of velocity vs
nn : density of the normal component of velocity vn
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Model of F & H London (1935)
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Model of F & H London (1935)
combine with 0 sB = Jm—¥
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The magnetic field, and the current, decay 
exponentially over a distance λ (a few 10s of nm)
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From Gorter and Casimir two-fluid model
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Model of F & H London (1935)



Model of F & H London (1935)
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Penetration Depth in Thin Films

Very thin films

Very thick films



Quantum Mechanical Basis for London Equation
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Pippard’s Extension of London’s Model
Observations:

-Penetration depth increased with reduced mean free path

- Hc and Tc did not change

- Need for a positive surface energy over 10-4 cm to 
explain existence of normal and superconducting phase in 
intermediate state

Non-local modification of London equation 
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London and Pippard Kernels
Apply Fourier transform to relationship between 

( ) ( ) ( ) ( ) ( ):
4

  and cJ r A r J k K k A k
p

= -

( ) ( )2

2

2

ln 1
Specular: Diffuse:eff eff

o

o

dk
K k k K k

dk
k

pl l
p

•

•
= =

+ È ˘
+Í ˙

Î ˚

Ú
Ú

Effective penetration depth 



London Electrodynamics

Linear London equations

together with Maxwell equations

describe the electrodynamics of superconductors at all T if:
– The superfluid density ns is spatially uniform
– The current density Js is small
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Ginzburg-Landau Theory

• Many important phenomena in superconductivity occur 
because ns is not uniform
– Interfaces between normal and superconductors
– Trapped flux
– Intermediate state

• London model does not provide an explanation for the 
surface energy (which can be positive or negative)

• GL is a generalization of the London model but it still 
retain the local approximation of the electrodynamics



Ginzburg-Landau Theory

• Ginzburg-Landau theory is a particular case of 
Landau’s theory of second order phase transition

• Formulated in 1950, before BCS

• Masterpiece of physical intuition

• Grounded in thermodynamics

• Even after BCS it still is very fruitful in analyzing the 
behavior of superconductors and is still one of the 
most widely used theory of superconductivity



Ginzburg-Landau Theory

• Theory of second order phase transition is based on 
an order parameter which is zero above the transition 
temperature and non-zero below

• For superconductors, GL use a complex order 
parameter Ψ(r) such that |Ψ(r)|2 represents the 
density of superelectrons

• The Ginzburg-Landau theory is valid close to Tc



Ginzburg-Landau Equation for Free Energy

• Assume that Ψ(r) is small and varies slowly in space

• Expand the free energy in powers of Ψ(r) and its 
derivative
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Field-Free Uniform Case

Near Tc we must have 

At the minimum
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Field-Free Uniform Case

At the minimum
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Field-Free Uniform Case

Identify the order parameter with the density of superelectrons
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Field-Free Nonuniform Case

Equation of motion in the absence of electromagnetic field
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Field-Free Nonuniform Case
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2 Fundamental Lengths

London penetration depth: length over which magnetic field decay

Coherence length: scale of spatial variation of the order parameter 
(superconducting electron density)
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Surface Energy
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Surface Energy
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Magnetization Curves



Intermediate State

Vortex lines in Pb.98In.02

At the center of each vortex is a 
normal region of flux h/2e



Critical Fields
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Field at which surface energy is 0
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Even though it is more energetically favorable for a type I superconductor to 
revert to the normal state at Hc, the surface energy is still positive up to a 
superheating field Hsh>Hc → metastable superheating region in which the 
material may remain superconducting for short times.



Superheating Field
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The exact nature of the rf critical 
field of superconductors is still 
an open question



Material Parameters for Some Superconductors



BCS

• What needed to be explained and what were the clues?

– Energy gap  (exponential dependence of specific heat) 

– Isotope effect (the lattice is involved)

– Meissner effect



Cooper Pairs

Assumption:  Phonon-mediated attraction between   
electron of equal and opposite momenta located 
within          of   Fermi surface

Moving electron distorts lattice and leaves behind a 
trail of positive charge that attracts another electron 
moving in opposite direction

Fermi ground state is unstable

Electron pairs can form bound 
states of lower energy

Bose condensation of overlapping
Cooper pairs into a coherent
Superconducting state

Dw=



Cooper Pairs
One electron moving through the lattice attracts the positive ions.

Because of their inertia the maximum displacement will take place

behind.



BCS

The size of the Cooper pairs is much larger than their spacing

They form a coherent state



BCS and BEC



BCS Theory
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BCS

• Hamiltonian

• Ground state wave function

  destroys an electron of momentum 
  creates an electron of momentum 

 number of electrons of momentum 
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BCS

• The BCS model is an extremely simplified model of reality
– The Coulomb interaction between single electrons is 

ignored
– Only the term representing the scattering of pairs is 

retained
– The interaction term is assumed to be constant over a 

thin layer at the Fermi surface and 0 everywhere else
– The Fermi surface is assumed to be spherical

• Nevertheless, the BCS results (which include only a very 
few adjustable parameters) are amazingly close to the real 
world



BCS
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BCS
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BCS Condensation Energy
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BCS Energy Gap
At finite temperature:

Implicit equation for the temperature dependence of the gap:
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BCS Excited States
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BCS Specific Heat
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Electrodynamics and Surface Impedance 
in BCS Model
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Penetration Depth
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Surface Resistance
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Surface Resistance



Surface Resistance



Surface Resistance
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