
ELECTRONIC DAMPING OF 
MICROPHONICS IN 

SUPERCONDUCTING CAVITIES

Subashini De Silva



Outline

Introduction – Microphonics

Electronic Damping

Amplitude and Phase feedback method

Extension with Frequency feedback method



Introduction – Microphonics

Superconducting cavities has a high susceptibility to external vibrations and 
electromagnetic radiation.

Microphonics – Is the result of external vibrations and pressure that cause a 
change in the cavity frequency.

Is a critical issue if the change in cavity frequency exceeds the bandwidth, 
which leads to a perturbation in amplitude and phase in the accelerating field.

Frequency changes can be only controlled by supplying rf power.

Measured microphonic noise levels ~ 10 Hz



Ponderomotive Effects

Ponderomotive effects : Change in cavity frequency caused by the
electromagnetic field – radiation pressure.

Superconducting cavity is considered as a mechanical system, with infinite 
number of mechanical modes of vibration.

Frequency shift Δωμ caused by mechanical mode μ of vibrations

Ωµ - Linear frequency for the mode µ
kµ - Lorentz coefficient for the mode µ
n(t) - Driving term for microphonics
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Transfer function representation of the field errors.

∆ωex – Change in cavity frequency

δυ – Amplitude error

δφ – Phase error

The transfer functions Ga and Gϕ are properties of the cavity and of the rf 
control system.

Final Requirement

J.R. Delayen, “Ponderomotive Instabilities and Microphonics – A Tutorial”



Electronic Damping of Microphonics

Reduction of  microphonics by modulation of the cavity field which induces 
the ponderomotive forces that counteract the effect of microphonic 
vibrations on the cavity frequency.

The model used is the superconducting accelerating cavity operated in Self 
Excited Loop (SEL) with phase and amplitude feedback.

SEL operates in the unlocked state where the loop frequency automatically 
tracks the resonator frequency.



Self Excited Loop

The loop will oscillate at the 
frequency

Amplitude feedback is provided by 
adding a signal in phase which is 
controlled by the amplitude error.

Phase feedback is provided by 
adding a signal in quadrature which 
is controlled by the phase difference 
between the resonator and an 
external reference frequency ωr.
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J. R. Delayen, “Phase and Amplitude Stabilization of Beam-Loaded 
Superconducting Resonators”, Proc. Linac 92, p. 371



To loop is operated at resonance 
(θl = 0) and in the low frequency 
side control (θf < 0), that gives a 
small amount of coupling 
between the phase and 
amplitude.

J. R. Delayen, “Phase and Amplitude Stabilization of Superconducting Resonators”, Ph.D. thesis, California
Institute of Technology, 1978.



Resonator Field

The differential equation for the resonator field

ib – beam current                                 Rsh – resonator shunt impedance
β – coupling coefficient                        τo – intrinsic decay time
Pinc – power driving the resonator
∆vg – additional in phase signal providing amplitude feedback
∆t – additional in quadrature signal providing phase feedback
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Steady state condition

Resonator field                                      V – real amplitude the resonator field
α – absolute phase

Neglect the changes of amplitude and frequency during one rf period

Initially consider that at the steady state 
The beam is off
The loop is unlocked

When the loop is unlocked and the beam is off the steady state amplitude is 
found from the above equations
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Steady state mode

When the beam is on and loop is locked to the frequency ωr the amount of 
steady state amplitude and phase feedbacks which are required to still 
maintain the amplitude Vo in the resonator are

Ratio of power absorbed by the beam to power dissipated in the cavity
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Deviations from Steady state mode

Loop equations linearized around the steady state
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J. R. Delayen, “Phase and Amplitude Stabilization of Beam-Loaded 
Superconducting Resonators”, Proc. Linac 92, p. 371



Transfer function representation of SEL

J. R. Delayen, “Phase and Amplitude Stabilization of Beam-Loaded 
Superconducting Resonators”, Proc. Linac 92, p. 371
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Residual errors

Consider n(t) to be a white noise stationary stochastic                     
process of Spectral Density A2.

Then the mean square values of fluctuations in                  
frequency due to microphonics, field amplitude and phase are,
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J.R. Delayen, “Ponderomotive Instabilities and Microphonics – A Tutorial”



Performance of Stabilization

The mean square errors <δv2> and <δϕ2>
Calculated with

No beam loading
Loop phase adjusted so the unlocked cavity operates on resonance (θl = 
0)
Small feedback angle (θf <<1)
Large proportional feedback gains (ka, kϕ >> 1)
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In the absence of feedback phase 
shift, microphonics do not contribute 
to an amplitude error.

But has a residual rms phase error.

Around θf = 0 the amplitude error is 
quadratic while the phase error is 
linear in θf .

This suggests that, if one is willing to 
accept a small amount of amplitude 
error, the phase error can be reduced 
by introducing a phase shift in the 
feedback signals(θf ≠ 0).
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J. R. Delayen, “Electronic Damping of Microphonics in Superconducting 
Cavities”, Proc. PAC 01, p. 1146



Residual errors as a function of driving frequency

A. Hofler, J.R. Delayen, “Simulation of Electronic Damping of 
Microphonic Vibrations in Superconducting Cavities”, Proc. PAC05



The effectiveness of microphonics damping reduces as the feedback gain is 
increased.
A more effective way to damp microphonics is to modulate the amplitude 
reference on purpose by an amount dependent on the instantaneous
frequency offset between the cavity and the master reference, and with the 
appropriate phase shift in order to act as a damping mechanism.
In the absence of beam loading, and with no feedback phase shift (θf = 0), 
the signal driving the resonator is

A modulation of the amplitude reference introduces an additional term in the 
signal driving the resonator

Damping by frequency feedback
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Transfer function diagram for Damping by 
frequency feedback

J. R. Delayen, “Electronic Damping of Microphonics in Superconducting 
Cavities”, Proc. PAC 01, p. 1146



Damping by frequency feedback

Thus δt is an appropriate signal to provide a modulation because of the 
amplitude reference:

Fω – Frequency feedback transfer function

When the phase feedback gain (kφ) is sufficiently high, the “in quadrature”
feedback signal δt is directly proportional to the instantaneous phase error 
which, is proportional to the instantaneous difference between cavity and 
reference frequency. 
For a effective damping mechanism, the frequency feedback needs to 
introduce a π/2 phase shift between the frequency error and the amplitude 
modulation. For this reason, a good choice for Fω is an integral-type 
feedback of the form:
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Residual errors

Phase error

Amplitude error
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A. Hofler, J.R. Delayen, “Simulation of Electronic Damping of 
Microphonic Vibrations in Superconducting Cavities”, Proc. PAC05



Summary

SEL stabilizes the rf fields in superconducting cavities when microphonics 
and ponderomotive effects are present.

This study gives the analytical models of electronic damping of microphonics  
in superconducting cavities with no beam loading. 

Simulations have demonstrated the effectiveness of damping by frequency 
feedback.

Future study involves the study of rf field stabilization with beam loading, for 
low velocity applications.
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