

Input Power Coupler Development

for Low-Beta Superconducting Cavities

Jon Wlodarczak

USPAS

MICHIGAN STATE UNIVERSITY

Annapolis, Maryland, June 2008

Overview

- Background
 - Introduction
 - Types
 - Windows
- Project motivation
 - Application
- Methodology
 - Design
 - Conditioning
 - Testing

Cornell 500 MHz storage ring SRF cavity

Introduction

- Necessary for (nearly) all cavities
 - Fundamental power couplers (FPCs) transfer RF power from the generation system to the cavity, and thus to the beam
 - HOM couplers remove energy from cavity
- Commercial couplers are quite expensive
 - High power
 - 805 MHz medium beta elliptical cavities were 10 kW CW and \$30,000 each.
- Failure is expensive
- Challenging design
 - Multi-disciplinary design
 - Trade-offs

Electrical Function

- Couple power from amplifiers to cavity
- Designed for CW or pulsed operation
- Impedance match to source

Mechanical Function

- Vacuum feed through
 - Separates cavity vacuum from atmosphere
 - Seals cavity from potential contamination
- Thermal isolation
 - Separates room temperature from cryogenics
 - Withstand repeated thermal cycles
 - Contraction rates

Coupler Types: Coaxial

- Transmission line
 - Coupling
 - Electrical
 - Probe
 - Magnetic
 - Loop
 - Impedance

$$Z_o = \frac{\eta_o}{2\pi} \ln \left(\frac{r_{oc}}{r_{ic}} \right)$$

• Ratio for 50Ω

$$- r_{oc} = 2.3 r_{ic}$$

Coupler Types: Waveguide

- Waveguide
 - High power
 - Large size
 - TE₀₁

$$f_c = \frac{\eta}{2b\sqrt{\mu\varepsilon}}$$

width ≈ 1.9 meters
 @ 80.5 MHz

Power Coupler Comparison

- Waveguide
 - Large
 - Simple
 - Larger heat load
 - Complex variability
 - High pumping speed
 - Fixed frequencies

- Coaxial
 - Compact
 - Complex
 - Small heat load
 - Less complex variability
 - Low pumping speed
 - All frequencies

Window Types

- Warm window
 - Outside module
 - Further from cavity
- Cold window
 - Inside module
 - Increase thermal stress
 - Vacuum on 2 sides
 - Seals cavity before module assembly

- Planar
 - Waveguide
- Coaxial
 - Disc
 - Conical
 - Cylindrical

Coaxial disc, planar and cylindrical windows

Potential Problems

- Barrier faults
 - Cracked windows
 - Mechanical
 - Thermal
 - Bad brazement
 - Leaky bellows
 - Flange seal

- Transmission faults
 - Multipacting
 - Heating
 - Arcing
 - Ceramic metallization
 - Gas condensation
 - Q_{ext} shift
 - Fixed couplers

Motivation

• Create an affordable power coupler for the QWR that is robust and capable of handling the power requirements.

Application: QWR Cavities

More on QWR Cavities

Туре	λ/4	λ/4	λ/4	λ/2	λ/2
β_{opt}	0.041	0.085	0.160	0.285	0.425
V _a (MV)	0.46	1.18	1.04	1.58	2.51
I _{beam} (pμA)	10.6	10.6	8.3	8.3	8.3
<q></q>	28	28	73	73	89
P _{beam} (W)	118	350	510	784	1610
Q _{beam}	4.2×10 ⁶	9.6×10 ⁶	5.6×10 ⁶	1.6×10 ⁷	1.9×10 ⁷
P _g (W)	236	700	1020	1570	3210
Q _L	1.4×10 ⁶	3.2×10 ⁶	1.9×10 ⁶	5.3×10 ⁶	6.2×10 ⁶
Control bandwidth Δ_{allowed} (Hz)	54	23	81	56	47
<φ _s > (deg)	-30	-30	-35	-35	-30

Design Methodology: Mechanical

- Size
 - 3-D model
 - Fitment
- Assembly
- Thermal analysis
 - Vacuum side O.C. Plating
- Material specification

Design Methodology: Electrical

- Coupler type
 - Cavity placement
- Modeling
 - Fields
 - S-parameters
 - Reflection
 - Transmission

Electrical Parameter Measurements

- Measuring
 - S-parameters
 - Reflection
 - Transmission
- Coupling

$$- Q_{ext} = 2 \times 10^6$$

Prototype

- Ultrasonic Cleaning
 - Micro-90 solution
 - 20 minutes
 - Ultra pure water
 - 40 minute rinse
- Assembly
- Class 100 Clean room

Prototype cont.

- Bake-out
 - 200° C
 - 36 hours

Bake-Out: Temperature & Pressure

Bake-Out RGA Readings

Conditioning Assembly

- Two couplers at a time
 - Shorted
 MICHIGAN STATE
 UNIVERSITY

E N G I N E E R I N G

Conditioning Stand

Standing-wave

$$-P_{sw} = P_{in} + 20 \text{ dB}$$

MICHIGAN STATE

Conditioning

- Sliding shorts
 - Full wave
 - 3.7 meters
 - Moved in 3" increments

E N G I N E E R I N G

Conditioning Sweep

RGA Before, During, and After

During conditioning

@ 63" (near window)

Pressure $\approx 8.5 \times 10^{-6}$ Torr

After bake-out

Pressure $\approx 1.4 \times 10^{-8}$ Torr

After conditioning

Pressure \approx 9.4x10⁻⁹ Torr

COLLEGE OF ENGINEERING

Conditioning Issues

- Over-heating
 - Possibly due to nonplated O.C.
 - Melted solder
 - Vacuum breach
 - RGA failure
 - Turbo pump destroyed
- Replaced soft solder (m.p. = 249° C) with silver braze (m.p. = 635° C)

MICHIGAN STATE

Future Work

- New flange design
 - Thicker tubing on diagnostic ports
- Implement IR pick-up
- Determine how much reconditioning is necessary after "sitting" in clean room
- Determine if canted springs are necessary
 - Simplify design and assembly
 - Better RF match at window
- Test couplers on new prototype QWR
- Measure copper plating thickness

Conclusions

- Conditioning process drove out residual contaminants from window.
 - 10 kW standing-wave
 - Slow, approx. 8 days
- Window able to withstand non-ideal operation
 - Solder failure
 - Mechanical stress
- Assembly capable of operating at 1 kW CW for 7 days.
- Comparatively affordable, prototype cost was about \$6,000 each

Resources

- H. Padamsee, J. Knobloch, and T. Hays, "RF Superconductivity for Accelerators, Second Edition" Wiley-Interscience, 2008
- J. Delayen, Couplers, USPAS, Maryland, June 2008
- B. Rusnak, "RF Coupler and HOM Coupler Tutorial," 11th Workshop on RF Superconductivity, 2003
- National Superconducting Cyclotron Laboratory, "Isotope Science Facility at Michigan State University: Upgrade of the NSCL rare isotope research capabilities," NSCL, East Lansing, MI, 2006
- A.D. Moblo, Low Beta Superconducting RF Cavity Power Coupler Development for the Rare Isotope Accelerator, M.S. Thesis, Dept. of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 2004

Questions?

Bonus Charts!

Table 5.10: Electromagnetic and cryogenic parameters.

Туре	λ/4	λ/4	λ/4	λ/2	λ/2
β _{opt}	0.041	0.085	0.160	0.285	0.425
f (MHz)	80.5	80.5	161	322	322
T (K)	4.5	4.5	4.5	2	2
R/Q (Ω)	424	416	381	199	210
G (Ω)	15.7	19.0	35.0	61.0	86
G-R/Q (kΩ²)	6.66	7.90	13.3	12.1	18.1
$E_{p}(MV/m)$	16.5	20	20	25	30
V _a (MV)	0.46	1.18	1.04	1.58	2.51
U (J)	0.99	6.69	2.81	6.19	14.93
R _{BCS,min} (nΩ)	2.5	2.5	10.1	0.7	0.7
$R_{res,min}(n\Omega)$	5	5	5	5	5
Q _{max}	2.1×10°	2.5×10°	2.3×10°	1.1×10 ¹⁰	1.5×10 ¹⁰
$Q_{design} = Q_0$	5×10*	5×10 ⁸	5×10 ⁸	5×10°	7×109
P _{design} (W/cav)=P _o	1.0	6.7	5.7	2.5	4.3

Table 5.12: Beam loading requirements by cavity type for uranium at 400 kW and 200 MeV/u. (I_{beam} denotes beam current, < q > denotes average charge state, $< \phi_s >$ denotes average synchronous phase.)

Туре	λ/4	λ/4	λ/4	λ/2	λ/2
β_{opt}	0.041	0.085	0.160	0.285	0.425
V _a (MV)	0.46	1.18	1.04	1.58	2.51
I _{beam} (pμA)	10.6	10.6	8.3	8.3	8.3
<q></q>	28	28	73	73	89
P _{beam} (W)	118	350	510	784	1610
Q _{beam}	4.2×10 ⁶	9.6×10°	5.6×10°	1.6×10 ⁷	1.9×10 ⁷
P _g (W)	236	700	1020	1570	3210
Q	1.4×10 ⁶	3.2×10 ⁶	1.9×10 ⁶	5.3×10°	6.2×10
Control bandwidth Δ _{allowed} (Hz)	54	23	81	56	47
<φ _s > (deg)	-30	-30	-35	-35	-30

Q_{ext2} Formulae

$$\beta_1 = \frac{1 - 10^{(S_{11}/20)}}{1 + 10^{(S_{11}/20)}}$$

$$\beta_2 = \frac{10^{(S_{21}/10)}}{1 - 10^{(S_{11}/10)} - 10^{(S_{21}/10)}}$$

$$Q_o = (1 + \beta_1 + \beta_2) \times Q_L$$

$$Q_{ext_2} = \frac{Q_o}{\beta_2} \qquad BW = \frac{f_r}{Q_{ext_2}}$$

