Surface Studies of Niobium for Superconducting Radio Frequency (SRF) Cavities

Hui Tian The Applied Science Department College of William and Mary

<u>This research was conducted at Thomas Jefferson National Accelerator Facility for the</u> <u>Department of Energy under grant DE-FG02-06ER41434 to the College of William and Mary</u>

The Performance of SRF Cavity & Its Limitations

 Q_0 vs. E_{acc} for an electropolished niobium 9-cell cavity. Courtesy of Jefferson lab

The SRF cavity performance is characterized by Q₀ vs. E_{ac.}
Various anomalous losses limit cavity performance:
Thermal break-down; enhanced field emission; multipacting; Q-drop.

Current Nb SRF Cavity Surface Treatment Methods Needs Improvement

Cavities Processing Recipe (courtesy of *www.linearcollider.org*)

- 1. Incoming cavity quality control checks.
- 2. Optical inspection of as-received cavity.
- 3. <u>Bulk buffered chemical polishing(BCP)/electropolishing (EP)~150</u> <u>µ m damage layer removal .</u>
- 4. Ultrasonic degreasing.
- 5. High-pressure rinsing.
- 6. Hydrogen degassing at 600/800°C.
- 7. Field-flatness tuning.
- 8. 20 µ m buffered chemical polishing(BCP)/electropolishing (EP)
- 9. Ultrasonic degreasing.

10.Field-flatness verification and retuning if <95%.

11.High-pressure rinsing.

12.Assembly and vacuum leak testing.

13.120°C bake.

14.Vertical dewar test.

Current technology of cavities' surface treatment- " a series of removal steps + low T baking "- mechanical damage; chemical residues; hydrogen (bulk); particulate + oxygen, hydrogen, structure...

Performance of Nb SRF Cavity Strongly Impacted By Its Topmost Surface

Undesirable surface effects including: magnetic field enhancement at a sharp transition, such as a grain boundary edge, the creation of anomalous "hot spots," and electron multipacting.

Outline: Topography

1. Motivation-Understanding for Improving Performance.

2. Characterization of Niobium Surface Topography.

3. X-ray Photoelectron Spectroscopy (XPS) Studies of Niobium Surface Oxide.

4. Surface Study of Niobium Buffered Chemical Polished (BCP) Under Conditions for SRF Cavity Production.

5. Characterization of Niobium Electropolishing (EP).

Surface Topography Is a Critical Factor For Nb SRF Cavity

Surface Topography of BCP/EP Single Crystal and Polycrystalline Nb

The above optical images were taken with HIROX KH-3000VD high resolution digital video microscopy system

Compared with EP treated poly-Nb (RMS_{30*30} ~0.34 \pm 0.11 μ m, 50 μ m \times 50 μ m), grain boundaries and other features of BCP treated poly-Nb are heavily etched (RMS_{30*30} ~1.6 \pm 0.42 μ m, 50 μ m \times 50 μ m)

EP single crystal surface $<0.1 \ \mu m$ RMS_{50*50} values (* well -control condition)

RMS Roughness Alone Is Not Sufficient to Characterize Nb Surface Topography

RMS vs. Scan Area (µm*µm)

Useful to get the average information about a surface variation .

No information about the lateral dimension of surface features.

Power Spectral Density (PSD) Provided a Promising Solution

$$PSD(f_{x}, f_{y}) = \lim_{L \to \infty} \frac{1}{L^{2}} \left| \int_{-L/2}^{L/2} \int_{-L/2}^{L/2} h(x, y) e^{-2\pi i (f_{x}x + f_{y}y)} dx dy \right|^{2}$$
$$PSD(f_{x})_{N}(m) = \left| (\frac{\Delta x}{N}) \sum_{n=0}^{N-1} h(x)_{n} \exp(-i2\pi nm/N) \right|^{2} K(m)$$

Square of the Fourier transform of the surface height data; describes how the height varies according to spatial frequency; <u>gives information regarding both lateral and</u> <u>vertical roughness</u>.

Related to RMS roughness, autocorrelation length and <u>fractal dimension.</u>

Maximum and minimum frequencies in data are set by the Nyquist limits $\left(\left[\frac{1}{2N\Delta x}, \frac{1}{2\Delta x}\right]\right)$.

PSD Allows Integration of the Nb Surface Topographic Measurements from AFM to Profilometry

H. Tian, G. Ribeill, C. Reece, M. Kelley. Proceedings of 13th Workshop on RF Superconductivity

Surface Topography of Niobium Samples after BCP/EP Treatment

Electron Backscattering Diffraction Clearly Revealed Surface Grains Sizes & Orientations aft. BCP

Grain orientation & mis-orientation deviation map(1.5 mm * 1.5 mm)

The EBSD reveals the orientation of individual grains in the niobium surface; The information depth is about the same as the *rf* penetration depth, EBSD selectively views the material that matters.

The dominant grain orientation for BCP treated polycrystalline Nb is [100].

Nb Surface Topographic Variation Under EP

Summary and Future Work

The first use of power spectral density (PSD) in quantitatively characterizing the surface topography of niobium has been demonstrated. The effect of preparation variables on Nb surface topography has been studied systematically for the first time.

Longer BCP removes the mechanical damages but leaves a rougher surface. First quantitative characterization under controlled EP shows longer EP smoothes out the surface variations caused by different pre-treatments.

Future:

In parallel with EP study, a systematic Nb surface topography study is required for optimizing EP process.

<u>Understand at what scales roughness is most important to cavity</u> <u>performance, then optimize process to those requirement.</u>

Outline: XPS

1. Motivation-Understanding for Improving Performance.

2. Characterization of Niobium Surface Topography.

3. X-ray Photoelectron Spectroscopy (XPS) Studies of Niobium Surface Oxide.

4. Surface Study of Niobium Buffered Chemical Polished (BCP) Under Conditions for SRF Cavity Production.

5. Characterization of Niobium Electropolishing (EP).

Binding Energy (eV)

Introduction

Hydrocarbons & impurities (<1nm)</th>Nb hydroxides (< 1 nm,?)</td>Dielectric Nb2O5(3~8 nm)NbOx-(0.2 < x < 2)-metallic(1~2 nm,?)</td>NbOx precipitates (0.02 < x < 0.2,?)</td>Nb (RF penetration depth : ~ 35 nm)

The surface chemistry of Nb is dominated by the high reactivity to oxygen; the outermost oxides layers are always found to be Nb_2O_5 .

Suboxides in various combinations and morphologies are proposed to be between the Nb₂O₅ and the underlying metal.

Angle Resolved (AR) vs. Energy Resolved (ER)XPS

<u>Surface topography has less impact on variable photon energy XPS.</u> AR + ER XPS provides the most surface sensitive information.

Energy Resloved XPS -BNL, NSLS, X1B

h υ = 300 eV, 550 eV, 750eV(100 ~ 1600 eV)- energy resolved XPS Take off angle = 0°, 41°, 60° ...-angle resolved XPS. Spot size < 250 µm with enough intensity, total energy resolution can be less than 0.1eV.

Depth Profiling : Angle Resolved vs. Energy Resolved XPS

Variable photon energy XPS probes the near-surface composition more incisively and provides better depth analysis than angle-resolved XPS.

Niobium Oxide Profiling of Single Crystal Nb by Energy Resolved XPS

Energy Resolved XPS clearly reveals that between $2 \sim 3 \text{ nm Nb}_2O_5$ and the underlying metal is the structural transition zone of suboxides (NbO₂, NbO and Nb₂O) with <u>a thickness not</u> <u>larger than one nanometer.</u>

Low Temperature "in situ" Baking & Q-Drops

 Q_0 vs. E_{acc} for a niobium single cell cavity before & after baking. Courtesy of G. Ciovati , Jefferson lab

Q-drops & improvement @High Field after Low T baking: theory & question

	Q- drop	Improvement (after low T baking)		
Theory 1	Tunnel exchange at Nb-Nb ₂ O ₅ interface	Nb ₂ O ₅ (localized states) reduction ? Additional HF –new oxides layer, preserve performance		
Theory 2	Magnetic field enhancement (β _M H) : correlation exist between Q-drop origin & surface roughness	Hc increase ? Before/after baking , similar Q- drops /improve for BCP & EP , polycrystal & single crystal cavities		
Theory 3	Oxygen (Nb ₂ O ₅ , sub-oxides, interstitial oxygen)	R _{BCS} , & decrease related to baking temperature (time) ? <u>Suboxides</u> ? <u>Interestital oxygen</u>		

Possible Mechanisms about Q-drop & Low-T Baking

Low temperature (100~140°C, 12~ 24 hrs) baking at high vacuum becomes an indispensable process to be applied to high RRR bulk niobium cavities (BCP/EP, SC/ PC). <u>The performance enhancement from baking remains</u> <u>even after several days of air exposure.</u>

Present Baking Recipes :

Classic: 110~120°C (< 150°C), 24~48 hrs, high vacuum

B. Visentin et, Saclay: 145°C, 3 ~6 hrs, Air; 120°C, >24hrs, Ar.

G. Ciovati et, J-lab: 120°C, 3~6 hrs, large grain, high vacuum

Niobium Surface Oxide Before/ After Low T Baking

XPS study about BCP/ EP Nb surface show that Nb_2O_5 is partly transformed into suboxide.

Reproducibility Study of Nb Oxide Before/After Baking

Nb₂O₅ Reduction Increases with the Baking Time

More Nb₂O₅ transforms into suboxides with the baking time I _{total oxides} / I_{Nb} decreases linearly with baking duration -<u>surface oxide layer</u> <u>become thinner.</u>

Air Exposure "Recovers" Nb Surface Oxide

No significant change in surface oxide layer can be observed after air exposure

Where is the Hydroxides-ARXPS?

A less than nm hydroxide layer seems to lie below the hydrocarbons & impurities by ARXPS .

Where Does the Hydroxides Go After Baking & Air-exposure ?

Low-T baking helps to "remove" the top hydrocarbon layer?

Systematic Surface Oxide Study in Parallel with Practical SRF Cavities Baking Process

After baking, Nb_2O_5 is partially transformed into suboxides, the total oxide layer becomes thinner. But upon air-exposure, the change of oxide layer observed after baking disappeared . Cavities still kept good performance, therefore the suboxides created by in situ bake is irrelevant to SRF cavity performance.

Longer baking time at 120°C increases Nb_2O_5 reduction & transformation Large grain cavities after 3 hrs baking shows performance improvement, the reduction of Nb_2O_5 is irrelevant to SRF cavity performance.

Comparing with 120°C baking, higher baking temperature (160°C) helps more oxide transformation; Air baking produce thick oxide layer.

XPS studies show that the changes in the niobium oxide layer caused by low -T baking appears to not play a big role in cavities performance.

H.Tian, C. Reece, M. Kelley, A. DeMasi, L. Pipe, K. Smith, Proceeding of 13th workshop on RF superconductivity

Summary and Future Work

The ERXPS is used to probe Nb near-surface composition for the first time. It confounds the effect of surface roughness and provides better depth analysis than ARXPS .

The systematic surface oxide study show that the changes in the niobium oxide layer caused by low T baking does not relate with the observed performance improvement of niobium cavities.

Future work:

An explicit layer structure and discrete phases of suboxide requires further study.

Where does the oxygen go after baking-dissolution into metal?

Detailed SIMS depth profile is required before/after baking-O,H...

Re-baking study is required to investigate the possible enrichment of interstitial oxygen.

Outline: BCP

1. Motivation-Understanding for Improving Performance.

2. Characterization of Niobium Surface Topography.

3. X-ray Photoelectron Spectroscopy (XPS) Studies of Niobium Surface Oxide.

4. Surface Study of Niobium Buffered Chemical Polished (BCP) Under Conditions for SRF Cavity Production.

5. Characterization of Niobium Electropolishing (EP).

What is Buffered Chemical Polish (BCP)

a most commonly employed Nb cavity surface treatment

1:1:1/1:1:2 (volume) mixture of HNO₃(69%) HF(49%) & H₃PO₄(85%), 10°C

$$\begin{split} &NO_{3}^{-} + 4H^{+} + 3e^{-} \rightarrow NO + 2H_{2}O \\ &2Nb + 5H_{2}O \rightarrow Nb_{2}O_{5} + 10e^{-} + 10H^{+} \\ &6Nb + 10HNO_{3} \rightarrow 3Nb_{2}O_{5} + 10NO + 10H_{2}O \\ &Nb_{2}O_{5} + 14HF \rightarrow 2H_{6}NbO_{2}F_{7} + H_{2}O \\ &Nb_{2}O_{5} + 12HF \rightarrow 2HNbF_{6} + 5H_{2}O \\ &Nb_{2}O_{5} + 10HF \rightarrow 2NbF_{5} + 5H_{2}O \\ &Nb_{2}O_{5} + 10HF \rightarrow 2H_{2}NbOF_{5} + 3H_{2}O \end{split}$$

Possible chemical reactions involved

No a systematic surface study of BCP polycrystalline Nb has been done. Different solution flow may cause <u>a non-uniform surface finish.</u>

First Reproducibility Studies of BCP Treated Polycrystalline Nb

What differences are due to experimental scatter?

Sample-to-Sample variation

	No.	Roughness		Chemistry by XPS			
	(samples)		σ(μm)	Nb ₅₊ /Nb _{total}	σ	O _{total} /Nb _{total}	σ
		Rq (µm)					
Sheet-7	30	1.66	0.55	0.64	0.03	1.93	0.08
Sheet-11	10	1.61	0.48	0.61	0.02	2.09	0.05

Batch-to-batch variation is comparable to sample-to-sample. Position-toposition variation within samples and sheet-to-sheet variation are less.

Roughness values and variation all exceed the few-nm escape depth of photoelectrons.

The average intensity ratios of O_{total}/Nb_{total} for each sample are much smaller than 2.5 (Nb_2O_5) .

Flow Rate Dependence of Surface Topography

No significant effect of BCP flow rate on surface roughness .

Flow Rate Dependence of Surface Chemistry

Effect of flow rate on niobium surface chemistry is significant

Flow Rate Dependence of Surface Chemistry

XPS measurement -relative Nb_2O_5 Thickness

H. Tian, C. Reece, M. Kelley, et. al. Applied Surface Science, Vol. 253(3), 2006, p.1236-1242

Summary and Future Work

The effect of BCP on polycrystalline niobium surface have been systematically examined for the first time.

The micron-scale roughness does not change with treatment conditions. But the thickness of Nb_2O_5 increases with a range of realistic solution flow rate.

Future work:

A microscopic understanding of Nb BCP mechanism is important for optimizing the preparation of high gradient niobium cavity.

Outline: EP

1.Motivation-Understanding for Improving Performance.

2. Characterization of Niobium Surface Topography.

3.X-ray Photoelectron Spectroscopy (XPS) Studies of Niobium Surface Oxide.

4.Surface Study of Niobium Buffered Chemical Polished (BCP) Under Conditions for SRF Cavity Production.

5.Characterization of Niobium Electropolishing (EP).

Electropolishing of Nb Cavity

9-Cell Nb Cavity Electropolishing @ Jefferson Lab

The Large Performance Variation of EP Nb SRF Cavities

Nb cavity performance after BCP/EP. Courtesy of www.linearcollider.org

Microscopic understanding of the basic Nb EP mechanism is expected to provide an appropriate foundation with which to optimize the preparation of high-field niobium cavity surfaces.

"Three-Electrode-Setup" Improved Electrochemical Characterization of EP

Anode Current Density Strongly Depends on Local Temperature

For cavity EP, electrolyte also serves as the process coolant. Unstable temperatures is expected and particularly hot in no-flow condition and higher heat flux where flow rate is high. Non-uniform polishing is expected.

Anode Current Density Varies Linearly with HF Acid Volume Concentration

HF acid loss may be expected due to evaporation and chemical reaction during process. <u>The understanding of the detailed role of HF involved during</u> <u>the EP process requires further electrochemical studies.</u>

Additional Volume H₂O slightly Increases Anode Current Density

Anode current density slightly increases with additional volume of H_2O (38~42%); Compare curve 1 and curve 2(after 5 hrs exposure under chemical hood), current density decreases 30 % -HF evaporation

Current-Limited Plateau of Nb EP Mass Transport Mechanism Has Been Unknown

Micro-polishing (brightening) only occurs when the plateau is the result of diffusion-limitation alone. Understanding of mass transport mechanism requires further electrochemical study-EIS.

What is Electrochemical Impedance Spectroscopy?

EIS Study of Constant Current Density

EIS Study of Different Flow Rates

What We have Learned from EIS Studies?

Constant R_s at different potential regions and flow condition rules out the "porous salt film" model.

 R_p \uparrow at different potential regions is inconsistent with the "adsorbates acceptor" model.

EIS Indicates "Compact Salt Film" Model

➤ Sulfuric acid tends to anodize the Nb under polarization potential producing the "compact salt film"- "Nb₂O₅".

➢ <u>HF acid tends to dissolve the Nb oxide</u> <u>under kinetic control with the ''at the</u> <u>surface'' concentration of F⁻</u>

➢ <u>F⁻ concentration "at the surface" is</u> <u>limited by how fast it diffuses through the</u> <u>electrolyte (~diffusion layer).</u>

➤ <u>The local gradient in F⁻ concentration</u> produces the desired polishing action.

H. Tian, S. Cocoran, C. Reece, M. Kelley, Journal of the Electrochemical Society (submitted)

The Diffusion-Limited Access of F⁻ To the Salt Film Produces Best Polishing

Summary and Future Work

> The first use of "three-electrode-setup" reveals that Nb EP strongly depends on the local electrolyte temperature and HF/H_2SO_4 volume ratio.

> High frequency impedance data provide strong evidence for the presence of a compact salt film (Nb₂O₅) in the current-limited plateau region.

➤ The results suggest that the diffusion-limited access of the F⁻ anion to the salt film surface limits the local reaction rate, creates the plateau and yields the micropolishing.

Future work:

➢ Monitor polishing effect with different concentration HF acid, different flow rate, different temperature electrolyte and different process voltage ⇒ specify optimum processing protocol.

Simulation & develop feedback to monitor cavity process.

Acknowledgements

Advisor: Dr. Michael Kelley Dr. Charles Reece

Committees: Dr. Sean Corcoran; Dr. Gunter Lüepke

J-Lab: Dr. Larry Philips, Dr. Peter Kneisel Dr. Gigi Ciovati; Dr. John Mammosser Dr. Rongli Geng; Dr. Xin Zhao Anne-Marie Valente-Feliciano; Will Sommer Dr. Joan Thomas; Dr. Andy Wu

X1B(Boston Univ.): Dr. Kevin Smith; Dr. Cormac McGuinness; Dr. Per Anders Glans; Dr. Lukasz Plucinski Dr. Shangcai Wang; Dr. Yufeng Zhang Dr. Louis Piper; Alexander DeMasi

- W&M: Dr. Ron Outlaw; Dr. Zhengmao Zhu; Dr. Haijian Chen; Dr. Mingyao Zhu Binping Xiao; Amy Wilkerson; Olga Trofimova
- NCSU: Dr. Fred Stevie; Dr. Phil Russell; Dr. Dieter Griffis; Dr. Dale Batchelor Guilhem Ribeill
- My families and friends for your constant support and pray!

"Oxygen Diffusion" Under Different Baking Duration

Oxides Structure (Unbaked/Baked)

preliminary TEM results

No clear structure change can be observed (suboxide, interstitial oxygen- cluster)

Potentiostat Primer

A simplified schematic of Potentiostat

A working electrode - where the potential is controlled & the current is measured, serves as a surface on which the electrochemical reaction takes place.

The reference electrode : used in measuring the working electrode potential and have a constant electrochemical potential as long as no current flows through it.

An Auxiliary electrode (counter electrode) : a conductor that completes the cell circuit.

The Electrode-Electrolyte Double Layer

IHP/ OHP : inner/outer Helmholtz plate Metal IHP OHP Nb Ø <- water molecule **Ionization: 1) metal ion** solvated ion move through electrolyte 0 specifically with applied potential. 2) adsorbed iou Θ electron recombine with unsolvated positive ion 3) water ion **Diffuse layer** dipoles and negative ions drag metal ions into electrolyte. HF+H₂SO₄+H₂O Solution Θ **OHL:** solvated ion, the \odot **IHL:** water interaction with charged 0 dipoles and some metal surface by long range Xo \mathbf{X}_{1} negative ions electrostatic force The electron-electrolyte interface behave like a capacitor.

Effect of Electrolyte Temperature

The strong dependence of the measured anode current density on the local electrolyte temperature is observed; power dissipated at the cathode increases with electrolyte temperatures.

Anode Current Density Does Not Depend on the Relative Area of Anode and Cathode

The Mass Transport Mechanisms

Nernst-Planck equation (1-dimension)

Possible Mass Transport Mechanisms

The rate of transport of cations across the diffusion layer into the bulk electrolyte limits the anodic dissolution rate Pores of precipitates are filled with electrolyte, anions and cations transport current by migration. ~ µ m

The limited current -diffusion of acceptor species through diffusion layer

Courtesy of M. Matlosz, Electrochimica Acta. Issue 4, Vol. 40, 1995, pp. 393

Duplex (compact + porous) salt film mechanism : <u>involves rate limiting diffusion of</u> <u>cations of the dissolving metal from anode into the bulk.</u>

Adsorbate acceptor mechanism : involves rate limiting <u>diffusion acceptor anions</u> (such as H_2O) which are consumed at the anode by formation of complexes (MA^{+z}) or hydrated metal ions.