* Monday

1 Mon-1

Show for two sinusoidally time-varying signals A(t) = A cos(wt) and
B(t) = By cos(wt + ) that the product of the signals averaged over a pe-
riod of oscillation (AB) is equal to % cos(9).

Show that (44 B) = — (A48 = «4oBo 4in ().

Show that for the complex phasors A = Agel® and B = Bjel”?, where
a and 3 are the respective oscillation phase offsets, the following expres-
sion holds: 242~ = (AB) + 1 (448},

SOLUTION

(AB) = ;/w Ay By cos(wt) cos(wt + 0)dt 2pt
T Jo

2 2

= AOQBO cosé. Ipt

= wAoBo / = [cos(2wt + &) + cos(d)] dt 3pt
0

27w

dA —w [
—-— = — ApB t i 2pt
< % B> o ), oBow cos(wt + 9) sin(wt)dt 2p

_? 2
= % / [cos(wt) sin(wt) cos(d) — sin? (wt) Sin(é)] dt 3pt
™ 0

ey

2
- ¢ 124030 sin(5)/ sin?(wt)dt 1pt
0

™

0.)2Ao BO . s
N 27 sin(9) (;)
(.UA()BQ 5

2

in(J).



dB —w (¥ .
<Adt> = g/o ApBow cos(wt) sin(wt + §)dt 2pt

—w?AgBy [
= % / [cos(wt) sin(wt) cos(8) + cos?(wt) sin(é)} dt 3pt
T 0
—wAoBo
2 S
—w?AoBy . T
— Ts1n(5) (;) Ipt
_wAoBo

2

2m

in(6)/w cos®(wt)dt Ipt
0

in(d).

AB*

= (A + jA)(Br— jB) 3pt
= A/.B,+ A;Bi — j(ArBi — AiBr)
= AgBgcos(d) — jAgBogsin(d) where 6 = 5 — « 2pt

- B+ <AC}£>

_ _d/d4
~ (AB) w<dtB> Ipt

2 Mon-2

Show that the time-averaged power into a series combination of lumped
elements R, L, and C is given by the expression

VIr
— =

where Py is the average power dissipated in the resistor, Uy, is the aver-
age energy stored by the inductor, and Uk is the average energy stored in
the capacitor.

(P) = Pi+2jw(Un — Ue)

SOLUTION

The total voltage drop across a series combination of a lumped-element
resistor, inductor, and capacitor is

Vi = Vr+W+ Vc2pt

. ]
I LI—-|—|I
Vv R+ jw (wO) 3pt
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The dissipated power and stored energy take the form

— resistor

VRI*

PR =

12
= RIZ Ipt

= Pd lpt

— inductor

VLI*
P = =

jwLI?
= Ipt

LI?
= 2' —
()

= 2jwUp. Ipt

— capacitor

. I?
= ‘W(Wc>

= —2jwl.. Ipt

VI

2

Vol*  WLI* Vel*
g Ty T

= R+ +Fc

= Pi+2jw(Un—U).




3 Mon-3

The voltage and current on a transmission line may be written as a su-
perposition of travelling waves moving in opposite directions:

V(s) = Vife 104y eifs
I(z) = Ije 3P _[;elb=,
A load is attached to the line at z = 0. Show that at this location
14T
7y, = Z
L= 1o Ty 0

where I'y = “% is the voltage reflection coefficient at z = 0 and Z is the

0
characteristic impedance of the transmission line.

Show that the impedance at a plane moved back from the load a distance
lis

B 71, + j Zo tan(0l)
2(0) = 2o Zo+ j Zutan(Bl) |

SOLUTION

The reflection coefficient may be written in terms of the load impedance:

21— 2

Tg=———.2pt
T i+ 2 P
The reflection coefficient at a location z = —[ behind the load is
‘/6_ ejﬁ(fl)
T = yve=vamn
() = Toe 238 1pt,



1+1()

2(0) = 17
0 = g%
1+I‘Oe*2jﬁl
= T T,oziato !

(Zu+ Zo) 3P (2 — Zp) e™ 1P
(2L + Zo) @iPL —(Zy, — Zg)e— 187"
Zy cos(Bl) + j Zysin(B1) 7

Zy cos(Bl) + j Zy sin(pl) 0

Z1 + j Zo tan(Bl)

Zo + j Zy tan(Bl) 7" P

¢ Tuesday

4 Tues-1

Show that the general expression for the surface impedance of a super-
conducting cavity may, to a good approximation, be written as

Zs = Rs + jXs
where )
Ry = ianWQM(QJ/\TP:
and
X = wpgAL.

Assume the normal state conductivity o, is much less than the supercon-
ducting conductivity os.

SOLUTION

The normal current density is proportional to the electric field
Jo = oE
Jyn = onky 2pt

where as the superconducting current density oscillates 90 degrees out of
phase with the electric field

. =]
Jys=—jos=| —== | Ey. 2pt
Y e (wMZ{) y- P

The superconducting pairs do not dissipate any energy. The induced
electric field both accelerates and decelerates the Cooper pairs during



an RF cycle, transferring magnetic field energy reactively to Cooper pair
kinetic energy. The kinetic energy of the Cooper pairs and the energy
stored in the magnetic field of the cavity mode oscillate in phase. The
total current density is then

Jy = Jyn + Jys = (00 — jo5) Ey.
The current density diminishes exponentially within the superconductor:
Jy = Jyoe 7" 2pt

where

T =1/ ]jpow(on — jos). 2pt

The total linear current density is found by integrating through the RF
penetration region

ar [ J o -
a _ / Jydx _ LO _ : 0. JOs : EyO — waO. 4pt
dz 0 T JMO‘*‘)(UH - JUS) J How

and the surface impedance is found by forming the ratio of electric field
to linear current density:

E .
Ty TR
1 On — JOs

_N%‘*ﬂ)‘%: J powAL
LHi@) vz

Since 0, << o5, the square root may be approximated to first order:

j (o 1
Z = juowAL |1 — R QL fan,uow)\ﬁ + jpowAr. 2pt
2 \ os 2

5 Tues-2

In the London two-fluid model, J = J, + Js, where J, = o,E and
Js = — josE for sinusoidally time-varying fields. In analogy with normal

conductors, show that
V2E = 7°E, (1)

where
7=/ tow j(on — jos).



SOLUTION

V xE

V xH
V xH

,UOG()OJQAE

V xH

V x (V x E)
V x (V x E)
~-V2E

E

T

E

6 Tues-3

OH
— g = — ] H 3pt
Mo o J powkL 5p

OE
Jn—l-.]s—f—EOE =Jn+ Js + jeowE 3pt
(on— jos+ jeow) E = [Un — jos (1 + uoeowZ)\%)] E

WA2 472N 4n%(50nm)>

~ 2x107 12 2pt

2 X (10cm)?
(Un_jJS)E
~V?E 2pt

V x (—pow jH) = —pow j (on — jos) E 2pt
pow j(on — jos) E
EqeVHow j(on—jos)nr 2pt

How (Un - jUS)
Ege™T .

Calculate the surface resistance of niobium of RRR = 30 and 300 at 500
MHZz in the normal conducting state at 10K. What is the typical Q) of a
niobium cavity at room temperature? What is the improvement factor for
a niobium cavity on cooling from room temperature to 10K? The resistiv-
ity of niobium at room temperature is 15x10~% Qm, and the pl product of
niobium is 6x10~16 Om?.

SOLUTION

The typical room-temperature ¢)y of a niobium cavity is approximately

3x10%. 1Ipt

— RRR 300

RRR = 220K 3,
P10K

300K
RRR

PI0K = =5.0x1071° Om Ipt



pl _ 6x107'° Om?
p  5.0x10-10 Om

3 1Y) .
Qg = Zqu <pl) 3 4pt

¢ Mm-kg\ [27(500 MHz)
s2A? 6x10~16 Om?

l= = 1.20 pm Ipt

as = (1.2566x10— } (1.20 pm)?

> w

as = 8.53 Ipt

Ra(l = 00) = 3.789x10°w?/3(pl)1/3 3pt

R (I = o0) = 3.789x10°[27(500 MHz)]%/3(6x10~6 m?)/? 1pt

Ry (I = 00) = 0.685 mS2 1pt
Ry = Roo (1 + 1.157a;%%77) 3pt

Rk = 0.685 mQ [1 + 1.157(8.53)**™7] = 1.12mQ 1pt

1
o= = 6.67x10° Q'm~! 2pt

w
Raoox = 4/ QLUO 4pt

27(500 MHz) (1.2566x10—6 m-kg
Rapox =

s2A
2(6.67x106 Q~Im—1)

) =17.2mQ 4pt

Quox _ Fsox _ 17.2m& . 3pt
Qo Riox  L12mQ




- RRR 30

PIOK

Qs

Riox

Rk

Q1ok

QBOOK

* Wednesday

7 Wed-1

Derive an approximate expression for the input admittance Y, of a par-
allel RLC circuit in terms of the conductance G, @@, unloaded resonant
angular frequency wop, and the difference Aw of the driven angular fre-

5.0x1072 Qm 1pt
0.120 pum Ipt
8.57x107° 1Ipt

wpo  Raook

Dl TSR g
20 VRRR |
172me g 1y ma 1pt
V30
5.48 Ipt

quency w and wy that is valid to first order in Aw/w.

What bandwidth is this approximate expression valid for if Aw/w < 0.01

and the resonant frequency is 1.3 GHz?

Compare this bandwidth to the full-width-at-half-maximum for the cases

that Q = 10x10'°,10x107, and10x10%.
What is R/Q in terms of L and C?

SOLUTION



Q

Q

Q

1
¢ =3
V2
Un = 4w2L
V2C
U = I
cV?2
U= 2
GV?2
Py = 5
on woC'
= 292 X0 opt
B G 7
R 1 L
= = ==t
Q aQ Vo7
wp = LZt
0 T p
w = wy+ Aw

G+ij’j<w1L> 3pt

. 1

“o

2
G+ jwC (1 w2> Ipt
(w+ wo)(w — wo)
2

. (2wo + Aw)Aw

2wpA A
G+jw0(]< “22 w) (1-2”) 2pt

0 wo

o[ () ()

G (1 N NQAW) ot
wo

G+ jwC

2pt

Av
0.01 > —
Vo

(0.01)(1.3GHz) > Av
13MHz > Av 2pt

10



Av = Quy 2pt

Q AvpwaM | 2AVmax
10x10™° | 0.13Hz | 26 MHz
10x107 | 130Hz | 26 MHz
10x10* | 130 kHz | 26 MHz

3pt

8 Wed-2

e, L7 t |

7 -Z ZL

Derive a simple expression for the impedance Zi,. If you don't like the
idea of negative impedances, think of them as active devices that add
power. The circuit is actually very useful for evaluating passive networks
of components.

What is Z;, when measured at a plane that is located a distance  behind
the current location?
SOLUTION

(=
Zin

z) —-2
77 ) z "

1 — A |
_[-ZZ+Z(Z.-2)] 1 2t
Zin 7. — 7Z 7




Z2

Zin = _Z7L

Zin + j Zo tan(gl)

Zall) = 23 Zo tan(B0)
. _ Zincos(BN/4) + j Zysin(BA/4)
Zin(A/4) = Zo cos(BA/4) + j Zin sin(BA/4) 2
7z Z\?
Zn(NY) = ZX= <Z> . ot

9 Wed-3

Have a charge pass through the capacitor plates of an initially uncharged
LC circuit. The charge leaves a wake. Use a dipole magnet (ignore radi-
ation damping) to feed the charge back through the capacitor plate. Is it
possible to have the charge arrive at a particular time (phase) so that it
leaves the capacitor with more energy than it originally had?

What's the maximum energy it could leave with?

Show that the charge experiences a voltage drop equal to half of the in-
duced voltage when it passes through the initially uncharged capacitor
plates.

Is it possible for the charge to be recirculated back to the capacitor at a
time such that the charge will lose additional energy?

Derive an expression for the loss factor & in terms of the resonant angular
frequency and the R/Q of the circuit.
SOLUTION

No. 2pt
What's the maximum energy it could leave with?

SOLUTION

The initial energy. 2pt

12



Show that the charge experiences a voltage drop equal to half of the in-
duced voltage.

SOLUTION

Uy = Ui + f V 3pt

Ui +qV +¢fV = U, 3pt

The maximum energy the particle may have at the end of the second pass
is the original energy:
UQ = Ui. 3Pf

U = Ui + 2¢fV + qV 2pt

1
f=—-1pt
5 1P
Is it possible for the charge to recirculated back to the capacitor at a time
such that the charge will lose additional energy?

SOLUTION

Yes. 2pt

Derive an expression for the loss factor & in terms of the resonant angular
frequency and the R/Q of the circuit.

SOLUTION

Apply conservation of energy to the case when the charge first passes
through the capacitor plates:

AUcay + AUq = 0 3pt

2

2

+ qfV 2pt

13



¢ Thursday

10 Thurs-1

Calculate the stored energy in a 4-cell LEP cavity with R,/Qo = 4640 at
5 MV /m (see page 30).
NOTE: the accelerator definition is used for R, /Qo.

SOLUTION
R V2
== 4p(-2i :
Q"o pt(-2 if EE def. used) (2)
w = 271(350MHz) = 2.20x10°GHz 1pt
A\ EN,
V=FL= ENcell (i) = ;7;11& 4pt
(5 MV/m)(4)(1)(29.98 cm GHz)
— = . 2
v 2(0.350 GHz) 85T MV 2pt
gV msTMve
T W(R/Q) T (220GHz)(462) ~ 0P
11 Thurs-2

Sketch the electric and magnetic field pattern that exists in the transverse
plane of a lossless coaxial transmission line. A half-wave resonator is
formed by shorting both ends of a transmission line which has a length
of I. Sketch how the transverse electric and magnetic field components
vary with longitudinal coordinate z (let z = 0 be located at the short
on the right side of the line). Roughly describe the time dependence of
the stored energy during one RF cycle. Explain qualitatively what type
of circuit model would be appropriate for modelling the energy flowing

14



(defined as positive in the positive z direction) through a transverse plane
located at z = 0, —\/8, —\/4,and — 3)/8. Be sure to consider what fields
are present at the location of the plane.

What modifications could you make to the cavity that would allow a
beam of charged particles to be accelerated by this mode?

SOLUTION

All of the energy is initially stored in the electric field and H = 0 every-
where. Energy flows from the center to the sides until H is at a positive
maximum and E = 0 everywhere at ¢t = T'/4. The field energy is reflected
back to the center where E reaches a negative maximum at ¢t = 7'/2 and
H = 0 everyhere again. Energy then flows back into the magnetic field,
reaching its negative maximum at t = 37'/4 with E = 0 everywhere. Fi-
nally, the energy is reflected back into the electric field returning to the
same conditions as the beginning of the cycle.

(P) =Py +2jw(Un — Us) 4pt

L+ ]Zo tan (1)
Zo+ 7L tan(ﬁl) ’

Z(1) )

— z = 0 There is no electric field present and a maximum in the mag-
netic field. Since E = 0 the Poynting vector must also be zero and
there is no energy flow, which is intuitively obvious since the line is
shorted and lossless at this location. Current flow with no voltage
drop corresponds to the series resonance model. Zi, = 0. 3pt

- z = 1/8 Both electric and magnetic fields are present and the sinu-
soidal variations are equal for both fields (i.e.sin(w/4) = cos(n/4)).
Energy flows through the plane, but there is no net transfer , so the
impedance must be a pure reactance. Looking into the plane from
the left to the right there is more energy stored in the magnetic field
than in the electric field, so the net reactance should be inductive. In
fact, the above equation shows that the impedance is a pure induc-
tance at this location.Zj, = jwL. 3pt

- z = [/4There is no magnetic field present and a maximum in the
electric field. Since H = 0 the Poynting vector must also be zero and
there is no power flow through this plane. Voltage with no current
flow corresponds to the parallel resonance model.Y;, = 0. 3pt

- z = 31/8Both electric and magnetic fields are present and the sinu-
soidal variations are equal for both fields (i.e.sin(w/4) = cos(n/4)).
Energy flows through the plane, but there is no net transfer , so the

15



impedance must be a pure reactance. Looking into the plane from
the left to the right there is more energy stored in the electric field
than in the magnetic field, so the net reactance should be capaci-
tive. In fact, the above equation shows that the impedance is a pure
capacitance at this location. Yi, = jwC. 3pt

To accelerate beam with this mode, add beam tubes on either side of the
peak electric field region, and add a drift tube through the center conduc-
tor. The charge is accelerated by the first gap during the first half-period,
moves through the drift region, and is accelerated by the second gap dur-
ing the second half-period. 3pt

12 Thurs-3

A small hole located at the middle of the half-wave resonator is cut and a
smaller diameter trnasmission line is attached with the center conductor
extending slightly into the cavity volume. The small transmission line
runs in a direction perpendicular to z.

Sketch the electric field lines in the region of the small antenna for the
case that RF power is sent down the small coaxial line at a frequency that
is far from all cavity resonances.

Sketch the longitudinal variation of the voltage standing wave in the line.
Be sure to label the positions of the voltage minima DS (detuned short)
and the voltage maximums DO (detuned open).

Draw a lumped element circuit that would accurately model the impedance
measured at the end of the transmission line where the line connects to
the half-wave resonator.

Sketch the electric field lines in the region of the small antenna for the
case that RF power is sent down the small coaxial line at the resonant
frequency of the fundamental half-wave cavity mode.

Qualitatively describe the impedance seen at the end of the line on reso-
nance, specifying in what way it is significantly different than the previ-
ous off-resonance result.

Sketch the longitudinal variation of the voltage standing wave in the line.
Do not move the DO and DS planes. Keep the DO and DS planes in the same
location as in the previous sketch.

16



Use the parallel RLC circuit to model the resonance of the nearby half-
wave fundamental cavity mode.

Draw a lumped element circuit which models the coupling between the
antenna and the cavity mode and use this model to calculate the admit-
tance measured at the end of the trnasmission line.

What is the admittance at the DO plane?
What is the admittance at the DS plane?

What is the transformer turn ratio required to match the cavity mode to
the 50 ) transmission line?

What is the value of the mutual coupling capacitiance which produces
this equivalent tranformer turn ratio?

SOLUTION

The tranmission line is left open circuited at the end, so there is a voltage
maximum near the end of the line. It is not located precisely at the the
end of the line, since the antenna has a finite capacitance Cj:

YL = ija.

The first DO plane would be located a distance A/2—4 from the end where
A is the RF wavelength and 4 is a small number whose value depends on
the capacitance of the antenna shielded by the half-wave resonator. The
DS plane is located at A/4 intervals away from the DO planes. On reso-
nance, the cavity has a large amount of stored energy and the electric field
at the coupler is primarily that of the cavity mode. There is a large field
in the transmission line’s longitudinal direction (perpendicular to z), but
there is very little field in the plane transverse to the transmission line. In
addition, there must be a large current flowing through the termination
plane to provide the charge needed to terminate some of the large cavity
electric field lines on the antenna. A large current with very little voltage
corresponds to the case of the series resonance. Notice that the coupler
is located at an electric field maximum in the cavity mode. This location
corresponds to a parallel resonace (high voltage with little current) when
power is measured through a plane transverse to the z direction. Trans-
forming a parallel resonance into a series resonance is an example of an
impedance inversion that occurs whenever coupling to cavity modes.

17



(sts)
J 1 2
Zinv = Rl = ( ) ch

ZC ka

YL = jw(Ca + Ck> + (ka)QZC
At the detuned-open plane
Ypo = (ka)QZC

and at the detuned-short plane

The following relations hold for both pairs of terminals of an ideal trans-
former:

Vi,V
o ma
TllIl = n212
VA . Zs
nf  n3

N
=
[

VIR 2

m

( ) Zay
Ncav

2
Yin = (ncav) Ycav

Tin

The equivalent turn ratio for the capacitively coupled antena is then

1
Ncav O
Nin Zo

The turn ration needed to match the transmission line to the cavity mode
on resonance is

n:@: | Zcay _ /500 GS2 —10°
Nin Zy 50 Q )

The coupling capacitance which provides this matching is

1 1
nwZy  2m(1.3GHz)(10%)50 Q

Cy = =2.45x10"'" F.

e Review

18



13 Rev-1

Calculate the London penetration depth A for Nb which has a supercon-
ducting electron density of 1.13x10%® m~3.

Calculate the normal conducting skin depth § aat room temperature for

a niobium cavity mode with f = 1.3 GHz skin depth and an electrical

conductivity o = 6.67x10° Q_;m~1.

SOLUTION
VAL
- fo€?ns
A = ”z
Hoe~Ms
A 9.11X10_31kg
L =
(1.09x10%m—3)(1.602x10~19C)21.257x10~6 2E,
AL = 50.9nm
5 = L 1

vV froo \/w(1.3GHz)(1.257x10—6S;“jfz)(6.67x106Q—lm—l)
6 = 5.40um

SOLUTION
m
X = ——
t ,U0€2ns
A = -
Ho€ Mg
\ \/ 9.11x10-3'kg
L = _ _ _g m-kg
(1.09x1030m=3)(1.602x10~19C)21.257x10~6 3
AL = 50.9nm
5 — 1 B 1

VfHoT  [r(1.3GHzZ)(1.257x10-6 28 )(6.67x106 Q- 1m~1)
§ = 5.40pum

19



14 Rev-2

The superconducting electron density is 1.13x10%® m~3 and the normal
state conductivity is 6.67x10° Q~'m~!. Calculate the real and imaginary
parts of the surface impedance for a 500 MHz cavity mode.

SOLUTION

1
Ry = ¢ UwQMg /\I%

2
\ m 9.11x10—3'kg
L = =
V nse2po (1.13x1028m—3)(1.602x10~19C)2(1.257x10~6 X8, )

AL = 50.9nm

1 } 2
Ry = (6.67x10°Q7'm™) (1.257x10—6 ;nki2> (27)2(500 M Hz)?(50.9 nm)?
s J—
Ry = 6.86nQ
Xs = powAL
-k
X, = 2m(500 MHz)(1.257x1076 " §2)(50.9nm)
s p—
X, = 2.01x10%Q
15 Rev-3
A cavity has an accelerating mode with
R
—~ = 500
Q
Qo = 10"
Qe = 107
f = 13GHz

and is operating at V. = 10 MV in full energy recovery mode.

What is the forward power P from the generator, the dissipated power
P, in the cavity fundamental mode, and the reflected power F;?

What are these power levels for the case that Q. = 10%?

20



SOLUTION

Pf - Pc + Pr
QO 3
g = ==10
Qe
2
P = Ve =100 W
2(%) Qo
P, P, 43 _3
1—2 = £ —4x10
P, P, (140)?
P
8 4x10-3 50
P. P <5 - 1)2
1-==2 = ZX=(5—) =099
P, P, B+1
P. = 249kW. (4)
If Q. = 108 then
P. = 100W
P, = 255kW
P = 245kW.

16 Rev-4

The power dissipated in a resistor R of a network of passive compenents
may be calculated by replacing everything external to the resistor with
its Thevenin equivalent circuit:

Vin = Vopen
Vopen

Zth .
Ishort

Write the expression for the power dissipated in R as a function of Ighort
and Vopen. Show that this is equivalent to the expression

Qext = QI + QV

21



where

Qv

Qe

SOLUTION

Py

Q+Qv =

Py =

Py =

Py =

—
ol oS
ov 1

=]
N—

V2
2R

Vo @ o)

R( Vin )
2 \|Zn + R

2
R V:)pen
2 \I/open 2 + R2
short
2
[shortR
2
2
Vvopen
2R
U Py + B wU
w = —
Py P Py
PyPy
Py + P
Lort Vopen
4
2R V3
hort open
5T 2R
1 2 2
4 Ishort‘/oper\
I2 V2
short R2 + _ open
2R ISQhort
2
R ‘/open
2 \I/open 2 _|_ R2
short
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