
• Monday

1 Mon-1

Show for two sinusoidally time-varying signals A(t) = A0 cos(ωt) and
B(t) = B0 cos(ωt + δ) that the product of the signals averaged over a pe-
riod of oscillation 〈AB〉 is equal to A0B0

2 cos(δ).

Show that
〈

dA
dt B

〉
= −

〈
AdB

dt

〉
= ωA0B0

2 sin(δ).

Show that for the complex phasors A = A0 e j α and B = B0 e j β , where
α and β are the respective oscillation phase offsets, the following expres-
sion holds: AB∗

2 = 〈AB〉+ j
ω

〈
AdB

dt

〉
.

SOLUTION

〈AB〉 =
ω

2π

∫ 2π
ω

0

A0B0 cos(ωt) cos(ωt + δ)dt 2pt

=
ωA0B0

2π

∫ 2π
ω

0

1
2

[cos(2ωt + δ) + cos(δ)] dt 3pt

=
A0B0

2
cos δ. 1pt

〈
dA

dt
B

〉
=

−ω

2π

∫ 2π
ω

0

A0B0ω cos(ωt + δ) sin(ωt)dt 2pt

=
−ω2A0B0

2π

∫ 2π
ω

0

[
cos(ωt) sin(ωt) cos(δ)− sin2(ωt) sin(δ)

]
dt 3pt

=
ω2A0B0

2π
sin(δ)

∫ 2π
ω

0

sin2(ωt)dt 1pt

=
ω2A0B0

2π
sin(δ)

(π

ω

)
=

ωA0B0

2
sin(δ).
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〈
A

dB

dt

〉
=

−ω

2π

∫ 2π
ω

0

A0B0ω cos(ωt) sin(ωt + δ)dt 2pt

=
−ω2A0B0

2π

∫ 2π
ω

0

[
cos(ωt) sin(ωt) cos(δ) + cos2(ωt) sin(δ)

]
dt 3pt

=
−ω2A0B0

2π
sin(δ)

∫ 2π
ω

0

cos2(ωt)dt 1pt

=
−ω2A0B0

2π
sin(δ)

(π

ω

)
1pt

= −ωA0B0

2
sin(δ).

AB∗

2
= (Ar + jAi)(Br − jBi) 3pt

= ArBr + AiBi− j(ArBi −AiBr)
= A0B0 cos(δ)− jA0B0 sin(δ) where δ = β − α 2pt

= 〈AB〉+
j
ω

〈
A

dB

dt

〉
= 〈AB〉 − j

ω

〈
dA

dt
B

〉
1pt

2 Mon-2

Show that the time-averaged power into a series combination of lumped
elements R, L, and C is given by the expression

V I∗

2
= 〈P 〉 = Pd + 2 jω (Um − Ue)

where Pd is the average power dissipated in the resistor, Um is the aver-
age energy stored by the inductor, and Ue is the average energy stored in
the capacitor.

SOLUTION

The total voltage drop across a series combination of a lumped-element
resistor, inductor, and capacitor is

V = VR + VL + VC 2pt

V = IR + jωLI −
(

j
ωC

)
I. 3pt
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The dissipated power and stored energy take the form

Pd =
RI2

2
2pt

Um =
LI2

4
2pt

Ue =
CV 2

4
=

I2

4ω2C
2pt

– resistor

PR =
VRI∗

2

=
RI2

2
1pt

= Pd 1pt

– inductor

PL =
VLI∗

2

=
jωLI2

2
1pt

= 2 jω
(

LI2

4

)
= 2 jωUm. 1pt

– capacitor

PC =
VLI∗

2

=
− j I2

2ωC
1pt

= −2 j ω
(

I2

4ω2C

)
= −2 j ωUe. 1pt

〈P 〉 =
V I∗

2

=
VRI∗

2
+

VLI∗

2
+

VCI∗

2
2pt

= PR + PL + PC

= Pd + 2 jω (Um − Ue) .
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3 Mon-3

The voltage and current on a transmission line may be written as a su-
perposition of travelling waves moving in opposite directions:

V (z) = V +
0 e− j βz +V −

0 e j βz

I(z) = I+
0 e− j βz −I−0 e j βz .

A load is attached to the line at z = 0. Show that at this location

ZL =
1 + Γ0

1− Γ0
Z0

where Γ0 = V −
0

V +
0

is the voltage reflection coefficient at z = 0 and Z0 is the
characteristic impedance of the transmission line.

Show that the impedance at a plane moved back from the load a distance
l is

Z(l) = Z0

[
ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

]
.

SOLUTION

ZL =
V

I
2pt

=
V +

0 + V −
0

I+
0 − I−0

2pt

=
V +

0 + V −
0

V +
0 − V −

0

Z0 1pt

=
1 + V −

0

V +
0

1− V −
0

V +
0

Z0

=
1 + Γ0

1− Γ0
Z0 2pt

The reflection coefficient may be written in terms of the load impedance:

Γ0 =
ZL − Z0

ZL + Z0
. 2pt

The reflection coefficient at a location z = −l behind the load is

Γ(l) =
V −

0 e j β(−l)

V +
0 e− j β(−l)

2pt

Γ(l) = Γ0 e−2 j βl 1pt.
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Z(l) =
1 + Γ(l)
1− Γ(l)

Z0

=
1 + Γ0 e−2 j βl

1− Γ0 e−2 j βl
Z0 2pt

=
(ZL + Z0) e j βl +(ZL − Z0) e− j βl

(ZL + Z0) e j βl−(ZL − Z0) e− j βl
Z0

=
ZL cos(βl) + jZ0 sin(βl)
Z0 cos(βl) + jZL sin(βl)

Z0

=
ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

Z0 3pt

• Tuesday

4 Tues-1

Show that the general expression for the surface impedance of a super-
conducting cavity may, to a good approximation, be written as

Zs = Rs + jXs

where
Rs =

1
2
σnω

2µ2
0λ

3
L

and
Xs = ωµ0λL.

Assume the normal state conductivity σn is much less than the supercon-
ducting conductivity σs.

SOLUTION

The normal current density is proportional to the electric field

Jn = σnE

Jyn = σnEy 2pt

where as the superconducting current density oscillates 90 degrees out of
phase with the electric field

Jys = − jσs =
(

− j
ωµ0λ2

L

)
Ey. 2pt

The superconducting pairs do not dissipate any energy. The induced
electric field both accelerates and decelerates the Cooper pairs during
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an RF cycle, transferring magnetic field energy reactively to Cooper pair
kinetic energy. The kinetic energy of the Cooper pairs and the energy
stored in the magnetic field of the cavity mode oscillate in phase. The
total current density is then

Jy = Jyn + Jys = (σn − jσs)Ey.

The current density diminishes exponentially within the superconductor:

Jy = Jy0 e−τx 2pt

where
τ =

√
jµ0ω(σn − jσs). 2pt

The total linear current density is found by integrating through the RF
penetration region

dI

dz
=
∫ ∞

0

Jydx =
Jy0

τ
=

[
σn − jσs√

jµ0ω(σn − jσs)

]
Ey0 =

√
σn − jσs

jµ0ω
Ey0. 4pt

and the surface impedance is found by forming the ratio of electric field
to linear current density:

Z =
Ey0
dI
dz

=

√
jµ0ω

σn − jσs
3pt

Z =

√
−µ2

0ω
2λ2

L

1 + j(σn
σs

)
=

jµ0ωλL√
1 + j(σn

σs
)
.

Since σn << σs, the square root may be approximated to first order:

Z = jµ0ωλL

[
1− j

2

(
σn

σs

)]
=

1
2
σnµ0ωλ2

L + jµ0ωλL. 2pt

5 Tues-2

In the London two-fluid model, J = Jn + Js, where Jn = σnE and
Js = − jσsE for sinusoidally time-varying fields. In analogy with normal
conductors, show that

∇2E = τ2E, (1)

where
τ =

√
µ0ω j(σn − jσs).
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SOLUTION

∇×E = −µ0
∂H
∂t

= − jµ0ωH 3pt

∇×H = Jn + Js + ε0
∂E
∂t

= Jn + Js + j ε0ωE 3pt

∇×H = (σn − jσs + j ε0ω)E =
[
σn − jσs

(
1 + µ0ε0ω

2λ2
L
)]

E

µ0ε0ω
2λ2

L =
ω2λ2

L

c2
=

4π2λ2
L

λ2
RF

≈ 4π2(50nm)2

(10cm)2
≈ 2x10−12 2pt

∇×H ≈ (σn − jσs)E
∇× (∇×E) = −∇2E 2pt
∇× (∇×E) = ∇× (−µ0ω jH) = −µ0ω j (σn − jσs)E 2pt

−∇2E = µ0ω j (σn − jσs)E

E = E0 e
√

µ0ω j(σn− j σs)n·r 2pt

τ =
√

µ0ω j (σn − jσs)
E = E0 eτn·r .

6 Tues-3

Calculate the surface resistance of niobium of RRR = 30 and 300 at 500
MHz in the normal conducting state at 10K. What is the typical Q0 of a
niobium cavity at room temperature? What is the improvement factor for
a niobium cavity on cooling from room temperature to 10K? The resistiv-
ity of niobium at room temperature is 15x10−8 Ωm, and the ρl product of
niobium is 6x10−16 Ωm2.

SOLUTION

The typical room-temperature Q0 of a niobium cavity is approximately
3x104. 1pt

– RRR 300

RRR =
ρ300K

ρ10K
3pt

ρ10K =
ρ300K

RRR
= 5.0x10−10 Ωm 1pt
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l =
ρl

ρ
=

6x10−16 Ωm2

5.0x10−10 Ωm
= 1.20 µm 1pt

αs =
3
4
µ0ω

(
1
ρl

)
l3 4pt

αs =
3
4

(
1.2566x10−6 m-kg

s2A2

)[
2π(500 MHz)
6x10−16 Ωm2

]
(1.20 µm)3

αs = 8.53 1pt

Rn(l = ∞) = 3.789x10−5ω2/3(ρl)1/3 3pt

Rn(l = ∞) = 3.789x10−5[2π(500 MHz)]2/3(6x10−16 Ωm2)1/3 1pt

Rn(l = ∞) = 0.685 mΩ 1pt

R10K = R∞
(
1 + 1.157α−0.2757

s

)
3pt

R10K = 0.685 mΩ
[
1 + 1.157(8.53)−0.2757

]
= 1.12 mΩ 1pt

σ =
1
ρ

= 6.67x106 Ω−1m−1 2pt

R300K =
√

ωµ0

2σ
4pt

R300K =

√√√√2π(500 MHz)
(
1.2566x10−6 m-kg

s2A2

)
2(6.67x106 Ω−1m−1)

= 17.2 mΩ 4pt

Q10K

Q300K
=

R300K

R10K
=

17.2 mΩ
1.12 mΩ

= 15.4 3pt
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– RRR 30

ρ10K = 5.0x10−9 Ωm 1pt
l = 0.120 µm 1pt

αs = 8.57x10−3 1pt

R10K =
√

ωµ0

2σ
=

R300K√
RRR

4pt

R10K =
17.2 mΩ√

30
= 3.14 mΩ 1pt

Q10K

Q300K
= 5.48 1pt

• Wednesday

7 Wed-1

Derive an approximate expression for the input admittance Yin of a par-
allel RLC circuit in terms of the conductance G, Q, unloaded resonant
angular frequency ω0, and the difference ∆ω of the driven angular fre-
quency ω and ω0 that is valid to first order in ∆ω/ω.
What bandwidth is this approximate expression valid for if ∆ω/ω ≤ 0.01
and the resonant frequency is 1.3 GHz?
Compare this bandwidth to the full-width-at-half-maximum for the cases
that Q = 10x1010, 10x107, and10x104.
What is R/Q in terms of L and C?

SOLUTION

9



G =
1
R

Um =
V 2

4ω2L

Ue =
V 2C

4

U =
CV 2

2

Pd =
GV 2

2

Q =
ω0U

Pd
=

ω0C

G
2pt

R

Q
=

1
GQ

=

√
L

C
2pt

ω0 =
1√
LC

2pt

ω = ω0 + ∆ω

Yin = G + jωC − j
(

1
ωL

)
3pt

= G + jωC

(
1− 1

ω2LC

)
= G + jωC

(
1− ω2

0

ω2

)
1pt

= G + jωC
(ω + ω0)(ω − ω0)

ω2

= G + jC(ω0 + ∆ω)
(2ω0 + ∆ω)∆ω

(ω0 + ∆ω)2
2pt

≈ G + jω0C

(
2ω0∆ω

ω2
0

)(
1− 2

∆ω

ω0

)
2pt

≈ G

[
1 +

(
jω0C

G

)(
2∆ω

ω0

)]
2pt

≈ G

(
1 +

2 jQ∆ω

ω0

)
2pt

0.01 ≥ ∆ν

ν0

(0.01)(1.3GHz) ≥ ∆ν

13MHz ≥ ∆ν 2pt
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∆ν = Qν0 2pt

Q ∆νFWHM 2∆νmax

10x1010 0.13 Hz 26 MHz
10x107 130 Hz 26 MHz
10x104 130 kHz 26 MHz

3pt

8 Wed-2

Derive a simple expression for the impedance Zin. If you don’t like the
idea of negative impedances, think of them as active devices that add
power. The circuit is actually very useful for evaluating passive networks
of components.

What is Zin when measured at a plane that is located a distance λ
4 behind

the current location?
SOLUTION

1
Zin

=
(
−ZZL

ZL − Z
+ Z

)−1

− 1
Z

2pt

1
Zin

=
[
−ZZL + Z(ZL − Z)

ZL − Z

]−1

− 1
Z

2pt

1
Zin

=
Z− ZL

Z2
− 1

Z
2pt

1
Zin

=
Z− ZL − Z

Z2
=
−ZL

Z2
2pt
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Zin = −Z2

ZL

Zin(l) =
Zin + jZ0 tan(βl)
Z0 + jZin tan(βl)

3pt

Zin(λ/4) =
Zin cos(βλ/4) + jZ0 sin(βλ/4)
Z0 cos(βλ/4) + jZin sin(βλ/4)

2pt

Zin(λ/4) =
Z2

0

Zin
=
(

Z0

Z

)2

ZL. 2pt

9 Wed-3

Have a charge pass through the capacitor plates of an initially uncharged
LC circuit. The charge leaves a wake. Use a dipole magnet (ignore radi-
ation damping) to feed the charge back through the capacitor plate. Is it
possible to have the charge arrive at a particular time (phase) so that it
leaves the capacitor with more energy than it originally had?

What’s the maximum energy it could leave with?

Show that the charge experiences a voltage drop equal to half of the in-
duced voltage when it passes through the initially uncharged capacitor
plates.

Is it possible for the charge to be recirculated back to the capacitor at a
time such that the charge will lose additional energy?

Derive an expression for the loss factor k in terms of the resonant angular
frequency and the R/Q of the circuit.
SOLUTION

No. 2pt

What’s the maximum energy it could leave with?

SOLUTION

The initial energy. 2pt

12



Show that the charge experiences a voltage drop equal to half of the in-
duced voltage.

SOLUTION

U1 = Ui + qfV 3pt

U1 + qV + qfV = U2 3pt

The maximum energy the particle may have at the end of the second pass
is the original energy:

U2 = Ui. 3pt

Ui = Ui + 2qfV + qV 2pt

f = −1
2

1pt

Is it possible for the charge to recirculated back to the capacitor at a time
such that the charge will lose additional energy?

SOLUTION

Yes. 2pt

Derive an expression for the loss factor k in terms of the resonant angular
frequency and the R/Q of the circuit.

SOLUTION

Apply conservation of energy to the case when the charge first passes
through the capacitor plates:

∆Ucav + ∆Uq = 0 3pt

CV 2

2
+ qfV 2pt
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V =
q

C
1pt

k =
V

2q
=

1
2C

=
ω0

2

(
R

Q

)
. 1pt

• Thursday

10 Thurs-1

Calculate the stored energy in a 4-cell LEP cavity with Ra/Q0 = 464Ω at
5 MV/m (see page 30).
NOTE: the accelerator definition is used for Ra/Q0.

SOLUTION

R

Q
=

V 2

ωU
4pt(-2 if EE def. used) (2)

ω = 2π(350MHz) = 2.20x109GHz 1pt

V = EL = ENcell

(
βλ

2

)
=

ENcellβc

2ν
4pt

V =
(5 MV/m)(4)(1)(29.98 cm GHz)

2(0.350 GHz)
= 8.57 MV 2pt

U =
V 2

ω(R/Q)
=

(8.57 MV)2

(2.20 GHz)(464Ω)
= 71.9 J 1pt

11 Thurs-2

Sketch the electric and magnetic field pattern that exists in the transverse
plane of a lossless coaxial transmission line. A half-wave resonator is
formed by shorting both ends of a transmission line which has a length
of l. Sketch how the transverse electric and magnetic field components
vary with longitudinal coordinate z (let z = 0 be located at the short
on the right side of the line). Roughly describe the time dependence of
the stored energy during one RF cycle. Explain qualitatively what type
of circuit model would be appropriate for modelling the energy flowing
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(defined as positive in the positive z direction) through a transverse plane
located at z = 0,−λ/8,−λ/4, and − 3λ/8. Be sure to consider what fields
are present at the location of the plane.

What modifications could you make to the cavity that would allow a
beam of charged particles to be accelerated by this mode?

SOLUTION

All of the energy is initially stored in the electric field and H = 0 every-
where. Energy flows from the center to the sides until H is at a positive
maximum and E = 0 everywhere at t = T/4. The field energy is reflected
back to the center where E reaches a negative maximum at t = T/2 and
H = 0 everyhere again. Energy then flows back into the magnetic field,
reaching its negative maximum at t = 3T/4 with E = 0 everywhere. Fi-
nally, the energy is reflected back into the electric field returning to the
same conditions as the beginning of the cycle.

〈P 〉 = Pd + 2 jω (Um − Ue) 4pt

Z(l) =
ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

. (3)

– z = 0 There is no electric field present and a maximum in the mag-
netic field. Since E = 0 the Poynting vector must also be zero and
there is no energy flow, which is intuitively obvious since the line is
shorted and lossless at this location. Current flow with no voltage
drop corresponds to the series resonance model. Zin = 0. 3pt

– z = l/8 Both electric and magnetic fields are present and the sinu-
soidal variations are equal for both fields (i.e.sin(π/4) = cos(π/4)).
Energy flows through the plane, but there is no net transfer , so the
impedance must be a pure reactance. Looking into the plane from
the left to the right there is more energy stored in the magnetic field
than in the electric field, so the net reactance should be inductive. In
fact, the above equation shows that the impedance is a pure induc-
tance at this location.Zin = jωL. 3pt

– z = l/4There is no magnetic field present and a maximum in the
electric field. Since H = 0 the Poynting vector must also be zero and
there is no power flow through this plane. Voltage with no current
flow corresponds to the parallel resonance model.Yin = 0. 3pt

– z = 3l/8Both electric and magnetic fields are present and the sinu-
soidal variations are equal for both fields (i.e.sin(π/4) = cos(π/4)).
Energy flows through the plane, but there is no net transfer , so the
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impedance must be a pure reactance. Looking into the plane from
the left to the right there is more energy stored in the electric field
than in the magnetic field, so the net reactance should be capaci-
tive. In fact, the above equation shows that the impedance is a pure
capacitance at this location. Yin = jωC. 3pt

To accelerate beam with this mode, add beam tubes on either side of the
peak electric field region, and add a drift tube through the center conduc-
tor. The charge is accelerated by the first gap during the first half-period,
moves through the drift region, and is accelerated by the second gap dur-
ing the second half-period. 3pt

12 Thurs-3

A small hole located at the middle of the half-wave resonator is cut and a
smaller diameter trnasmission line is attached with the center conductor
extending slightly into the cavity volume. The small transmission line
runs in a direction perpendicular to z.

Sketch the electric field lines in the region of the small antenna for the
case that RF power is sent down the small coaxial line at a frequency that
is far from all cavity resonances.

Sketch the longitudinal variation of the voltage standing wave in the line.
Be sure to label the positions of the voltage minima DS (detuned short)
and the voltage maximums DO (detuned open).

Draw a lumped element circuit that would accurately model the impedance
measured at the end of the transmission line where the line connects to
the half-wave resonator.
Sketch the electric field lines in the region of the small antenna for the
case that RF power is sent down the small coaxial line at the resonant
frequency of the fundamental half-wave cavity mode.

Qualitatively describe the impedance seen at the end of the line on reso-
nance, specifying in what way it is significantly different than the previ-
ous off-resonance result.

Sketch the longitudinal variation of the voltage standing wave in the line.
Do not move the DO and DS planes. Keep the DO and DS planes in the same
location as in the previous sketch.
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Use the parallel RLC circuit to model the resonance of the nearby half-
wave fundamental cavity mode.

Draw a lumped element circuit which models the coupling between the
antenna and the cavity mode and use this model to calculate the admit-
tance measured at the end of the trnasmission line.

What is the admittance at the DO plane?

What is the admittance at the DS plane?

What is the transformer turn ratio required to match the cavity mode to
the 50 Ω transmission line?

What is the value of the mutual coupling capacitiance which produces
this equivalent tranformer turn ratio?

SOLUTION

The tranmission line is left open circuited at the end, so there is a voltage
maximum near the end of the line. It is not located precisely at the the
end of the line, since the antenna has a finite capacitance Ca:

YL = jωCa.

The first DO plane would be located a distance λ/2−δ from the end where
λ is the RF wavelength and δ is a small number whose value depends on
the capacitance of the antenna shielded by the half-wave resonator. The
DS plane is located at λ/4 intervals away from the DO planes. On reso-
nance, the cavity has a large amount of stored energy and the electric field
at the coupler is primarily that of the cavity mode. There is a large field
in the transmission line’s longitudinal direction (perpendicular to z), but
there is very little field in the plane transverse to the transmission line. In
addition, there must be a large current flowing through the termination
plane to provide the charge needed to terminate some of the large cavity
electric field lines on the antenna. A large current with very little voltage
corresponds to the case of the series resonance. Notice that the coupler
is located at an electric field maximum in the cavity mode. This location
corresponds to a parallel resonace (high voltage with little current) when
power is measured through a plane transverse to the z direction. Trans-
forming a parallel resonance into a series resonance is an example of an
impedance inversion that occurs whenever coupling to cavity modes.
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Zinv =

(
1

ωCk

)2

Zc
=
(

1
ωCk

)2

Yc

YL = jω(Ca + Ck) + (ωCk)2Zc

At the detuned-open plane

YDO = (ωCk)2Zc

and at the detuned-short plane

YDS =
Y 2

0

YDO
=
(

Y0

ωCk

)2

Yc

YDS =

(
1

ωCk

Z0

)2

Yc.

The following relations hold for both pairs of terminals of an ideal trans-
former:

V1

n1
=

V2

n2

n1I1 = n2I2

Z1

n2
1

=
Z2

n2
2

Zin =
(

nin

ncav

)2

Zcav

Yin =
(

ncav

nin

)2

Ycav

The equivalent turn ratio for the capacitively coupled antena is then

ncav

nin
=

1
ωC

Z0
.

The turn ration needed to match the transmission line to the cavity mode
on resonance is

n =
ncav

nin
=
√

Zcav

Z0
=

√
500 GΩ
50 Ω

= 105.

The coupling capacitance which provides this matching is

Ck =
1

nωZ0
=

1
2π(1.3GHz)(105)50 Ω

= 2.45x10−17 F.

• Review
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13 Rev-1

Calculate the London penetration depth λL for Nb which has a supercon-
ducting electron density of 1.13x1028 m−3.

Calculate the normal conducting skin depth δ aat room temperature for
a niobium cavity mode with f = 1.3 GHz skin depth and an electrical
conductivity σ = 6.67x106 Ω−1m−1.

SOLUTION

λ2
L =

m

µ0e2ns

λL =
√

m

µ0e2ns

λL =

√
9.11x10−31kg

(1.09x1030m−3)(1.602x10−19C)21.257x10−6 m-kg
s2−A2

λL = 50.9 nm

δ =
1√

πfµ0σ
=

1√
π(1.3GHz)(1.257x10−6 m-kg

s2−A2 )(6.67x106 Ω−1m−1)

δ = 5.40 µm

SOLUTION

λ2
L =

m

µ0e2ns

λL =
√

m

µ0e2ns

λL =

√
9.11x10−31kg

(1.09x1030m−3)(1.602x10−19C)21.257x10−6 m-kg
s2−A2

λL = 50.9 nm

δ =
1√

πfµ0σ
=

1√
π(1.3GHz)(1.257x10−6 m-kg

s2−A2 )(6.67x106 Ω−1m−1)

δ = 5.40 µm
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14 Rev-2

The superconducting electron density is 1.13x1028 m−3 and the normal
state conductivity is 6.67x106 Ω−1m−1. Calculate the real and imaginary
parts of the surface impedance for a 500 MHz cavity mode.

SOLUTION

Rs =
1
2
σω2µ2

0λ
2
L

λL =
√

m

nse2µ0
=

√
9.11x10−31kg

(1.13x1028m−3)(1.602x10−19C)2(1.257x10−6 m-kg
s2−A2 )

λL = 50.9 nm

Rs =
1
2
(6.67x106 Ω−1m−1)

(
1.257x10−6 m-kg

s2 −A2

)2

(2π)2(500 MHz)2(50.9 nm)3

Rs = 6.86 nΩ
Xs = µ0ωλL

Xs = 2π(500 MHz)(1.257x10−6 m-kg
s2 −A2 )(50.9 nm)

Xs = 2.01x108 Ω

15 Rev-3

A cavity has an accelerating mode with

R

Q
= 50 Ω

Q0 = 1010

Qe = 107

f = 1.3 GHz

and is operating at Vc = 10 MV in full energy recovery mode.

What is the forward power Pf from the generator, the dissipated power
Pc in the cavity fundamental mode, and the reflected power Pr?

What are these power levels for the case that Qe = 108?
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SOLUTION

Pf = Pc + Pr

β =
Q0

Qe
= 103

Pc =
V 2

c

2
(

R
Q

)
Q0

= 100 W

1− Pr

Pg
=

Pc

Pg
=

4β

(1 + β)2
= 4x10−3

Pg =
Pc

4x10−3
= 25.0 kW

1− Pc

Pg
=

Pr

Pg
=
(

β − 1
β + 1

)2

= 0.996

Pr = 24.9 kW. (4)

If Qe = 108 then

Pc = 100W

Pg = 2.55kW

Pr = 2.45kW.

16 Rev-4

The power dissipated in a resistor R of a network of passive compenents
may be calculated by replacing everything external to the resistor with
its Thevenin equivalent circuit:

Vth = Vopen

Zth =
Vopen

Ishort
.

Write the expression for the power dissipated in R as a function of Ishort
and Vopen. Show that this is equivalent to the expression

Qext = QI + QV
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where

QV =
ωU(
V 2

open

2R

)
QI =

ωU(
I2

shortR

2

)
Qe =

ωU

Pd
.

SOLUTION

Pd =
V 2

2R

V = Vth

[
R

(Zth + R)

]
Pd =

R

2

(
V 2

th

|Zth + R|2

)

Pd =
R

2

 V 2
open∣∣∣Vopen

Ishort

∣∣∣2 + R2


PI ≡

I2
shortR

2

PV ≡
V 2

open

2R

QI + QV = ωU

(
PV + PI

PVPI

)
=

ωU

Pd

Pd =
PVPI

PV + PI

Pd =
I2

shortV
2

open

4

I2
shortR

2 +
V 2

open

2R

Pd =
1
4

I2
short
2R

 I2
shortV

2
open

R2 +
V 2

open

I2
short


Pd =

R

2

 V 2
open∣∣∣Vopen

Ishort

∣∣∣2 + R2


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