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= The external field is expelled from a superconductor if H,,; < H. for Type | superconductors.

= For Type Il superconductors the external field will partially penetrate for H.,, > H_; and will completely

penetrate at H, 1\4
f , \ \ 1 Superconductor in Meissner state = ideal diamagnetic
I - -M
1[l Jil
\\ \ Vortex
\ state
| | I
0 H, H. H, H
Complete Melssner effect High-field partial Meissner effect
in type-l superconductors in type-Il superconductors

» Type-I: Meissner state B=H + M =0 for H < H_; normal state at H > H_
* Type-lI: Meissner state B=H + M = 0 for H < H_,; partial flux penetration for
H.; < H < H,,; normal state for H>H,
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et A L ondon equations (1935)

Two-fluid model: coexisting SC and N
"liquids” with the densities n_(T) + n (T) = n.

Electric field E accelerates only the SC
component, the N component is short circuited.

Second Newton law for the SC component:
mdv /dt = eE yields the first London equation:

dJ /dt = (e?n./m)E —— J

(ballistic electron flow in SC) (viscous electron flow in metals)

ok

Using the Maxwell equations, V< E = -j1i,0H and VxH=J,
we obtain the second London equation: A

AMVH -H=0

1/2
mnm
London penetration depth: |4 =| —
P P {e-ns(r)uo]
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Bardeen-Cooper-Schrieffer (BCS) theory (1957).
Nobel prize in 1972

January 7, 2008

Low-Temperature Superconductivity

December was the 50th anniversary of the theory of superconductivity, the flow of electricity without resistance thal can occur in some metals and ceramics
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ELECTRICAL RESISTANCE CRITICAL TEMPERATURE COOPER PAIRS SUPERCONDUCTIVITY
Electrons carrying an alectrical As the meatal is coolad to low The two electrons form a weaak If & pair is scatterad by an impurity, it
current through a metal wire typically temperatures, the lattice vibration slows bond, called a Cooper pair, which will quickly gst back in step with other
encounter resistance, which is A moving electron attracts nearby metal ancounters less resistance than two pairs. This allows the slectrons to flow
caused by collisions and scattering atoms, which create a positively charged  elactrons moving separately. When undisturbed through the lattice of
as the particles move through the wake behind the electron. This wake can  more Cooper pairs form, they behave metal atoms. With no resistance, the
vibrating lattice of matal atoms attract another nearby electron n the same way current may persist for years
Sources. Ok Ridge Nalional | aboratory; Phiip W Philios
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= Attraction between electrons with antiparallel
momenta k and spins due to exchange of lattice
vibration quanta (phonons)

= [nstability of the normal Fermi surface due to
bound states of electron (Cooper) pairs

= Bose condensation of overlapping Cooper
pairs in a coherent superconducting state.

= Scattering on electrons does not cause the electric
resistance because it would break the Cooper pair

The strong overlap of many Cooper pairs
results in the macroscopic phase coherence

Incoherent (normal) crowd: Phase-coherent (superconducting) condensate
each electron for itself of electrons
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= the linear London equations

A

o Fu,

(3%
-
|

Il
=]

V- H-H

A

along with the Maxwell equations describe the electrdynamics of SC at all T if:

J. is much smaller than the depairing current density J,
the superfluid density n_ is unaffected by current

Generalization of the London equations to nonlinear problems
Phenomenological Ginzburg-Landau theory (1950, Nobel prize 2003)

was developed before the microscopic BCS theory (1957).
GL theory is one of the most widely used theories
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= Coherence length - a new scale of spatial variation of the superfluid density
n,(r) or superconducting gap A(r):

é(T)z( L ] L.

dmao, I.-T |
T, T
" The GL parameter i« =2/C isindependent of T. B (T)= o,
» Critical field H/(T) in terms of A and &: c( ) — 5 \/571' 5 (T) 1 (T)
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Single vortex line

&
v

» Small core region I < §
where A(r) is suppressed

* Region of circulatingl
supercurrents, I < A.

« Each vortex carries the
flux quantum ¢,

Important lengths and fields

« Coherence length & and magnetic (London) penetration depth A

A
BEI:LZ In=+0.5|, B{,:L, B, = ¢“2
Y7 227AE 278

Type-ll superconductors: A/£ > 1/2: For clean Nb, A ~ 40 nm, & ~ 38 nm
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Two fluid model considers both superconducting and normal conducting components:

= At 0< T < T, not all electrons are bonded into Cooper pairs. The density of unpaired, “normal”
electrons is given by the Boltzman factor A
Nnormal U &XP ———
kgT

where 2A is the energy gap around Fermi level between the ground state and the excited state.

= Cooper pairs move without resistance, and thus dissipate no power. In DC case the lossless Cooper
pairs short out the field, hence the normal electrons are not accelerated and the SC is lossless even
for T> O K.

= The Cooper pairs do nonetheless have an inertial mass, and thus they cannot follow an AC
electromagnetic fields instantly and do not shield it perfectly. A residual EM field remains and acts on
the unpaired electrons as well, therefore causing power dissipation.

= We expect the surface resistance to drop exponentially below T..

= From previous lecture, recollect the Ohm’s low. For the nearly-free electron model

2
: nLe 7
] = oE = n E
m
where 7 is the average time between collisions. —eEr

\',
= Between scattering events the electrons gain velocity m
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= To calculate the surface impedance of a superconductor, one must take into account the
“superconducting” electrons n in the two-fluid model

= There is no scattering, thus js=—Ns& and one can get the first London equation

: 2
m¥ =g o Us-NCp
ot ot m
= |n an RF field one gets
2 .
js=-i-S E=-igf o jg=—E
maw AL

= One can notice that the effective scattering time for a superconductor is the RF period divided by 21t

= The total current is simply a sum of currents due to two “fluids”:

j:jn+js:(0n_ias)E

= Thus one can apply the same treatment to a superconductor as was used for a normal conductor before
with the substitution of the newly obtained conductivity.
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= The surface impedance

2,= |20 (ri)= \/2(0:*_’?%)(“0

= The penetration depth
1 1
= = -
Voo (o —iog)

= Note that 1/ wis of the order of 100 ps whereas the relaxation time for normal conducting electrons if of the
order of 10 fs. Also, n;>> n, for T << T, hence g, << o,

= Then

o

i i 9 _ 1y o XA a-ixa, /204
5:(1+|)AL(1+|?LJ and Hy—HOe X/ Le |X0'n/ oA

= The fields decay rapidly, but now over the London penetration depth, which is much shorter than the skin
depth of a normal conductor.

Z= o

= For the impedance we get
=

On | - 1 3
+i Xe = A == g LA
20, J s=ad. Rg 59 HoAL

June 23, 2009 USPAS 2009, S. Belomestnykh, Lecture 3: SRF fundamentals 13



\\ Cornell University

» Laboratory for Elementary-Particle Physics B CS SLI rf ace reS| Sti VI ty

= Let us take a closer look at the surface impedance

Wy | Op . _ _1 3
Zo= 220 TN 4| Xg = aup) == 0,0 Lo/
S o, [203 j s=awpA.  Rg 59n HoAL

= One can easily show that X, >> R, — the superconductor is mostly reactive.

= The surface resistivity is proportional to the conductivity of the normal fluid! That is if the normal-state
resistivity is low, the superconductor is more lossy. Analogy: a parallel circuit of a resistor and a reactive
element driven by a current source. Observation: lower Q for cavities made of higher purity Nb.

= Calculation of surface resistivity must take into account numerous parameters. Mattis and Bardeen
developed theory based on BCS, which predicts

2 5

kKT )T
Recs = A?e el
where A is the material constant.

= While for low frequencies (< 500 MHz) it may be efficient to operate at 4.2 K (liquid helium at atmospheric
pressure), higher frequency structures favor lower operating temperatures (typically superfluid LHe at 2 K,
below the lambda point, 2.172 K). 5 (—17.67}
f[MHz]) 107 (Ohm]
1500

= Approximate expression for Nb: Recs = 2"10_4( =
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Type T, H H. H. Fabrication

- K Oe Oe Oe -
Nb I 9.25 1700 2060 4000 bulk, film
Pb I 7.20 - 803 - electroplating
Nb,Sn* [ 18.1 380 5200 250000 film
MgB, I 39.0 300 4290 film
Hg | 4.15 - 411/339 - -
Ta I 4.47 - 829 - -
In I 341 - 281.5 - -

*) Other compounds with the same S-tungsten or A15 structure are under investigation as well.

= High critical temperature (cavities with High-T_ sputter coatings on copper have shown much inferior performance in
comparison to niobium cavities) — lower RF losses — smaller heat load on refrigeration system.

= High RF critical field, which of the order of H_. Strong flux pinning associated with high H_, is undesirable as it is
coupled with losses due to hysteresis. Hence a 'soft' superconductor must be used.

= Good formability is desirable for ease of cavity fabrication. Alternative is a thin superconducting film on a copper
substrate.

= Pure niobium is the best candidate, although its critical temperature Tc is only 9.25 K, and the thermodynamic critical
field about 200 mT. Nb,Sn with a critical temperature of 18.1 K looks more favorable at first sight, however the
gradients achieved in Nb,Sn coated niobium cavities were always below 15 MV/m, probably due to grain boundary
effects in the Nb3Sn layer. For this reason niobium is the preferred superconducting material.
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» It is customary to characterize
Q performance of superconducting
1 ; cavities by plotting dependence of
10 et \l their quality factor on either electric

Residual|losses

' field (accelerating or peak surface) or

d Quench

10 T ., peak magnetic field.
10 . S » Q vs E plots is a “signature” of cavity

L J . ..
e Field emission

Multipacting * * performance.

10 ° Thermat breakdovn L » At low temperatures measured Q is
s / . lower than predicted by BCS theory.

RF Processing  * » There are several mechanisms
10 8 responsible for additional losses.
0 25 50 MV/m  some of them are well understood and
Accelerating Field preventable, some are still under
investigation.
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= At low temperatures the measured surface resistivity is larger than predicted by theory:

Rs = Racs(T)+ Rres

where R, is the temperature independent residual resistivity. It can be as low as 1 nOhm, but typically is
~10 nOhm.

= Characteristics:
* no strong temperature dependence
* no clear frequency dependence
* can be localized 100k
* not always reproducible :
= Causes for this are:
« magnetic flux trapped in at cooldown
« dielectric surface contaminations 101
(chemical residues, dust, adsorbates) -
* NC defects & inclusions
« surface imperfections

» hydrogen precipitates 2 3 4 5
T /T

1000

Rs[nQ)
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= |deally, if the external magnetic fiels is less than H_,, the DC flux will be expelled due to Meissner effect. In
reality, there are lattice defects and other inhomogeneities, where the flux lines may be “pinned” and
trapped within material.

Magnetic Field Lines
= The resulting contribution to the residual resistance

_ Hex
Rmag 2HC2R”

For high purity (RRR=300) Nb one gets

Rrag = 0.3(NQ)H e (MOe)y/ f (GH2)

Earth’s field is 0.5 G, which produces residual resistivity of 150 nOhm at 1 GHz
and Q, < 2x10°

= Hence one needs magnetic shielding around the cavity to reach quality factor in the 10" range.

Supercurrents

Usually the goal is to have residual magnetic field of less than 10 mG.

M
fluxoid field-free i -super
region I, vortex
i}, current

7\
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Cracks

Ty

- E oy
X :;r\”__'"ﬁ\-{' Surface defects, holes ca
cause TB

n also

Surface defects can cause:
= Enhanced residual losses
= Premature quench
= Field emission

June 23, 2009 USPAS 2009, S. Belomestnykh, Lecture 3: SRF fundamentals 19



C 11 Uni it . .
A e VSRR Y Surface contamination

1.3 GHz two-cell cavity with attached ferrite beam loads.
Expected to measure Q > 1010

1.0E+10 ——

,,,,,,,,,,,,,,, @ First test

B After fast cooldown |
A with CCG's shielded | =~ _
®at4.2K

8, 1.0E+09 | o

* Low Q due to cavity
contamination by dust
from broken ferrite tiles.
Simulations indicate that
one ~1 um size particle is

4 5 6 ! °| enough to cause this!
Eacc [MV/m]

1.0E+08

0

Q is consistent with BCS at 4.2 K
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= Re-tested the cavity after removing ferrite and rinsing it with methanol: Q was still low.
= HPR’d the cavity and tested again: Q is back to normal.

—— HPR and methanol rinse 11/1/2007
- Methanol rinse 10/24/2007
G e ————— o
& 1.0E+10 - \\
1 Y
//././ . m— .
1.0E+09 ‘ ‘

0 2 4 6 8 10 12 14 16 18 20

Eacc [MV/m]
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The hydrogen dissolved in bulk niobium can under certain conditions during cooldown precipitate as a
lossy hydride at the niobium surface. It has poor superconducting properties: Tc = 2.8 K and Hc = 60 Oe.
This is known as the “Q-diseas.” At temperatures above 150 K too high concentration of hydrogen is
required to form the hydride phase (10° - 104 ppm). However, in the temperature range from 75 to 150 K the
required hydrogen concentrations drops to as low as 2 wt ppm while its diffusion rate remains significant.
This is the danger zone.

L I | I |
Mitigation: e
= rapid cooldown through the danger = panger zons: 1150 %
temperature zone; T ceeronsmneessest & 302 800, i
= degassing hydrogen by heating the Nb Te .
cavity in vacuum of better than 10 Torr v e %
at 600°C for 10 hrs or at 800°C for 1 to 2 “q eem@cox
hrs.; 189 = .
= keep the acid temperature below 15°C '-"'....
during chemical etching. Tttt ettt mttennee o g0k
1E8 I 1 I ]
0 2 4 5] 8 10
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= |f there is a localized heating, the hot area will increase with field. At a certain field there is a thermal
runaway and the filed collapses (loss of superconductivity or quench).

= Thermal breakdown occurs when the heat generated at the hot spot is larger than that can be evacuated to
the helium bath.

(a) rA ® T oa
Temperature Tanparanin » Both the thermal conductivity and the

surface resistance of Nb are highly
temperature dependent between 2 and 9 K.

———————————————— Tc

Defect Defect

Temperature
Tbath
Helium Bath
‘/ATKapitza
tI Superconductor

Tsurface
- RENARRAASEARA
-

Deposited Heat Flux Q

[T

0mK AT 120 mK 1 log(aT (mK]) 4
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= Residual Resistivity Ratio (RRR) is a measure of material purity and is defined as the ratio of the resistivity
at 273 K (or at 300 K) to that at 4.2 K in normal state.

= High purity materials have better thermal conductivity, hence better handling of RF losses.
= The ideal RRR of niobium due to phonon scattering is 35,000. Typical “reactor grade” Nb has RRR = 30.

Nb sheets used in cavity fabrication have RRR 2 200. 1000 g
100
|
Z 10
AM(4.2K) ~0.25-RRR [W f"(m-K)] E z
T 1 Z
-1 = 01 Y 454
RRR = I E i/
{ Z Jilm ] £ 0.01 :
0.001
05 1 15 2 25 3 35 4 45
T : Temperature [K]

where the f; denote the fractional contents of impurity 1 (measured in weight ppm) and the g the
corresponding resistivity coefficients which are listed i the following table.

Table IT Weight factor ; of some impurities (see equation (4))
Impurity atom 7 N O C H Ta
7;in 10" wt.ppm | 0.44 0.58 0.47 0.36 111
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There are several ways to improve material purity of Nb: Electron Electron
Gun Gun
= Industry can produce high Nb purity by e-heam melting in a vacuum furnace. Electron
RRR =300 - 400 Nb is available.
= Cavities can be post-purified in a vacuum furnace by heating to ~ 1400°C, Moo\
evaporating Ti on cavity surface (use titanium as getter to capture impurities), DiD Water
upon cooldown etching away the titanium. This doubles the purity e
(RRR ~ 600 if originally RRR = 300). i ingor
- support
1E+11
- W 15z
cavity
Tungsten
1E+10 — heaters
o — Niobium box
o T;."i‘t:rtilanium
18409 Titanium
rod
— Heat shields
1E+08 | -+— Vacuum
0 5 10 15 20 25 30 35 vessel
Eacc (MV/m) [CEA Saciay, SEA/GECS, 1999 | Scale: 10 cm
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= The observed Q of a niobium cavity shows several interesting features with increasing field. As there is
still no commonly accepted explanation of physics behind each of the Q-slopes, we are mentioning those
just to have a complete picture and refer for further details to second volume of H. Padamsee’s book.

= |n the low-field region Q surprisingly increases. This does not present any limitation of cavity performance.
Mild baking generally enhances the low-field Q-slope.

= At medium fields Q gradually decreases, a common feature of all Nb cavities. This is generally attributed to
a combination of surface heating and “nonlinear” BCS resistance. Mild baking (100 — 120°C for 48 hrs)
usually decreases this Q-slope.

1E11
= Finally, there is a strong Q-drop at the highest fields. ] —— !
This is still highly active area of basic SRF research. Mediun ftld Q-slope
Mild baking helps under certain conditions. -
. . f\ -17.'.‘-- -
= Eventually superconductivity quenches due to -~--.1.
a thermal instability at defects. o B0~ —— ey
1 Low field Q-slope | - -
| LY
A
.I . o
High field Q-slope
1E9 T T T

0 10 20 30 40 50 60 70
Epk, MV/m
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= The superconducting state is characterized by the critical temperature and magnetic field.
= There are Type | and Type Il superconductors.

= Two-fluid model and BCS theory explain surface resistivity of superconductors.

= Nb is a material of choice in either bulk form or as a film on a copper substrate.

= QOther materials are being investigated.

= At low temperatures residual resistivity limits performance of superconducting cavities.

= There are several phenomena responsible for the deviation of “real world” losses from
theoretical predictions.

= Material quality (impurities, mechanical damage) plays important role.
= Performance of SC cavities is dependant on the quality of a thin surface layer.

s We will discuss other mechanisms limiting performance of superconducting cavities in the
next lecture. Also, we will assume that cavities are made of bulk Nb (unless other materials
are specifically mentioned.)

June 23, 2009 USPAS 2009, S. Belomestnykh, Lecture 3: SRF fundamentals 27



