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Introduction to Accelerators

Lecture4
Basic Properties of Particle Beams
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Dept. of Physics, MIT
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From the last lecture
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I| I' = We computed the B-field from current * *
1 loop with I = constant A

* By the Biot-Savart law we found that on the z-axis

2 2
BZI—ZRSin9fd¢2 =R
cr 0 c(R2 + z2) 906
* What happens if we drive the current to 9"
have a time variation? r
P —

Yo
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II I- == The far field B-field has ot 4 Pl
Il astatic dipole form ', L
Hilri0:4)= YA
1 = 4”0 3 2cos(9)F +sin(9)d]

Importantly the ring of current does not radiate
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II I- = (Question to ponder: ol o Tk
Il What is the field from this situation? I,
90-6
2p”
0
C R >
T ——

We’ll return to this question in the second half of the course

US Particle Accelerator School



. . _ # %
Il§1 !s this really paradoxical? "
** **
* Let’s look at Maxwell’s equations
V. o H(F,t)=0 VxE(F,t)=—6#°;(F’t)
V. &0 E(F,t)= plF,1) Vxﬁ(f,t)=J’(f,t)+ag‘-"§t(F’t)

% Take the curl of VXE

OpVxH(F,t)  dpd(F,t) 1 3%E(F,¢)

VxVxE(F,t)=
xVxE(r,t) ot ot c? ot

* Hence

1 9°E(F,t) 3 pud(F,t)
cz o2 ot

= | VxVxE(F,t)+
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I I-- The dipole radiation field: note the *Je*
similarity to the static dipole o, *

E(F:t) / '."_-\\
Near field region
’ (r<< A/2m
N

2
jkld —jkr 1 1 2
E 2
E(F) =1, S {r[jkr+ T cos(0)+0 jkf+ T sin(@)

US Particle Accelerator School




I"hir i
* *

Now on to beams
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II I. = Beams: particle bunches ol o Tl
Il with directed velocity o,k

* lons - either missing electrons (+) or with extra electrons (-)
% Electrons or positrons
% Plasma - ions plus electrons

% Source techniques depend on type of beam & on application
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Il || | Electron sources - thermionic * *
** **

% Heated metals

—> Some electrons have energies above potential barrier
Cannot escape

Enough energy
to escape
/

_~ +HY
N

# of electrons

%

Electrons in a metal obey Fermi statistics

\
Work function = ¢

dn(E) _ 1
dE _A\/E[e(E—EF)/kT+]£|
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II I-- Electrons with enough momentum can o o B
escape the metal «

% Integrating over electrons going in the z direction with
p?/2m>E_ + ¢
yields
J, = fdprdpy fdpx(2/h ) (E)v,

pz free

some considerable manipulation yields the Richardson-Dushman

equation
| o ATZexp( 'q¢)
Ko T

A=1202 mA/mm?2K?
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|| Ii |- Brightness of a beam source * *
*

* A figure of merit for the performance of a beam source is
the brightness

B - Beam current _ Emissivity (J)
Beam areao Beam Divergence -/ Temperature/mass

_ Je _Jy

) (g

Typically the normalized brightness is quoted for y =1
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II I- = QOther ways to get electrons o o Tt
Il over the potential barrier o, *

* Field emission
— Sharp needle enhances electric field

4hH

% Photoemission from metals & semi-conductors

= Photon energy exceeds the work function

= These sources produce beams with high current densities and low
thermal energy

= This Is a topic for a separate lecture
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II |i|- Anatomy of an ion source

Container

for plasma \

% 4
% 4
¢ 4
* ik *
Extraction
electrodes

4

Energy in to o
lonize gas
|
—»
Gas In —
Plasma

\ out
J\Electron filter

Electron beams can also be used to ionize the gas or sputter ions from a solid
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What properties characterize particle beams?
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Ilj]" Beams have directed energy T
w

% The beam momentum refers to the average value of p, of
the particles

pbeam - <pz>

% The beam energy refers to the mean value of

2.4

1/2
Ebeam [<pz> C +m-C ]

% For highly relativistic beams pc>>mc?, therefore

Ebeam < pz>
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IlI1" Measuring beam energy & energy spread *  +
* X
* Magnetic spectrometer - for good resolution, Ap one needs
= small sample emittance ¢, (parallel particle velocities)

— a large beamwidth w in the bending magnet
= a large angle ¢
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II Iil- Beam carry a current 5 ol
Ll R TR

o~ | ~ ne<v._> -
%) — Duty factor = E Tp“ *

UL -t

) T .

>
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IljI’ Measuring the beam current :
w
*
<———=< Return current
' A '
Beam current >——— >
' wyy '

Beam pipe

Voltage meter

Beam current = =——— >

Stripline waveguide

% Examples:
= Non-intercepting: Wall current monitors, waveguide pick-ups

= [ntercepting: Collect the charge; let it drain through a current meter
» Faraday Cup
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I§I Collecting the charge: Right & wrong ways{ ’

The Faraday cup

>I ) ||>
g ¢

Simple collector Proper Faraday cup
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* *
Il li |- Bunch dimensions * *

For uniform charge distributions
We may use “hard edge values

For gaussian charge distributions

Use rms values o,, o,, O,

y

We will discuss measurements of
bunch size and charge distribution later
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- . . * *
Il But rms values can be misleading .
' *
Y | S — e B
_ ] o2f .
0.050 - i : :
' i 0.1F .
E ool 18 of .
S - 4 > s )
_ 1 -0.1F -
-0.050 | ] i :
A : -0.2F -:
_0.10 3 1 1 1 g k. g F g oeop R gucp g oag T i g 1 1 1 § _0'3 :Jllllll 111111[111:1111111111:
0.1 -0.05 0 0.05 0.1 03 -02 -01 0 041 02 0.3

y (cm)

Gaussian beam

y (cm)

Beam with halo

We need to measure the particle distribution
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- . : . i ! * *
11" Measuring beam size & distribution —
.,  *
*
transverse | longit.
)
PROPERTY MEASURED — E % = £ Effect on beam
2 3 O =
S| | B 8| & 8l L +|
|l el Sl 8|5l & 2| | B
Sl L2l =1L E| =] =
Sls| o] 23| = 2| 51 8
2l 2|1 8|l gl 8| E| 7| 2] B
= N N| E
—|l&a|leQlunl@| O Hd&IN]-1+ 1D
Secondary emission monitors ® e 0 o ¢ X [x
Wire scanners o (0 O X
Wire chambers o0 X |x
Gas curtain [ BN BN _ x
Residual-gas profile monitors ® 0 o X
Scintillator screens ® O x |x [x
Optical transition radiation ® 0o X
Synchrotron radiation o 0 0|0 |0 X
Scrapers and measurement targets ® 0O X
Beamscope ® 0o X
Effect on beam: N none @ primary purpose
- slight, negligible ® indirect use
+ perturbing
D destructive
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N . .
Il I" Some other characteristics of beams * *

% Beams particles have random (thermal) L motion
1/2
o—>0—— X
I )
Pz

% Beams must be confined against thermal expansion during
transport

——
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|I |i |- Beams have internal (self-forces) * *

% Space charge forces
— Like charges repel
—> Like currents attract

% For a long thin beam

60 1 peem (A)
E_(V/cm)=
oI =R e
B, (gauss) = e ()

S Ryeam(CM)
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(B i * ®
|| ||| Net force due to transverse self-fields * D =y
** **
In vacuum:
Beam’s transverse self-force scale as 1/y2

— Space charge repulsion: E N

=> Pinch field: B, ~ |

beam
~V, Eg

sp,L

beam Vz I\Ibeam

|:sp -0 (Esp,L TV, X Be) - (1'V2) Npeam ~ I\Ibeam/YZ

Beamsin collision are not in vacuum (beam-beam effects)
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II I- = Example: Megagauss fields * P *
1 in linear collider o, *
1 e—
electrons - positrons

~e—— =

At Interaction Point space charge cancels; currents add
==> strong beam-beam focus

--> Luminosity enhancement
--> Strong synchrotron radiation

Consider 250 GeV beams with 1 kA focused to 100 nm
B e ~ 40 Mgauss
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I| I- = Applications determine the desired * *

® w
Il beam characteristics o, *

Energy E =y mc? MeV to Te V
Energy Spread (rms) o=A EIE, ~0.1%
Momentum spread Avly

Ap/p
Beam current (peak ) I 10 - 10* A
Pulse duration (FWHM) T, 50fs -50ps
Pulse length o, mm - cm

(Standard deviation)

Charge per pulse Qp 1 nC

# of Particles number Np . ]
Emittance Is a

Emittance (rms) € 1 mmm-mrad /y
measure of beam

Normalized emittance €n= YPe .

L quality

Bunches per My 1- 100

macropulse

Pulse repetition rate f 1-10°

Effective bunch rate f My 1-10°
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* *

What is this thing called beam quality?
or
How can one describe the dynamics of
a bunch of particles?
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N - 1 * *
Ilj]" Coordinate space o)
* %

Each of N, particles is tracked in ordinary 3-D space

Orbit traces

K RERGK 25
SRR SRS

Not too helpful
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|| |i |- Configuration space: *

6N,-dimensional space for N, particles; coordinates (Xi, p;), 1 = 1,..., N,
The bunch is represented by a single point that moves in time

~J

Useful for Hamiltonian dynamics
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guration space example: ol o Tt
1 particle in an harmonic potential K,
w,, constant D,

But for many problems this description carries
much more information than needed :

We don’t care about each of 1019 individual particles
But seeing both the x & p, looks useful
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Ill-- Option 3: Phase space * e
- - - - * *
Il (gas space in statistical mechanics) I,

6-dimensional space for N, particles
The it particle has coordinates (x;, p;), i =X, Y, Z
The bunch is represented by N, points that move in time

Px

In most cases, the three planes are to very good approximation decoupled
==> One can study the particle evolution independently in each planes:
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|| |i|- Particles Systems & Ensembles S
** **

% The set of possible states for a system of N particles is referred as an
ensemble in statistical mechanics.

* In the statistical approach, particles lose their individuality.
% Properties of the whole system are fully represented by particle density

functions f,y and f,j :

fon (% P ¥: B,,2 P,) dxdp, dydp, dzdp, foo (X, p)ax dp =123

where

ffGD dxdp, dydp, dzdp, =N

: US Particle Accelerator SChOOI |
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1§ Longitudinal phase space '

% In most accelerators the phase space planes are only weakly coupled.
= Treat the longitudinal plane independently from the transverse one

— Effects of weak coupling can be treated as a perturbation of the
uncoupled solution

* In the longitudinal plane, electric fields accelerate the particles

— Use energy as longitudinal variable together with its canonical
conjugate time

% Frequently, we use relative energy variation ¢ & relative time = with
respect to a reference particle

_E-E
E,

o

T =t-1,

% According to Liouville, in the presence of Hamiltonian forces, the area
occupied by the beam in the longitudinal phase space is conserved

: US Particle Accelerator SChOOI |
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|I Ii |' Transverse phase space

w *
*® w
'k* **

* For transverse planes {x, p,} and {y, p,}, use a modified phase space

where the momentum components are replaced by:

pxi%X,:_ pyi%y’:_

dx dy

ds ds

where s is the direction of motion

% We can relate the old and new variables (for Bz #0) by

where /g’:v—s and )/:(1—/32)]/2

dt ds

C

_ ax. _ ax. _ ,
Pp=ymy—=yMV,—— =y mM,CX

A

W

pWS PROJECTION

S

S

>

=Xy

Note: x; and p; are canonical conjugate variables while x and x;” are not,
unless there is no acceleration (y and S constant)

From: Sannibale USPAS lectures
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Particles stay on their energy contour.

Again the phase area of the ensemble is conserved
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II l- = Emittance describes the area in phase :*
1 space of the ensemble of beam particles

Emittance - Phase space volume of beam

Phase space of an
harmonic oscillator

......
Y o

ks (X) - frequency of

rotation of a phase
volume

RMS emittance

82 — RZ(VZ _ (R/)Z)/CZ
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N - . . N * *
I| ||| Twiss representation of the emittance * *
** **

* A beam with arbitrary phase space distribution can be represented by
an equivalent ellipse with area equal to the rms emittance divided by .

% The equation for such an ellipse can be written as X' a4

% Accelerator physicists often write this equation in terms of
the so-called Twiss Parameters f;, y; and o

12 2 I —
ﬁTwW +VTWW t 2O{TWVVW —¢€

W=X,Y

W

where

<W2> = Brubu <W’2> = Y€y (WW)=—agE, WX

— US Particle Accelerator SChOOI |
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N . . & &
Il l" Force-free expansion of a beam * *
w * **
Py D,
Drift distance L
—
X X

Notice: The phase space area is conserved
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|| Ii |- Matrix representation of a drift S
'k* **

% From the diagram we can write by inspection
X 1 L\/X, X =X, + LX,
! = ! i / /
X 0 1)X, X' =X,

<x2> = <(x0 + Lx3)2> = <x§> + L2<x(’)2> + 2L<x0x(’,>
- )=t
(xx'y = ((x, + Lxg Jxg ) = L <xc’,2> +(XoXg )

* Now write these last equations in terms of S;, y and a5
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= Recalling the definition of the Twiss
i parameters

Bre=Proe + Lyree —2Lar e

V1€ = V1of

—0€ = Lyroe— oot

By (1 L —2LY(Bro)
0 1 0 | ¥+o
\OCT/ \O - L 1 )\aTO}

= | V1
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Illil- A numerical example

-3
10x10 l T T T T -
.l
o"'.
8 - == s = "‘. -
= Bro=1m -ttpy=0 .
— "0'
L 0%
N6k y 2
o '.o .
4 Lot =] jun enuttance
s 4} ,,.,.-" +=== 10 jun enuttance| _|
E 00000"...' —
Y
a5 1
0k 1 1 ] | 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0
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I§I For your notes, as shown in many books:

(f

T —sx——ax/,B

‘/_ b= lg/ﬁ/ \(«/E—a\/%]

As for the upright ellipse X .. =P Vo =AVE
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This emittance iIs the phase space area
occupied by the system of particles, divided by &

The rms emittance i1s a measure of the mean non-
directed (thermal) energy of the beam
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= o _
o @t, 1) Liouville: Under conservative forces phase space
o evolves like an incompressible fluid ==>
/
/
4> oy
2) Under linear forces macroscopic
X’ (such as focusing magnets) &
Tl Z=wM4 y =constant
Z=MN8 : : : : .
emittance is an invariant of motion
Z=nN12/
Z=0 e é\\ X
iy S

% 3) Under acceleration
> YE = g

I us Particle Accelerator SChOOI

is an adiabatic invariant




S | ) . * *
|I |" Emittance conservation with B, % *
** **

* An axial B, field, (e.g.,solenoidal lenses) couples transverse planes

= The 2-D Phase space area occupied by the system in each transverse plane
Is no longer conserved v

% Liouville’s theorem still applies to the 4D transverse phase space
= the 4-D hypervolume is an invariant of the motion

% In a frame rotating around the z axis by the Larmor frequency
w,_ = 0B,/ 2g m,, the transverse planes decouple
= The phase space area in each of the planes is conserved again
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N - 1 o . w w
I| Il I Emittance during acceleration * *
w * **

* When the beam is accelerated, S & y change

= x and x’ are no longer canonical
= Liouville theorem does not apply & emittance is not invariant

Accelerate by E;

T = kinetic energy

I US Particle Accelerator School [ —
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N - w *
||||| Then... g X
** **
Yo =tanf, = Pro - Pyo y' =tan6 = Py = Pyo y' — Bo Yo
Pro  Bo¥oMyC p, pPymyC Vo By
In thi & _Y —— —
nthiscase =2 ==> Bye, =ByYot
8y0 yO

% Therefore, the quantity g y € Is invariant during acceleration.
% Define a conserved normalized emittance

8ni:ﬁ’y‘gi i:X’y

Acceleration couples the longitudinal plane with the transverse planes
The 6D emittance is still conserved but the transverse ones are not

us Particle Accelerator SChOOI [ —
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I I.- Nonlinear space-charge fields filament :*
phase space .

Consider a cold beam with a ; S (RS i Y
Gaussian charge distribution : j ‘ SRR -
entering a dense plasma R s = T S N

At the beam head the plasma | i Ol
shorts out the E, leaving only o T R i ) i i

............

the azimuthal B-field i L

T e 1000000 T = 5. 250E-00

The beam begins to pinch trying
to find an equilibrium radius i

. .\QI\.“

x* 7 ) x . -
] » e -~ “‘"-R'q, £ ol Y ZOR
3 J;!(.I -, o . Y @ -:

O]

® o °

ety A. .

» * OB N = @ = N oM oow ow
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II I. = Example 2: Filamentation of ol o Sl
Il longitudinal phase space o,k
W t=0 - o =

ine) [es]
-600  -400  -200 0 200 400 €00

Data from CERN PS

The emittance according to Liouville is still conserved

Macroscopic (rms) emittance is not conserved
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THs Non-conser vative for ces (scattering) :* *:
I I" INcreases emittance kL

— Scatterer —>D

<Vx> Scattel’el’ — <VX + AVX>
PP | Px/P;
X — X
|
Pu/P: P/P:
A A
MY MY
X X
\ |/ \|
| 4 v
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N . * *
IliI" The Concept of Acceptance e

Example: Acceptance of a slit

y\\
NN

Matched beam

Unmatched beam .
emittance

emittance

/

Electron /

Trajectories \ h
\

X

X

N

-h/d

/

Acceptance at
the slit entrance

£\

QN

us Particle Accelerator SChOOI [ —
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I Y e
* *

Is there any way to decrease the emittance?

This means taking away mean transverse momentum,
but
keeping mean longitudinal momentum

We’ll leave the detalils for later in the course.
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|| Ii |- Measuring the emittance of the beam x *
®

82 — RZ(VZ _ (R/)Z)/CZ
* RMS emittance

— Determine rms values of velocity & spatial distribution

* ldeally determine distribution functions & compute rms
values

% Destructive and non-destructive diagnostics
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|| |i |" Example of pepperpot diagnostic . }

phosphorous screen

pepperpot screen

| 4
incident ™ g'
beam - | 2
I 4d:
L L -

* Size of image ==>R

% Spread in overall image ==> R’

* Spread in beamlets ==>V

* Intensity of beamlets ==> current density
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N - < . * *
|| |" Wire scanning to measure R and ¢ * *
* *

* *

SNS Wire Scanner

% Measure x-ray signal from beam
scattering from thin tungsten wires

% Requires at least 3 measurements along
the beamline

US Particle Accelerator SChoo | | mmmm—



I'Iir Measured 33-mA Beam RMS Emittances x "

@ @
© ®©
&) &)
)] )]
E E
& e
= =
i i
i i
i i
< > < 4
10.1 mm full scale 5.9 mm full scale
Horizontal, 0.22 pi mm mrad Vertical, 0.15 pi mm mrad
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Matching beams & accelerators
to the task
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I'li]’ What are the design constraints? £

% Beam particle
* Beam format
% Type of accelerator

% Machine parameters

I US Particle Accelerator School [ —



Il I- = Accelerator designer needs figures of o o Tt
Il merit to compare machine alternatives K,

% Physics based

— Colliders
* Energy reach, Collision rate (Luminosity), Energy resolution
= Light sources
« Spectral range, Spectral brilliance
% Economics based
— Total cost, $/Watt, €/Joule, operating cost
— Lifetime, Reliability, Availability
* Facility based
— Size, Weight, power consumption
==> Accelerating gradient, efficiency
% Technology based
= Technical risk, expansion potential
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THs Figure of Merit 1: Beam Energy == o o Tl
I ||| Energy frontier of discovery K,

The Energy Frontier

(Discoveries)

Hadron colliders

(top quark Tevatron)

-
o

>
(@)
| .
()
L
7))
n
(0
=
—“—
(®)
| -,
)
-~
o
@
®)
-
c
()
=
-—
—
wn
o
O
O

“Livingston plot”

Wakefields, impedances

®Col|iding beams :
1960 1970 1980 1990 2000 2010 2020 2030
Strong ’

_ Year of First Physics
focusing
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11:= High Energy Physics Figure of Merit2: ~ « "
I ||| Number of events A

Events= Cross- section x (Collision Rate) x Time
Beam energy: sets scale of physics accessible

N1 x N2x frequency ~ Ni x N2x f
Overlap Area Aox0oy

x Correction factors

Luminosity =

We want large charge/bunch, high collision frequency & small spot size
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Log luminosity (cm? s1)

34

32

30

Example from high energy physics: * g *
Discovery space for future accelerators . «
%\i\’ i
- .

i 4 ™ ae VLHC

AT N
i o

MU SSC
. Tevatron Energy x Current
Luminosity =

Focal depth x Beam quality

0.01 0.1 | 10 100 1000
Energy of constituent c.m. (TeV)
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*
Ill.- FOM 1 from condensed matter studies: ™
Il Light source brilliance v. photon energy % ..
10% [T T
S s - Duty
10° : ) anz[})c.;l.)z\i_s]egﬁ{:ZLs : factor
10 L / | : correction
- g for
107 - R y pulsed linacs

- Storage Ring
10” - Light

—  Sources _
102 (D.F.~107)

BESSY-I APS
} Unduylas

ESRF-Undulator

U49

Peak Brilliance [Phot./(sec - mrad® - mm® - 0.1% bandw.)]

21

107
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