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Types of tune shifts: Incoherent motion

• Center of mass does not move

• Beam environment does not “see” any motion

• Each particle is characterized by an individual amplitude &

phase

From: E. Wilson Adams lectures



US Particle Accelerator School

Incoherent collective effects

Beam-gas scattering

Elastic scattering on nuclei => leave physical aperture

Bremsstrahlung

Elastic scattering on electrons           leave rf-aperture

Inelastic scattering on electrons

=======> reduce beam lifetime

Ion trapping (also electron cloud) - scenario

Beam losses + synchrotron radiation => gas in vacuum chamber

Beam ionizes gas

Beam fields trap ions

Pressure increases linearly with time

Beam -gas scattering increases

Intra-beam scattering
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Intensity dependent effects

Types of effects

Space charge forces in individual beams

Wakefield effects

Beam-beam effects

General approach: solve

For example, a Gaussian beam has
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Beam-beam tune shift

For  >> 1, Felec  Fmag

Therefore the tune shift is

  For a Gaussian beam
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Effect of tune shift on luminosity

The luminosity is

Write the area in terms of emittance &  at the IR

For simplicity assume that

In that case
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Increase N to the tune shift limit

We saw that

or

Therefore the tune shift limited luminosity is
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Incoherent tune shift for in a synchrotron

Assume: 1) an unbunched beam (no acceleration), & 2) uniform

density in a circular x-y cross section (not very realistic)

  x + K(s) + KSC(s)( )x = 0  Qx0  (external)  +    Qx (space charge)

For small “gradient errors” kx
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From: E. Wilson Adams lectures
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Incoherent tune shift limits current
at injection

using I = ( e c)/(2 R) with

N…number of particles in ring

x,y….emittance containing 100% of particles

Qx,y =
r0

2 2 3

N

x,y

 “Direct” space charge, unbunched beam in a synchrotron

 Vanishes for  » 1

 Important for low-energy hadron machines

Independent of machine size 2 R for a given N

 Overcome by higher energy injection ==> cost

From: E. Wilson Adams lectures
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Injection chain for a 200 TeV Collider
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Beam lifetime

Based on F. Sannibale USPAS Lecture
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Finite aperture of accelerator
==> loss of beam particles

Many processes can excite particles on orbits larger than

the nominal.

If new orbit displacement exceed the aperture, the

particle is lost

 The limiting aperture in accelerators can be either physical

or dynamic.

Vacuum chamber defines the physical aperture

Momentum acceptance defines the dynamical aperture

From: Sannibale USPAS Lecture
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Important processes in particle loss

Gas scattering, scattering with the other particles in the

beam, quantum lifetime, tune resonances, &collisions

Radiation damping plays a major role for electron/positron

rings

For ions, lifetime is usually much longer

• Perturbations progressively build-up & generate losses

Most applications require storing the beam as long as

possible

==> limiting the effects of the residual gas scattering

==> ultra high vacuum technology

From: Sannibale USPAS Lecture
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What do we mean by lifetime?

Number of particles lost at time t  is proportional to the

number of particles present in the beam at time t

Define the lifetime  = 1/ ; then

Lifetime is the time to reduce the number of beam particles

to 1/e of the initial value

Calculate the lifetime due to the individual effects (gas,

Touschek, …)
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From: Sannibale USPAS Lecture
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Is the lifetime really constant?

In typical electron storage rings, lifetime depends on beam

current

Example: the Touschek effect losses depend on current.

When the stored current decreases, the losses due to Touschek

decrease ==> lifetime increases

Example: Synchrotron radiation radiated by the beam

desorbs gas molecules trapped in the vacuum chamber

The higher the stored current, the higher the synchrotron radiation

intensity and the higher the desorption from the wall.

Pressure in the vacuum chamber increases with current

==> increased scattering between the beam and the residual gas

==> reduction of the beam lifetime

From: Sannibale USPAS Lecture
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Examples of beam lifetime measurements

ALSALS

DADA NENE

Electrons Positrons
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Beam loss by scattering

Elastic (Coulomb scattering) from

residual background gas

Scattered beam particle undergoes

transverse (betatron) oscillations.

If the oscillation amplitude exceeds

ring acceptance the particle is lost

Inelastic scattering causes

particles to lose energy

Bremsstrahlung or atomic excitation

If energy loss exceeds the

momentum acceptance the particle is

lost

Incident positive

particles

nucleus

photon

Rutherford cross section

Bremsstrahlung cross section
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Elastic scattering loss process

Loss rate is
dN

dt Gas
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Gas scattering lifetime

Integrating yields

For M-atomic molecules of gas

 For a ring with acceptance  A & for small 
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Inelastic scattering lifetimes

Beam-gas bremsstrahlung: if EA is the energy acceptance

Inelastic excitation: For an average ßn

( ) ][0

][

1

ln

14.153

nTorrA

hoursBrem

PEE

Gas hours[ ] 10.25
E0

2
[GeV ]

P[nTorr ]

A [μm ]

n [m ]



US Particle Accelerator School

Touschek effect:
Intra-beam Coulomb scattering

Coulomb scattering between beam particles can transfer

transverse momentum to the longitudinal plane

If the p + p  of  the scattered particles is outside the momentum

acceptance, the particles are lost

First observation by Touschek at ADA e+e- ring

Computation is best done in the beam frame where the

relative motion of the particles is non-relativistic

Then boost the result to the lab frame

1

Tousch.

  
1

3

Nbeam

x y S

1

pA p0( )
2   

1
3

Nbeam

Abeam S

1
ˆ V RF



US Particle Accelerator School

Transverse quantum lifetime

At a fixed s, transverse particle motion is purely sinusoidal

Tunes are chosen in order to avoid resonances.

At a fixed azimuthal position, a particle turn after turn sweeps all

possible positions between the envelope

Photon emission randomly changes the “invariant” a &

consequently changes the trajectory envelope as well.

Cumulative photon emission can bring the particle

envelope beyond acceptance in some azimuthal point

The particle is lost

xT = a n sin
n
t +( ) T = x,y
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Quantum lifetime was first estimated by

Bruck and Sands

Quantum lifetime varies very strongly with the ratio
between acceptance & rms size.

Values for this ratio 6 are usually required
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Lifetime summary
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Coherent limitations on beams in storage rings
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Coherent effects are characterized by
impedances

Collective effects on the bunch as a whole driven by the

collective forces generated by the beam

Low Q diseases limit impedance for the ring

Transverse - "fast" head-tail effect

Longitudinal - Bunch lengthening "microwave" effect

High Q diseases:

Multi-bunch instabilities

Cures:

Vacuum chamber design

Lower current if possible

Landau damping
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Types of tune shifts: Coherent motion

Center of mass moves with a betatron oscillation

Beam environment (e.g. a position monitor) “sees” a “collective

motion”

Within the coherent motion, each particles has its individual

motion

From: E. Wilson Adams lectures
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Reminder about impedances

Describe interaction of beam with the vacuum chamber by

impedances

Example: Longitudinal motion is described by a current I.

Modification of the motion is described by I

Radiated field, E  displacement => driving voltage

V = Z I

Z is the Fourier transform of the wake-field

Longitudinal impedances are given in Ohms

Transverse impedances are given in Ohms / meter
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Impedance relations

For a cylindrical vacuum chamber of radius b

Z =
2c

b2

Zll
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Example of coherent bunch lengthening
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Phase mix or Landau damping

(Model from Barletta & Briggs)
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Very high order multipole: 1-D model
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Phase mix damping of small uniform

displacement
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Small uniform displacements damp as 1/z
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Phase mix damping of

small uniform displacement
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Large displacements damp

slower than 1/z
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Phase space rapidly assumes
asymptotic form
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Scattering reduces the damping rate
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Passage of beam through a

convergent lens slows damping
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Evaluation of effect of divergent lens
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Divergent lens speeds damping slightly
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Simple damping model - conclusions

Mean displacement can damp rapidly upon entering an
anharmonic transport channel

Once phase fluid assumes asymptotic form damping
proceeds very slowly

If initial state matches asymptotic form, damping is slow
from the start

Damping rate depends on microscopic form of phase fluid

Beams with the same mean displacement can damp at quite
different rates

Scattering is likely to slow damping

The price of changing the damping rate is increasing the
emittance of the beam


